]> sigrok.org Git - libsigrok.git/blob - src/hardware/zeroplus-logic-cube/api.c
Consistently use g_malloc0() for allocating devc.
[libsigrok.git] / src / hardware / zeroplus-logic-cube / api.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2010-2012 Bert Vermeulen <bert@biot.com>
5  *
6  * This program is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include "protocol.h"
21
22 #define VENDOR_NAME                     "ZEROPLUS"
23 #define USB_INTERFACE                   0
24 #define USB_CONFIGURATION               1
25 #define NUM_TRIGGER_STAGES              4
26 #define PACKET_SIZE                     2048    /* ?? */
27
28 //#define ZP_EXPERIMENTAL
29
30 struct zp_model {
31         uint16_t vid;
32         uint16_t pid;
33         char *model_name;
34         unsigned int channels;
35         unsigned int sample_depth;      /* In Ksamples/channel */
36         unsigned int max_sampling_freq;
37 };
38
39 /*
40  * Note -- 16032, 16064 and 16128 *usually* -- but not always -- have the
41  * same 128K sample depth.
42  */
43 static const struct zp_model zeroplus_models[] = {
44         {0x0c12, 0x7002, "LAP-16128U",    16, 128,  200},
45         {0x0c12, 0x7009, "LAP-C(16064)",  16, 64,   100},
46         {0x0c12, 0x700a, "LAP-C(16128)",  16, 128,  200},
47         {0x0c12, 0x700b, "LAP-C(32128)",  32, 128,  200},
48         {0x0c12, 0x700c, "LAP-C(321000)", 32, 1024, 200},
49         {0x0c12, 0x700d, "LAP-C(322000)", 32, 2048, 200},
50         {0x0c12, 0x700e, "LAP-C(16032)",  16, 32,   100},
51         {0x0c12, 0x7016, "LAP-C(162000)", 16, 2048, 200},
52         {0x0c12, 0x7100, "AKIP-9101", 16, 256, 200},
53         { 0, 0, 0, 0, 0, 0 }
54 };
55
56 static const uint32_t devopts[] = {
57         SR_CONF_LOGIC_ANALYZER,
58         SR_CONF_LIMIT_SAMPLES | SR_CONF_SET | SR_CONF_LIST,
59         SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
60         SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
61         SR_CONF_CAPTURE_RATIO | SR_CONF_GET | SR_CONF_SET,
62         SR_CONF_VOLTAGE_THRESHOLD | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
63 };
64
65 static const int32_t trigger_matches[] = {
66         SR_TRIGGER_ZERO,
67         SR_TRIGGER_ONE,
68 };
69
70 /*
71  * ZEROPLUS LAP-C (16032) numbers the 16 channels A0-A7 and B0-B7.
72  * We currently ignore other untested/unsupported devices here.
73  */
74 static const char *channel_names[] = {
75         "A0", "A1", "A2", "A3", "A4", "A5", "A6", "A7",
76         "B0", "B1", "B2", "B3", "B4", "B5", "B6", "B7",
77         "C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7",
78         "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
79         NULL,
80 };
81
82 SR_PRIV struct sr_dev_driver zeroplus_logic_cube_driver_info;
83 static struct sr_dev_driver *di = &zeroplus_logic_cube_driver_info;
84
85 /*
86  * The hardware supports more samplerates than these, but these are the
87  * options hardcoded into the vendor's Windows GUI.
88  */
89
90 static const uint64_t samplerates_100[] = {
91         SR_HZ(100),
92         SR_HZ(500),
93         SR_KHZ(1),
94         SR_KHZ(5),
95         SR_KHZ(25),
96         SR_KHZ(50),
97         SR_KHZ(100),
98         SR_KHZ(200),
99         SR_KHZ(400),
100         SR_KHZ(800),
101         SR_MHZ(1),
102         SR_MHZ(10),
103         SR_MHZ(25),
104         SR_MHZ(50),
105         SR_MHZ(80),
106         SR_MHZ(100),
107 };
108
109 const uint64_t samplerates_200[] = {
110         SR_HZ(100),
111         SR_HZ(500),
112         SR_KHZ(1),
113         SR_KHZ(5),
114         SR_KHZ(25),
115         SR_KHZ(50),
116         SR_KHZ(100),
117         SR_KHZ(200),
118         SR_KHZ(400),
119         SR_KHZ(800),
120         SR_MHZ(1),
121         SR_MHZ(10),
122         SR_MHZ(25),
123         SR_MHZ(50),
124         SR_MHZ(80),
125         SR_MHZ(100),
126         SR_MHZ(150),
127         SR_MHZ(200),
128 };
129
130 static int dev_close(struct sr_dev_inst *sdi);
131
132 SR_PRIV int zp_set_samplerate(struct dev_context *devc, uint64_t samplerate)
133 {
134         int i;
135
136         for (i = 0; ARRAY_SIZE(samplerates_200); i++)
137                 if (samplerate == samplerates_200[i])
138                         break;
139
140         if (i == ARRAY_SIZE(samplerates_200) || samplerate > devc->max_samplerate) {
141                 sr_err("Unsupported samplerate: %" PRIu64 "Hz.", samplerate);
142                 return SR_ERR_ARG;
143         }
144
145         sr_info("Setting samplerate to %" PRIu64 "Hz.", samplerate);
146
147         if (samplerate >= SR_MHZ(1))
148                 analyzer_set_freq(samplerate / SR_MHZ(1), FREQ_SCALE_MHZ);
149         else if (samplerate >= SR_KHZ(1))
150                 analyzer_set_freq(samplerate / SR_KHZ(1), FREQ_SCALE_KHZ);
151         else
152                 analyzer_set_freq(samplerate, FREQ_SCALE_HZ);
153
154         devc->cur_samplerate = samplerate;
155
156         return SR_OK;
157 }
158
159 static int init(struct sr_context *sr_ctx)
160 {
161         return std_init(sr_ctx, di, LOG_PREFIX);
162 }
163
164 static GSList *scan(GSList *options)
165 {
166         struct sr_dev_inst *sdi;
167         struct sr_channel *ch;
168         struct drv_context *drvc;
169         struct dev_context *devc;
170         const struct zp_model *prof;
171         struct libusb_device_descriptor des;
172         struct libusb_device_handle *hdl;
173         libusb_device **devlist;
174         GSList *devices;
175         int ret, i, j;
176         char serial_num[64], connection_id[64];
177
178         (void)options;
179
180         drvc = di->priv;
181
182         devices = NULL;
183
184         /* Find all ZEROPLUS analyzers and add them to device list. */
185         libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist); /* TODO: Errors. */
186
187         for (i = 0; devlist[i]; i++) {
188                 ret = libusb_get_device_descriptor(devlist[i], &des);
189                 if (ret != 0) {
190                         sr_err("Failed to get device descriptor: %s.",
191                                libusb_error_name(ret));
192                         continue;
193                 }
194
195                 if ((ret = libusb_open(devlist[i], &hdl)) < 0)
196                         continue;
197
198                 if (des.iSerialNumber == 0) {
199                         serial_num[0] = '\0';
200                 } else if ((ret = libusb_get_string_descriptor_ascii(hdl,
201                                 des.iSerialNumber, (unsigned char *) serial_num,
202                                 sizeof(serial_num))) < 0) {
203                         sr_warn("Failed to get serial number string descriptor: %s.",
204                                 libusb_error_name(ret));
205                         continue;
206                 }
207
208                 libusb_close(hdl);
209
210                 usb_get_port_path(devlist[i], connection_id, sizeof(connection_id));
211
212                 prof = NULL;
213                 for (j = 0; j < zeroplus_models[j].vid; j++) {
214                         if (des.idVendor == zeroplus_models[j].vid &&
215                                 des.idProduct == zeroplus_models[j].pid) {
216                                 prof = &zeroplus_models[j];
217                         }
218                 }
219                 /* Skip if the device was not found. */
220                 if (!prof)
221                         continue;
222                 sr_info("Found ZEROPLUS %s.", prof->model_name);
223
224                 /* Register the device with libsigrok. */
225                 sdi = g_malloc0(sizeof(struct sr_dev_inst));
226                 sdi->status = SR_ST_INACTIVE;
227                 sdi->vendor = g_strdup(VENDOR_NAME);
228                 sdi->model = g_strdup(prof->model_name);
229                 sdi->driver = di;
230                 sdi->serial_num = g_strdup(serial_num);
231                 sdi->connection_id = g_strdup(connection_id);
232
233                 /* Allocate memory for our private driver context. */
234                 devc = g_malloc0(sizeof(struct dev_context));
235                 sdi->priv = devc;
236                 devc->prof = prof;
237                 devc->num_channels = prof->channels;
238 #ifdef ZP_EXPERIMENTAL
239                 devc->max_sample_depth = 128 * 1024;
240                 devc->max_samplerate = 200;
241 #else
242                 devc->max_sample_depth = prof->sample_depth * 1024;
243                 devc->max_samplerate = prof->max_sampling_freq;
244 #endif
245                 devc->max_samplerate *= SR_MHZ(1);
246                 devc->memory_size = MEMORY_SIZE_8K;
247                 // memset(devc->trigger_buffer, 0, NUM_TRIGGER_STAGES);
248
249                 /* Fill in channellist according to this device's profile. */
250                 for (j = 0; j < devc->num_channels; j++) {
251                         if (!(ch = sr_channel_new(j, SR_CHANNEL_LOGIC, TRUE,
252                                         channel_names[j])))
253                                 return NULL;
254                         sdi->channels = g_slist_append(sdi->channels, ch);
255                 }
256
257                 devices = g_slist_append(devices, sdi);
258                 drvc->instances = g_slist_append(drvc->instances, sdi);
259                 sdi->inst_type = SR_INST_USB;
260                 sdi->conn = sr_usb_dev_inst_new(
261                         libusb_get_bus_number(devlist[i]),
262                         libusb_get_device_address(devlist[i]), NULL);
263         }
264         libusb_free_device_list(devlist, 1);
265
266         return devices;
267 }
268
269 static GSList *dev_list(void)
270 {
271         return ((struct drv_context *)(di->priv))->instances;
272 }
273
274 static int dev_open(struct sr_dev_inst *sdi)
275 {
276         struct dev_context *devc;
277         struct drv_context *drvc;
278         struct sr_usb_dev_inst *usb;
279         libusb_device **devlist, *dev;
280         int device_count, ret, i;
281         char connection_id[64];
282
283         drvc = di->priv;
284         usb = sdi->conn;
285
286         if (!(devc = sdi->priv)) {
287                 sr_err("%s: sdi->priv was NULL", __func__);
288                 return SR_ERR_ARG;
289         }
290
291         device_count = libusb_get_device_list(drvc->sr_ctx->libusb_ctx,
292                                               &devlist);
293         if (device_count < 0) {
294                 sr_err("Failed to retrieve device list.");
295                 return SR_ERR;
296         }
297
298         dev = NULL;
299         for (i = 0; i < device_count; i++) {
300                 usb_get_port_path(devlist[i], connection_id, sizeof(connection_id));
301                 if (!strcmp(sdi->connection_id, connection_id)) {
302                         dev = devlist[i];
303                         break;
304                 }
305         }
306         if (!dev) {
307                 sr_err("Device on %d.%d (logical) / %s (physical) disappeared!",
308                        usb->bus, usb->address, sdi->connection_id);
309                 return SR_ERR;
310         }
311
312         if (!(ret = libusb_open(dev, &(usb->devhdl)))) {
313                 sdi->status = SR_ST_ACTIVE;
314                 sr_info("Opened device on %d.%d (logical) / %s (physical) interface %d.",
315                         usb->bus, usb->address, sdi->connection_id, USB_INTERFACE);
316         } else {
317                 sr_err("Failed to open device: %s.", libusb_error_name(ret));
318                 return SR_ERR;
319         }
320
321         ret = libusb_set_configuration(usb->devhdl, USB_CONFIGURATION);
322         if (ret < 0) {
323                 sr_err("Unable to set USB configuration %d: %s.",
324                        USB_CONFIGURATION, libusb_error_name(ret));
325                 return SR_ERR;
326         }
327
328         ret = libusb_claim_interface(usb->devhdl, USB_INTERFACE);
329         if (ret != 0) {
330                 sr_err("Unable to claim interface: %s.",
331                        libusb_error_name(ret));
332                 return SR_ERR;
333         }
334
335         /* Set default configuration after power on. */
336         if (analyzer_read_status(usb->devhdl) == 0)
337                 analyzer_configure(usb->devhdl);
338
339         analyzer_reset(usb->devhdl);
340         analyzer_initialize(usb->devhdl);
341
342         //analyzer_set_memory_size(MEMORY_SIZE_512K);
343         // analyzer_set_freq(g_freq, g_freq_scale);
344         analyzer_set_trigger_count(1);
345         // analyzer_set_ramsize_trigger_address((((100 - g_pre_trigger)
346         // * get_memory_size(g_memory_size)) / 100) >> 2);
347
348 #if 0
349         if (g_double_mode == 1)
350                 analyzer_set_compression(COMPRESSION_DOUBLE);
351         else if (g_compression == 1)
352                 analyzer_set_compression(COMPRESSION_ENABLE);
353         else
354 #endif
355         analyzer_set_compression(COMPRESSION_NONE);
356
357         if (devc->cur_samplerate == 0) {
358                 /* Samplerate hasn't been set. Default to 1MHz. */
359                 analyzer_set_freq(1, FREQ_SCALE_MHZ);
360                 devc->cur_samplerate = SR_MHZ(1);
361         }
362
363         if (devc->cur_threshold == 0)
364                 set_voltage_threshold(devc, 1.5);
365
366         return SR_OK;
367 }
368
369 static int dev_close(struct sr_dev_inst *sdi)
370 {
371         struct sr_usb_dev_inst *usb;
372
373         usb = sdi->conn;
374
375         if (!usb->devhdl)
376                 return SR_ERR;
377
378         sr_info("Closing device on %d.%d (logical) / %s (physical) interface %d.",
379                 usb->bus, usb->address, sdi->connection_id, USB_INTERFACE);
380         libusb_release_interface(usb->devhdl, USB_INTERFACE);
381         libusb_reset_device(usb->devhdl);
382         libusb_close(usb->devhdl);
383         usb->devhdl = NULL;
384         sdi->status = SR_ST_INACTIVE;
385
386         return SR_OK;
387 }
388
389 static int cleanup(void)
390 {
391         return std_dev_clear(di, NULL);
392 }
393
394 static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
395                 const struct sr_channel_group *cg)
396 {
397         struct dev_context *devc;
398
399         (void)cg;
400
401         switch (key) {
402         case SR_CONF_SAMPLERATE:
403                 if (sdi) {
404                         devc = sdi->priv;
405                         *data = g_variant_new_uint64(devc->cur_samplerate);
406                         sr_spew("Returning samplerate: %" PRIu64 "Hz.",
407                                 devc->cur_samplerate);
408                 } else
409                         return SR_ERR_ARG;
410                 break;
411         case SR_CONF_CAPTURE_RATIO:
412                 if (sdi) {
413                         devc = sdi->priv;
414                         *data = g_variant_new_uint64(devc->capture_ratio);
415                 } else
416                         return SR_ERR_ARG;
417                 break;
418         case SR_CONF_VOLTAGE_THRESHOLD:
419                 if (sdi) {
420                         GVariant *range[2];
421                         devc = sdi->priv;
422                         range[0] = g_variant_new_double(devc->cur_threshold);
423                         range[1] = g_variant_new_double(devc->cur_threshold);
424                         *data = g_variant_new_tuple(range, 2);
425                 } else
426                         return SR_ERR_ARG;
427                 break;
428         default:
429                 return SR_ERR_NA;
430         }
431
432         return SR_OK;
433 }
434
435 static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi,
436                 const struct sr_channel_group *cg)
437 {
438         struct dev_context *devc;
439         gdouble low, high;
440
441         (void)cg;
442
443         if (sdi->status != SR_ST_ACTIVE)
444                 return SR_ERR_DEV_CLOSED;
445
446         if (!(devc = sdi->priv)) {
447                 sr_err("%s: sdi->priv was NULL", __func__);
448                 return SR_ERR_ARG;
449         }
450
451         switch (key) {
452         case SR_CONF_SAMPLERATE:
453                 return zp_set_samplerate(devc, g_variant_get_uint64(data));
454         case SR_CONF_LIMIT_SAMPLES:
455                 return set_limit_samples(devc, g_variant_get_uint64(data));
456         case SR_CONF_CAPTURE_RATIO:
457                 return set_capture_ratio(devc, g_variant_get_uint64(data));
458         case SR_CONF_VOLTAGE_THRESHOLD:
459                 g_variant_get(data, "(dd)", &low, &high);
460                 return set_voltage_threshold(devc, (low + high) / 2.0);
461         default:
462                 return SR_ERR_NA;
463         }
464
465         return SR_OK;
466 }
467
468 static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
469                 const struct sr_channel_group *cg)
470 {
471         struct dev_context *devc;
472         GVariant *gvar, *grange[2];
473         GVariantBuilder gvb;
474         double v;
475         GVariant *range[2];
476
477         (void)cg;
478
479         switch (key) {
480         case SR_CONF_DEVICE_OPTIONS:
481                 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
482                                 devopts, ARRAY_SIZE(devopts), sizeof(uint32_t));
483                 break;
484         case SR_CONF_SAMPLERATE:
485                 devc = sdi->priv;
486                 g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
487                 if (devc->prof->max_sampling_freq == 100) {
488                         gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
489                                         samplerates_100, ARRAY_SIZE(samplerates_100),
490                                         sizeof(uint64_t));
491                 } else if (devc->prof->max_sampling_freq == 200) {
492                         gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
493                                         samplerates_200, ARRAY_SIZE(samplerates_200),
494                                         sizeof(uint64_t));
495                 } else {
496                         sr_err("Internal error: Unknown max. samplerate: %d.",
497                                devc->prof->max_sampling_freq);
498                         return SR_ERR_ARG;
499                 }
500                 g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
501                 *data = g_variant_builder_end(&gvb);
502                 break;
503         case SR_CONF_TRIGGER_MATCH:
504                 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
505                                 trigger_matches, ARRAY_SIZE(trigger_matches),
506                                 sizeof(int32_t));
507                 break;
508         case SR_CONF_VOLTAGE_THRESHOLD:
509                 g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY);
510                 for (v = -6.0; v <= 6.0; v += 0.1) {
511                         range[0] = g_variant_new_double(v);
512                         range[1] = g_variant_new_double(v);
513                         gvar = g_variant_new_tuple(range, 2);
514                         g_variant_builder_add_value(&gvb, gvar);
515                 }
516                 *data = g_variant_builder_end(&gvb);
517                 break;
518         case SR_CONF_LIMIT_SAMPLES:
519                 if (!sdi)
520                         return SR_ERR_ARG;
521                 devc = sdi->priv;
522                 grange[0] = g_variant_new_uint64(0);
523                 grange[1] = g_variant_new_uint64(devc->max_sample_depth);
524                 *data = g_variant_new_tuple(grange, 2);
525                 break;
526         default:
527                 return SR_ERR_NA;
528         }
529
530         return SR_OK;
531 }
532
533 static int dev_acquisition_start(const struct sr_dev_inst *sdi,
534                 void *cb_data)
535 {
536         struct dev_context *devc;
537         struct sr_usb_dev_inst *usb;
538         struct sr_datafeed_packet packet;
539         struct sr_datafeed_logic logic;
540         unsigned int samples_read;
541         int res;
542         unsigned int packet_num, n;
543         unsigned char *buf;
544         unsigned int status;
545         unsigned int stop_address;
546         unsigned int now_address;
547         unsigned int trigger_address;
548         unsigned int trigger_offset;
549         unsigned int triggerbar;
550         unsigned int ramsize_trigger;
551         unsigned int memory_size;
552         unsigned int valid_samples;
553         unsigned int discard;
554         int trigger_now;
555
556         if (sdi->status != SR_ST_ACTIVE)
557                 return SR_ERR_DEV_CLOSED;
558
559         if (!(devc = sdi->priv)) {
560                 sr_err("%s: sdi->priv was NULL", __func__);
561                 return SR_ERR_ARG;
562         }
563
564         if (analyzer_add_triggers(sdi) != SR_OK) {
565                 sr_err("Failed to configure triggers.");
566                 return SR_ERR;
567         }
568
569         usb = sdi->conn;
570
571         set_triggerbar(devc);
572
573         /* Push configured settings to device. */
574         analyzer_configure(usb->devhdl);
575
576         analyzer_start(usb->devhdl);
577         sr_info("Waiting for data.");
578         analyzer_wait_data(usb->devhdl);
579
580         status = analyzer_read_status(usb->devhdl);
581         stop_address = analyzer_get_stop_address(usb->devhdl);
582         now_address = analyzer_get_now_address(usb->devhdl);
583         trigger_address = analyzer_get_trigger_address(usb->devhdl);
584
585         triggerbar = analyzer_get_triggerbar_address();
586         ramsize_trigger = analyzer_get_ramsize_trigger_address();
587
588         n = get_memory_size(devc->memory_size);
589         memory_size = n / 4;
590
591         sr_info("Status = 0x%x.", status);
592         sr_info("Stop address       = 0x%x.", stop_address);
593         sr_info("Now address        = 0x%x.", now_address);
594         sr_info("Trigger address    = 0x%x.", trigger_address);
595         sr_info("Triggerbar address = 0x%x.", triggerbar);
596         sr_info("Ramsize trigger    = 0x%x.", ramsize_trigger);
597         sr_info("Memory size        = 0x%x.", memory_size);
598
599         /* Send header packet to the session bus. */
600         std_session_send_df_header(cb_data, LOG_PREFIX);
601
602         /* Check for empty capture */
603         if ((status & STATUS_READY) && !stop_address) {
604                 packet.type = SR_DF_END;
605                 sr_session_send(cb_data, &packet);
606                 return SR_OK;
607         }
608
609         if (!(buf = g_try_malloc(PACKET_SIZE))) {
610                 sr_err("Packet buffer malloc failed.");
611                 return SR_ERR_MALLOC;
612         }
613
614         /* Check if the trigger is in the samples we are throwing away */
615         trigger_now = now_address == trigger_address ||
616                 ((now_address + 1) % memory_size) == trigger_address;
617
618         /*
619          * STATUS_READY doesn't clear until now_address advances past
620          * addr 0, but for our logic, clear it in that case
621          */
622         if (!now_address)
623                 status &= ~STATUS_READY;
624
625         analyzer_read_start(usb->devhdl);
626
627         /* Calculate how much data to discard */
628         discard = 0;
629         if (status & STATUS_READY) {
630                 /*
631                  * We haven't wrapped around, we need to throw away data from
632                  * our current position to the end of the buffer.
633                  * Additionally, the first two samples captured are always
634                  * bogus.
635                  */
636                 discard += memory_size - now_address + 2;
637                 now_address = 2;
638         }
639
640         /* If we have more samples than we need, discard them */
641         valid_samples = (stop_address - now_address) % memory_size;
642         if (valid_samples > ramsize_trigger + triggerbar) {
643                 discard += valid_samples - (ramsize_trigger + triggerbar);
644                 now_address += valid_samples - (ramsize_trigger + triggerbar);
645         }
646
647         sr_info("Need to discard %d samples.", discard);
648
649         /* Calculate how far in the trigger is */
650         if (trigger_now)
651                 trigger_offset = 0;
652         else
653                 trigger_offset = (trigger_address - now_address) % memory_size;
654
655         /* Recalculate the number of samples available */
656         valid_samples = (stop_address - now_address) % memory_size;
657
658         /* Send the incoming transfer to the session bus. */
659         samples_read = 0;
660         for (packet_num = 0; packet_num < n / PACKET_SIZE; packet_num++) {
661                 unsigned int len;
662                 unsigned int buf_offset;
663
664                 res = analyzer_read_data(usb->devhdl, buf, PACKET_SIZE);
665                 sr_info("Tried to read %d bytes, actually read %d bytes.",
666                         PACKET_SIZE, res);
667
668                 if (discard >= PACKET_SIZE / 4) {
669                         discard -= PACKET_SIZE / 4;
670                         continue;
671                 }
672
673                 len = PACKET_SIZE - discard * 4;
674                 buf_offset = discard * 4;
675                 discard = 0;
676
677                 /* Check if we've read all the samples */
678                 if (samples_read + len / 4 >= valid_samples)
679                         len = (valid_samples - samples_read) * 4;
680                 if (!len)
681                         break;
682
683                 if (samples_read < trigger_offset &&
684                     samples_read + len / 4 > trigger_offset) {
685                         /* Send out samples remaining before trigger */
686                         packet.type = SR_DF_LOGIC;
687                         packet.payload = &logic;
688                         logic.length = (trigger_offset - samples_read) * 4;
689                         logic.unitsize = 4;
690                         logic.data = buf + buf_offset;
691                         sr_session_send(cb_data, &packet);
692                         len -= logic.length;
693                         samples_read += logic.length / 4;
694                         buf_offset += logic.length;
695                 }
696
697                 if (samples_read == trigger_offset) {
698                         /* Send out trigger */
699                         packet.type = SR_DF_TRIGGER;
700                         packet.payload = NULL;
701                         sr_session_send(cb_data, &packet);
702                 }
703
704                 /* Send out data (or data after trigger) */
705                 packet.type = SR_DF_LOGIC;
706                 packet.payload = &logic;
707                 logic.length = len;
708                 logic.unitsize = 4;
709                 logic.data = buf + buf_offset;
710                 sr_session_send(cb_data, &packet);
711                 samples_read += len / 4;
712         }
713         analyzer_read_stop(usb->devhdl);
714         g_free(buf);
715
716         packet.type = SR_DF_END;
717         sr_session_send(cb_data, &packet);
718
719         return SR_OK;
720 }
721
722 /* TODO: This stops acquisition on ALL devices, ignoring dev_index. */
723 static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
724 {
725         struct dev_context *devc;
726         struct sr_usb_dev_inst *usb;
727         struct sr_datafeed_packet packet;
728
729         packet.type = SR_DF_END;
730         sr_session_send(cb_data, &packet);
731
732         if (!(devc = sdi->priv)) {
733                 sr_err("%s: sdi->priv was NULL", __func__);
734                 return SR_ERR_BUG;
735         }
736
737         usb = sdi->conn;
738         analyzer_reset(usb->devhdl);
739         /* TODO: Need to cancel and free any queued up transfers. */
740
741         return SR_OK;
742 }
743
744 SR_PRIV struct sr_dev_driver zeroplus_logic_cube_driver_info = {
745         .name = "zeroplus-logic-cube",
746         .longname = "ZEROPLUS Logic Cube LAP-C series",
747         .api_version = 1,
748         .init = init,
749         .cleanup = cleanup,
750         .scan = scan,
751         .dev_list = dev_list,
752         .dev_clear = NULL,
753         .config_get = config_get,
754         .config_set = config_set,
755         .config_list = config_list,
756         .dev_open = dev_open,
757         .dev_close = dev_close,
758         .dev_acquisition_start = dev_acquisition_start,
759         .dev_acquisition_stop = dev_acquisition_stop,
760         .priv = NULL,
761 };