]> sigrok.org Git - libsigrok.git/blob - src/hardware/zeroplus-logic-cube/api.c
sr_config_set(): Factor out SR_ERR_DEV_CLOSED check.
[libsigrok.git] / src / hardware / zeroplus-logic-cube / api.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2010-2012 Bert Vermeulen <bert@biot.com>
5  *
6  * This program is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <config.h>
21 #include "protocol.h"
22
23 #define VENDOR_NAME                     "ZEROPLUS"
24 #define USB_INTERFACE                   0
25 #define USB_CONFIGURATION               1
26 #define NUM_TRIGGER_STAGES              4
27 #define PACKET_SIZE                     2048    /* ?? */
28
29 //#define ZP_EXPERIMENTAL
30
31 struct zp_model {
32         uint16_t vid;
33         uint16_t pid;
34         const char *model_name;
35         unsigned int channels;
36         unsigned int sample_depth;      /* In Ksamples/channel */
37         unsigned int max_sampling_freq;
38 };
39
40 /*
41  * Note -- 16032, 16064 and 16128 *usually* -- but not always -- have the
42  * same 128K sample depth.
43  */
44 static const struct zp_model zeroplus_models[] = {
45         {0x0c12, 0x7002, "LAP-16128U",    16, 128,  200},
46         {0x0c12, 0x7009, "LAP-C(16064)",  16, 64,   100},
47         {0x0c12, 0x700a, "LAP-C(16128)",  16, 128,  200},
48         {0x0c12, 0x700b, "LAP-C(32128)",  32, 128,  200},
49         {0x0c12, 0x700c, "LAP-C(321000)", 32, 1024, 200},
50         {0x0c12, 0x700d, "LAP-C(322000)", 32, 2048, 200},
51         {0x0c12, 0x700e, "LAP-C(16032)",  16, 32,   100},
52         {0x0c12, 0x7016, "LAP-C(162000)", 16, 2048, 200},
53         {0x0c12, 0x7100, "AKIP-9101", 16, 256, 200},
54         ALL_ZERO
55 };
56
57 static const uint32_t drvopts[] = {
58         SR_CONF_LOGIC_ANALYZER,
59 };
60
61 static const uint32_t devopts[] = {
62         SR_CONF_LIMIT_SAMPLES | SR_CONF_SET | SR_CONF_LIST,
63         SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
64         SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
65         SR_CONF_CAPTURE_RATIO | SR_CONF_GET | SR_CONF_SET,
66         SR_CONF_VOLTAGE_THRESHOLD | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
67 };
68
69 static const int32_t trigger_matches[] = {
70         SR_TRIGGER_ZERO,
71         SR_TRIGGER_ONE,
72 };
73
74 /*
75  * ZEROPLUS LAP-C (16032) numbers the 16 channels A0-A7 and B0-B7.
76  * We currently ignore other untested/unsupported devices here.
77  */
78 static const char *channel_names[] = {
79         "A0", "A1", "A2", "A3", "A4", "A5", "A6", "A7",
80         "B0", "B1", "B2", "B3", "B4", "B5", "B6", "B7",
81         "C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7",
82         "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
83 };
84
85 /*
86  * The hardware supports more samplerates than these, but these are the
87  * options hardcoded into the vendor's Windows GUI.
88  */
89
90 static const uint64_t samplerates_100[] = {
91         SR_HZ(100),
92         SR_HZ(500),
93         SR_KHZ(1),
94         SR_KHZ(5),
95         SR_KHZ(25),
96         SR_KHZ(50),
97         SR_KHZ(100),
98         SR_KHZ(200),
99         SR_KHZ(400),
100         SR_KHZ(800),
101         SR_MHZ(1),
102         SR_MHZ(10),
103         SR_MHZ(25),
104         SR_MHZ(50),
105         SR_MHZ(80),
106         SR_MHZ(100),
107 };
108
109 const uint64_t samplerates_200[] = {
110         SR_HZ(100),
111         SR_HZ(500),
112         SR_KHZ(1),
113         SR_KHZ(5),
114         SR_KHZ(25),
115         SR_KHZ(50),
116         SR_KHZ(100),
117         SR_KHZ(200),
118         SR_KHZ(400),
119         SR_KHZ(800),
120         SR_MHZ(1),
121         SR_MHZ(10),
122         SR_MHZ(25),
123         SR_MHZ(50),
124         SR_MHZ(80),
125         SR_MHZ(100),
126         SR_MHZ(150),
127         SR_MHZ(200),
128 };
129
130 static int dev_close(struct sr_dev_inst *sdi);
131
132 SR_PRIV int zp_set_samplerate(struct dev_context *devc, uint64_t samplerate)
133 {
134         int i;
135
136         for (i = 0; ARRAY_SIZE(samplerates_200); i++)
137                 if (samplerate == samplerates_200[i])
138                         break;
139
140         if (i == ARRAY_SIZE(samplerates_200) || samplerate > devc->max_samplerate) {
141                 sr_err("Unsupported samplerate: %" PRIu64 "Hz.", samplerate);
142                 return SR_ERR_ARG;
143         }
144
145         sr_info("Setting samplerate to %" PRIu64 "Hz.", samplerate);
146
147         if (samplerate >= SR_MHZ(1))
148                 analyzer_set_freq(samplerate / SR_MHZ(1), FREQ_SCALE_MHZ);
149         else if (samplerate >= SR_KHZ(1))
150                 analyzer_set_freq(samplerate / SR_KHZ(1), FREQ_SCALE_KHZ);
151         else
152                 analyzer_set_freq(samplerate, FREQ_SCALE_HZ);
153
154         devc->cur_samplerate = samplerate;
155
156         return SR_OK;
157 }
158
159 static GSList *scan(struct sr_dev_driver *di, GSList *options)
160 {
161         struct sr_dev_inst *sdi;
162         struct drv_context *drvc;
163         struct dev_context *devc;
164         const struct zp_model *prof;
165         struct libusb_device_descriptor des;
166         struct libusb_device_handle *hdl;
167         libusb_device **devlist;
168         GSList *devices;
169         int ret, i, j;
170         char serial_num[64], connection_id[64];
171
172         (void)options;
173
174         drvc = di->context;
175
176         devices = NULL;
177
178         /* Find all ZEROPLUS analyzers and add them to device list. */
179         libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist); /* TODO: Errors. */
180
181         for (i = 0; devlist[i]; i++) {
182                 libusb_get_device_descriptor(devlist[i], &des);
183
184                 if ((ret = libusb_open(devlist[i], &hdl)) < 0)
185                         continue;
186
187                 if (des.iSerialNumber == 0) {
188                         serial_num[0] = '\0';
189                 } else if ((ret = libusb_get_string_descriptor_ascii(hdl,
190                                 des.iSerialNumber, (unsigned char *) serial_num,
191                                 sizeof(serial_num))) < 0) {
192                         sr_warn("Failed to get serial number string descriptor: %s.",
193                                 libusb_error_name(ret));
194                         continue;
195                 }
196
197                 libusb_close(hdl);
198
199                 usb_get_port_path(devlist[i], connection_id, sizeof(connection_id));
200
201                 prof = NULL;
202                 for (j = 0; j < zeroplus_models[j].vid; j++) {
203                         if (des.idVendor == zeroplus_models[j].vid &&
204                                 des.idProduct == zeroplus_models[j].pid) {
205                                 prof = &zeroplus_models[j];
206                         }
207                 }
208                 /* Skip if the device was not found. */
209                 if (!prof)
210                         continue;
211                 sr_info("Found ZEROPLUS %s.", prof->model_name);
212
213                 /* Register the device with libsigrok. */
214                 sdi = g_malloc0(sizeof(struct sr_dev_inst));
215                 sdi->status = SR_ST_INACTIVE;
216                 sdi->vendor = g_strdup(VENDOR_NAME);
217                 sdi->model = g_strdup(prof->model_name);
218                 sdi->serial_num = g_strdup(serial_num);
219                 sdi->connection_id = g_strdup(connection_id);
220
221                 /* Allocate memory for our private driver context. */
222                 devc = g_malloc0(sizeof(struct dev_context));
223                 sdi->priv = devc;
224                 devc->prof = prof;
225                 devc->num_channels = prof->channels;
226 #ifdef ZP_EXPERIMENTAL
227                 devc->max_sample_depth = 128 * 1024;
228                 devc->max_samplerate = 200;
229 #else
230                 devc->max_sample_depth = prof->sample_depth * 1024;
231                 devc->max_samplerate = prof->max_sampling_freq;
232 #endif
233                 devc->max_samplerate *= SR_MHZ(1);
234                 devc->memory_size = MEMORY_SIZE_8K;
235                 // memset(devc->trigger_buffer, 0, NUM_TRIGGER_STAGES);
236
237                 /* Fill in channellist according to this device's profile. */
238                 for (j = 0; j < devc->num_channels; j++)
239                         sr_channel_new(sdi, j, SR_CHANNEL_LOGIC, TRUE,
240                                         channel_names[j]);
241
242                 devices = g_slist_append(devices, sdi);
243                 sdi->inst_type = SR_INST_USB;
244                 sdi->conn = sr_usb_dev_inst_new(
245                         libusb_get_bus_number(devlist[i]),
246                         libusb_get_device_address(devlist[i]), NULL);
247         }
248         libusb_free_device_list(devlist, 1);
249
250         return std_scan_complete(di, devices);
251 }
252
253 static int dev_open(struct sr_dev_inst *sdi)
254 {
255         struct sr_dev_driver *di = sdi->driver;
256         struct dev_context *devc;
257         struct drv_context *drvc;
258         struct sr_usb_dev_inst *usb;
259         int ret;
260
261         drvc = di->context;
262         usb = sdi->conn;
263         devc = sdi->priv;
264
265         ret = sr_usb_open(drvc->sr_ctx->libusb_ctx, usb);
266         if (ret != SR_OK)
267                 return ret;
268
269         sdi->status = SR_ST_ACTIVE;
270
271         ret = libusb_set_configuration(usb->devhdl, USB_CONFIGURATION);
272         if (ret < 0) {
273                 sr_err("Unable to set USB configuration %d: %s.",
274                        USB_CONFIGURATION, libusb_error_name(ret));
275                 return SR_ERR;
276         }
277
278         ret = libusb_claim_interface(usb->devhdl, USB_INTERFACE);
279         if (ret != 0) {
280                 sr_err("Unable to claim interface: %s.",
281                        libusb_error_name(ret));
282                 return SR_ERR;
283         }
284
285         /* Set default configuration after power on. */
286         if (analyzer_read_status(usb->devhdl) == 0)
287                 analyzer_configure(usb->devhdl);
288
289         analyzer_reset(usb->devhdl);
290         analyzer_initialize(usb->devhdl);
291
292         //analyzer_set_memory_size(MEMORY_SIZE_512K);
293         // analyzer_set_freq(g_freq, g_freq_scale);
294         analyzer_set_trigger_count(1);
295         // analyzer_set_ramsize_trigger_address((((100 - g_pre_trigger)
296         // * get_memory_size(g_memory_size)) / 100) >> 2);
297
298 #if 0
299         if (g_double_mode == 1)
300                 analyzer_set_compression(COMPRESSION_DOUBLE);
301         else if (g_compression == 1)
302                 analyzer_set_compression(COMPRESSION_ENABLE);
303         else
304 #endif
305         analyzer_set_compression(COMPRESSION_NONE);
306
307         if (devc->cur_samplerate == 0) {
308                 /* Samplerate hasn't been set. Default to 1MHz. */
309                 analyzer_set_freq(1, FREQ_SCALE_MHZ);
310                 devc->cur_samplerate = SR_MHZ(1);
311         }
312
313         if (devc->cur_threshold == 0)
314                 set_voltage_threshold(devc, 1.5);
315
316         return SR_OK;
317 }
318
319 static int dev_close(struct sr_dev_inst *sdi)
320 {
321         struct sr_usb_dev_inst *usb;
322
323         usb = sdi->conn;
324
325         if (!usb->devhdl)
326                 return SR_ERR;
327
328         sr_info("Closing device on %d.%d (logical) / %s (physical) interface %d.",
329                 usb->bus, usb->address, sdi->connection_id, USB_INTERFACE);
330         libusb_release_interface(usb->devhdl, USB_INTERFACE);
331         libusb_reset_device(usb->devhdl);
332         libusb_close(usb->devhdl);
333         usb->devhdl = NULL;
334         sdi->status = SR_ST_INACTIVE;
335
336         return SR_OK;
337 }
338
339 static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
340                 const struct sr_channel_group *cg)
341 {
342         struct dev_context *devc;
343         GVariant *range[2];
344
345         (void)cg;
346
347         if (!sdi)
348                 return SR_ERR_ARG;
349
350         devc = sdi->priv;
351
352         switch (key) {
353         case SR_CONF_SAMPLERATE:
354                 *data = g_variant_new_uint64(devc->cur_samplerate);
355                 break;
356         case SR_CONF_CAPTURE_RATIO:
357                 *data = g_variant_new_uint64(devc->capture_ratio);
358                 break;
359         case SR_CONF_VOLTAGE_THRESHOLD:
360                 range[0] = g_variant_new_double(devc->cur_threshold);
361                 range[1] = g_variant_new_double(devc->cur_threshold);
362                 *data = g_variant_new_tuple(range, 2);
363                 break;
364         default:
365                 return SR_ERR_NA;
366         }
367
368         return SR_OK;
369 }
370
371 static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi,
372                 const struct sr_channel_group *cg)
373 {
374         struct dev_context *devc;
375         gdouble low, high;
376
377         (void)cg;
378
379         devc = sdi->priv;
380
381         switch (key) {
382         case SR_CONF_SAMPLERATE:
383                 return zp_set_samplerate(devc, g_variant_get_uint64(data));
384         case SR_CONF_LIMIT_SAMPLES:
385                 return set_limit_samples(devc, g_variant_get_uint64(data));
386         case SR_CONF_CAPTURE_RATIO:
387                 return set_capture_ratio(devc, g_variant_get_uint64(data));
388         case SR_CONF_VOLTAGE_THRESHOLD:
389                 g_variant_get(data, "(dd)", &low, &high);
390                 return set_voltage_threshold(devc, (low + high) / 2.0);
391         default:
392                 return SR_ERR_NA;
393         }
394
395         return SR_OK;
396 }
397
398 static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
399                 const struct sr_channel_group *cg)
400 {
401         struct dev_context *devc;
402         GVariant *gvar, *grange[2];
403         GVariantBuilder gvb;
404         double v;
405         GVariant *range[2];
406
407         (void)cg;
408
409         switch (key) {
410         case SR_CONF_DEVICE_OPTIONS:
411                 if (!sdi) {
412                         *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
413                                 drvopts, ARRAY_SIZE(drvopts), sizeof(uint32_t));
414                 } else {
415                         *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
416                                 devopts, ARRAY_SIZE(devopts), sizeof(uint32_t));
417                 }
418                 break;
419         case SR_CONF_SAMPLERATE:
420                 devc = sdi->priv;
421                 g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
422                 if (devc->prof->max_sampling_freq == 100) {
423                         gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
424                                         samplerates_100, ARRAY_SIZE(samplerates_100),
425                                         sizeof(uint64_t));
426                 } else if (devc->prof->max_sampling_freq == 200) {
427                         gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
428                                         samplerates_200, ARRAY_SIZE(samplerates_200),
429                                         sizeof(uint64_t));
430                 } else {
431                         sr_err("Internal error: Unknown max. samplerate: %d.",
432                                devc->prof->max_sampling_freq);
433                         return SR_ERR_ARG;
434                 }
435                 g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
436                 *data = g_variant_builder_end(&gvb);
437                 break;
438         case SR_CONF_TRIGGER_MATCH:
439                 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
440                                 trigger_matches, ARRAY_SIZE(trigger_matches),
441                                 sizeof(int32_t));
442                 break;
443         case SR_CONF_VOLTAGE_THRESHOLD:
444                 g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY);
445                 for (v = -6.0; v <= 6.0; v += 0.1) {
446                         range[0] = g_variant_new_double(v);
447                         range[1] = g_variant_new_double(v);
448                         gvar = g_variant_new_tuple(range, 2);
449                         g_variant_builder_add_value(&gvb, gvar);
450                 }
451                 *data = g_variant_builder_end(&gvb);
452                 break;
453         case SR_CONF_LIMIT_SAMPLES:
454                 if (!sdi)
455                         return SR_ERR_ARG;
456                 devc = sdi->priv;
457                 grange[0] = g_variant_new_uint64(0);
458                 grange[1] = g_variant_new_uint64(devc->max_sample_depth);
459                 *data = g_variant_new_tuple(grange, 2);
460                 break;
461         default:
462                 return SR_ERR_NA;
463         }
464
465         return SR_OK;
466 }
467
468 static int dev_acquisition_start(const struct sr_dev_inst *sdi)
469 {
470         struct dev_context *devc;
471         struct sr_usb_dev_inst *usb;
472         struct sr_datafeed_packet packet;
473         struct sr_datafeed_logic logic;
474         unsigned int samples_read;
475         int res;
476         unsigned int packet_num, n;
477         unsigned char *buf;
478         unsigned int status;
479         unsigned int stop_address;
480         unsigned int now_address;
481         unsigned int trigger_address;
482         unsigned int trigger_offset;
483         unsigned int triggerbar;
484         unsigned int ramsize_trigger;
485         unsigned int memory_size;
486         unsigned int valid_samples;
487         unsigned int discard;
488         int trigger_now;
489
490         devc = sdi->priv;
491
492         if (analyzer_add_triggers(sdi) != SR_OK) {
493                 sr_err("Failed to configure triggers.");
494                 return SR_ERR;
495         }
496
497         usb = sdi->conn;
498
499         set_triggerbar(devc);
500
501         /* Push configured settings to device. */
502         analyzer_configure(usb->devhdl);
503
504         analyzer_start(usb->devhdl);
505         sr_info("Waiting for data.");
506         analyzer_wait_data(usb->devhdl);
507
508         status = analyzer_read_status(usb->devhdl);
509         stop_address = analyzer_get_stop_address(usb->devhdl);
510         now_address = analyzer_get_now_address(usb->devhdl);
511         trigger_address = analyzer_get_trigger_address(usb->devhdl);
512
513         triggerbar = analyzer_get_triggerbar_address();
514         ramsize_trigger = analyzer_get_ramsize_trigger_address();
515
516         n = get_memory_size(devc->memory_size);
517         memory_size = n / 4;
518
519         sr_info("Status = 0x%x.", status);
520         sr_info("Stop address       = 0x%x.", stop_address);
521         sr_info("Now address        = 0x%x.", now_address);
522         sr_info("Trigger address    = 0x%x.", trigger_address);
523         sr_info("Triggerbar address = 0x%x.", triggerbar);
524         sr_info("Ramsize trigger    = 0x%x.", ramsize_trigger);
525         sr_info("Memory size        = 0x%x.", memory_size);
526
527         std_session_send_df_header(sdi);
528
529         /* Check for empty capture */
530         if ((status & STATUS_READY) && !stop_address) {
531                 std_session_send_df_end(sdi);
532                 return SR_OK;
533         }
534
535         buf = g_malloc(PACKET_SIZE);
536
537         /* Check if the trigger is in the samples we are throwing away */
538         trigger_now = now_address == trigger_address ||
539                 ((now_address + 1) % memory_size) == trigger_address;
540
541         /*
542          * STATUS_READY doesn't clear until now_address advances past
543          * addr 0, but for our logic, clear it in that case
544          */
545         if (!now_address)
546                 status &= ~STATUS_READY;
547
548         analyzer_read_start(usb->devhdl);
549
550         /* Calculate how much data to discard */
551         discard = 0;
552         if (status & STATUS_READY) {
553                 /*
554                  * We haven't wrapped around, we need to throw away data from
555                  * our current position to the end of the buffer.
556                  * Additionally, the first two samples captured are always
557                  * bogus.
558                  */
559                 discard += memory_size - now_address + 2;
560                 now_address = 2;
561         }
562
563         /* If we have more samples than we need, discard them */
564         valid_samples = (stop_address - now_address) % memory_size;
565         if (valid_samples > ramsize_trigger + triggerbar) {
566                 discard += valid_samples - (ramsize_trigger + triggerbar);
567                 now_address += valid_samples - (ramsize_trigger + triggerbar);
568         }
569
570         sr_info("Need to discard %d samples.", discard);
571
572         /* Calculate how far in the trigger is */
573         if (trigger_now)
574                 trigger_offset = 0;
575         else
576                 trigger_offset = (trigger_address - now_address) % memory_size;
577
578         /* Recalculate the number of samples available */
579         valid_samples = (stop_address - now_address) % memory_size;
580
581         /* Send the incoming transfer to the session bus. */
582         samples_read = 0;
583         for (packet_num = 0; packet_num < n / PACKET_SIZE; packet_num++) {
584                 unsigned int len;
585                 unsigned int buf_offset;
586
587                 res = analyzer_read_data(usb->devhdl, buf, PACKET_SIZE);
588                 sr_info("Tried to read %d bytes, actually read %d bytes.",
589                         PACKET_SIZE, res);
590
591                 if (discard >= PACKET_SIZE / 4) {
592                         discard -= PACKET_SIZE / 4;
593                         continue;
594                 }
595
596                 len = PACKET_SIZE - discard * 4;
597                 buf_offset = discard * 4;
598                 discard = 0;
599
600                 /* Check if we've read all the samples */
601                 if (samples_read + len / 4 >= valid_samples)
602                         len = (valid_samples - samples_read) * 4;
603                 if (!len)
604                         break;
605
606                 if (samples_read < trigger_offset &&
607                     samples_read + len / 4 > trigger_offset) {
608                         /* Send out samples remaining before trigger */
609                         packet.type = SR_DF_LOGIC;
610                         packet.payload = &logic;
611                         logic.length = (trigger_offset - samples_read) * 4;
612                         logic.unitsize = 4;
613                         logic.data = buf + buf_offset;
614                         sr_session_send(sdi, &packet);
615                         len -= logic.length;
616                         samples_read += logic.length / 4;
617                         buf_offset += logic.length;
618                 }
619
620                 if (samples_read == trigger_offset) {
621                         /* Send out trigger */
622                         packet.type = SR_DF_TRIGGER;
623                         packet.payload = NULL;
624                         sr_session_send(sdi, &packet);
625                 }
626
627                 /* Send out data (or data after trigger) */
628                 packet.type = SR_DF_LOGIC;
629                 packet.payload = &logic;
630                 logic.length = len;
631                 logic.unitsize = 4;
632                 logic.data = buf + buf_offset;
633                 sr_session_send(sdi, &packet);
634                 samples_read += len / 4;
635         }
636         analyzer_read_stop(usb->devhdl);
637         g_free(buf);
638
639         std_session_send_df_end(sdi);
640
641         return SR_OK;
642 }
643
644 /* TODO: This stops acquisition on ALL devices, ignoring dev_index. */
645 static int dev_acquisition_stop(struct sr_dev_inst *sdi)
646 {
647         struct sr_usb_dev_inst *usb;
648
649         std_session_send_df_end(sdi);
650
651         usb = sdi->conn;
652         analyzer_reset(usb->devhdl);
653         /* TODO: Need to cancel and free any queued up transfers. */
654
655         return SR_OK;
656 }
657
658 static struct sr_dev_driver zeroplus_logic_cube_driver_info = {
659         .name = "zeroplus-logic-cube",
660         .longname = "ZEROPLUS Logic Cube LAP-C series",
661         .api_version = 1,
662         .init = std_init,
663         .cleanup = std_cleanup,
664         .scan = scan,
665         .dev_list = std_dev_list,
666         .dev_clear = NULL,
667         .config_get = config_get,
668         .config_set = config_set,
669         .config_list = config_list,
670         .dev_open = dev_open,
671         .dev_close = dev_close,
672         .dev_acquisition_start = dev_acquisition_start,
673         .dev_acquisition_stop = dev_acquisition_stop,
674         .context = NULL,
675 };
676 SR_REGISTER_DEV_DRIVER(zeroplus_logic_cube_driver_info);