]> sigrok.org Git - libsigrok.git/blob - src/hardware/zeroplus-logic-cube/api.c
Match std_init() parameter order to the driver init() callback
[libsigrok.git] / src / hardware / zeroplus-logic-cube / api.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2010-2012 Bert Vermeulen <bert@biot.com>
5  *
6  * This program is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <config.h>
21 #include "protocol.h"
22
23 #define VENDOR_NAME                     "ZEROPLUS"
24 #define USB_INTERFACE                   0
25 #define USB_CONFIGURATION               1
26 #define NUM_TRIGGER_STAGES              4
27 #define PACKET_SIZE                     2048    /* ?? */
28
29 //#define ZP_EXPERIMENTAL
30
31 struct zp_model {
32         uint16_t vid;
33         uint16_t pid;
34         const char *model_name;
35         unsigned int channels;
36         unsigned int sample_depth;      /* In Ksamples/channel */
37         unsigned int max_sampling_freq;
38 };
39
40 /*
41  * Note -- 16032, 16064 and 16128 *usually* -- but not always -- have the
42  * same 128K sample depth.
43  */
44 static const struct zp_model zeroplus_models[] = {
45         {0x0c12, 0x7002, "LAP-16128U",    16, 128,  200},
46         {0x0c12, 0x7009, "LAP-C(16064)",  16, 64,   100},
47         {0x0c12, 0x700a, "LAP-C(16128)",  16, 128,  200},
48         {0x0c12, 0x700b, "LAP-C(32128)",  32, 128,  200},
49         {0x0c12, 0x700c, "LAP-C(321000)", 32, 1024, 200},
50         {0x0c12, 0x700d, "LAP-C(322000)", 32, 2048, 200},
51         {0x0c12, 0x700e, "LAP-C(16032)",  16, 32,   100},
52         {0x0c12, 0x7016, "LAP-C(162000)", 16, 2048, 200},
53         {0x0c12, 0x7100, "AKIP-9101", 16, 256, 200},
54         ALL_ZERO
55 };
56
57 static const uint32_t devopts[] = {
58         SR_CONF_LOGIC_ANALYZER,
59         SR_CONF_LIMIT_SAMPLES | SR_CONF_SET | SR_CONF_LIST,
60         SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
61         SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
62         SR_CONF_CAPTURE_RATIO | SR_CONF_GET | SR_CONF_SET,
63         SR_CONF_VOLTAGE_THRESHOLD | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
64 };
65
66 static const int32_t trigger_matches[] = {
67         SR_TRIGGER_ZERO,
68         SR_TRIGGER_ONE,
69 };
70
71 /*
72  * ZEROPLUS LAP-C (16032) numbers the 16 channels A0-A7 and B0-B7.
73  * We currently ignore other untested/unsupported devices here.
74  */
75 static const char *channel_names[] = {
76         "A0", "A1", "A2", "A3", "A4", "A5", "A6", "A7",
77         "B0", "B1", "B2", "B3", "B4", "B5", "B6", "B7",
78         "C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7",
79         "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
80 };
81
82 SR_PRIV struct sr_dev_driver zeroplus_logic_cube_driver_info;
83
84 /*
85  * The hardware supports more samplerates than these, but these are the
86  * options hardcoded into the vendor's Windows GUI.
87  */
88
89 static const uint64_t samplerates_100[] = {
90         SR_HZ(100),
91         SR_HZ(500),
92         SR_KHZ(1),
93         SR_KHZ(5),
94         SR_KHZ(25),
95         SR_KHZ(50),
96         SR_KHZ(100),
97         SR_KHZ(200),
98         SR_KHZ(400),
99         SR_KHZ(800),
100         SR_MHZ(1),
101         SR_MHZ(10),
102         SR_MHZ(25),
103         SR_MHZ(50),
104         SR_MHZ(80),
105         SR_MHZ(100),
106 };
107
108 const uint64_t samplerates_200[] = {
109         SR_HZ(100),
110         SR_HZ(500),
111         SR_KHZ(1),
112         SR_KHZ(5),
113         SR_KHZ(25),
114         SR_KHZ(50),
115         SR_KHZ(100),
116         SR_KHZ(200),
117         SR_KHZ(400),
118         SR_KHZ(800),
119         SR_MHZ(1),
120         SR_MHZ(10),
121         SR_MHZ(25),
122         SR_MHZ(50),
123         SR_MHZ(80),
124         SR_MHZ(100),
125         SR_MHZ(150),
126         SR_MHZ(200),
127 };
128
129 static int dev_close(struct sr_dev_inst *sdi);
130
131 SR_PRIV int zp_set_samplerate(struct dev_context *devc, uint64_t samplerate)
132 {
133         int i;
134
135         for (i = 0; ARRAY_SIZE(samplerates_200); i++)
136                 if (samplerate == samplerates_200[i])
137                         break;
138
139         if (i == ARRAY_SIZE(samplerates_200) || samplerate > devc->max_samplerate) {
140                 sr_err("Unsupported samplerate: %" PRIu64 "Hz.", samplerate);
141                 return SR_ERR_ARG;
142         }
143
144         sr_info("Setting samplerate to %" PRIu64 "Hz.", samplerate);
145
146         if (samplerate >= SR_MHZ(1))
147                 analyzer_set_freq(samplerate / SR_MHZ(1), FREQ_SCALE_MHZ);
148         else if (samplerate >= SR_KHZ(1))
149                 analyzer_set_freq(samplerate / SR_KHZ(1), FREQ_SCALE_KHZ);
150         else
151                 analyzer_set_freq(samplerate, FREQ_SCALE_HZ);
152
153         devc->cur_samplerate = samplerate;
154
155         return SR_OK;
156 }
157
158 static int init(struct sr_dev_driver *di, struct sr_context *sr_ctx)
159 {
160         return std_init(di, sr_ctx, LOG_PREFIX);
161 }
162
163 static GSList *scan(struct sr_dev_driver *di, GSList *options)
164 {
165         struct sr_dev_inst *sdi;
166         struct drv_context *drvc;
167         struct dev_context *devc;
168         const struct zp_model *prof;
169         struct libusb_device_descriptor des;
170         struct libusb_device_handle *hdl;
171         libusb_device **devlist;
172         GSList *devices;
173         int ret, i, j;
174         char serial_num[64], connection_id[64];
175
176         (void)options;
177
178         drvc = di->context;
179
180         devices = NULL;
181
182         /* Find all ZEROPLUS analyzers and add them to device list. */
183         libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist); /* TODO: Errors. */
184
185         for (i = 0; devlist[i]; i++) {
186                 libusb_get_device_descriptor(devlist[i], &des);
187
188                 if ((ret = libusb_open(devlist[i], &hdl)) < 0)
189                         continue;
190
191                 if (des.iSerialNumber == 0) {
192                         serial_num[0] = '\0';
193                 } else if ((ret = libusb_get_string_descriptor_ascii(hdl,
194                                 des.iSerialNumber, (unsigned char *) serial_num,
195                                 sizeof(serial_num))) < 0) {
196                         sr_warn("Failed to get serial number string descriptor: %s.",
197                                 libusb_error_name(ret));
198                         continue;
199                 }
200
201                 libusb_close(hdl);
202
203                 usb_get_port_path(devlist[i], connection_id, sizeof(connection_id));
204
205                 prof = NULL;
206                 for (j = 0; j < zeroplus_models[j].vid; j++) {
207                         if (des.idVendor == zeroplus_models[j].vid &&
208                                 des.idProduct == zeroplus_models[j].pid) {
209                                 prof = &zeroplus_models[j];
210                         }
211                 }
212                 /* Skip if the device was not found. */
213                 if (!prof)
214                         continue;
215                 sr_info("Found ZEROPLUS %s.", prof->model_name);
216
217                 /* Register the device with libsigrok. */
218                 sdi = g_malloc0(sizeof(struct sr_dev_inst));
219                 sdi->status = SR_ST_INACTIVE;
220                 sdi->vendor = g_strdup(VENDOR_NAME);
221                 sdi->model = g_strdup(prof->model_name);
222                 sdi->driver = di;
223                 sdi->serial_num = g_strdup(serial_num);
224                 sdi->connection_id = g_strdup(connection_id);
225
226                 /* Allocate memory for our private driver context. */
227                 devc = g_malloc0(sizeof(struct dev_context));
228                 sdi->priv = devc;
229                 devc->prof = prof;
230                 devc->num_channels = prof->channels;
231 #ifdef ZP_EXPERIMENTAL
232                 devc->max_sample_depth = 128 * 1024;
233                 devc->max_samplerate = 200;
234 #else
235                 devc->max_sample_depth = prof->sample_depth * 1024;
236                 devc->max_samplerate = prof->max_sampling_freq;
237 #endif
238                 devc->max_samplerate *= SR_MHZ(1);
239                 devc->memory_size = MEMORY_SIZE_8K;
240                 // memset(devc->trigger_buffer, 0, NUM_TRIGGER_STAGES);
241
242                 /* Fill in channellist according to this device's profile. */
243                 for (j = 0; j < devc->num_channels; j++)
244                         sr_channel_new(sdi, j, SR_CHANNEL_LOGIC, TRUE,
245                                         channel_names[j]);
246
247                 devices = g_slist_append(devices, sdi);
248                 drvc->instances = g_slist_append(drvc->instances, sdi);
249                 sdi->inst_type = SR_INST_USB;
250                 sdi->conn = sr_usb_dev_inst_new(
251                         libusb_get_bus_number(devlist[i]),
252                         libusb_get_device_address(devlist[i]), NULL);
253         }
254         libusb_free_device_list(devlist, 1);
255
256         return devices;
257 }
258
259 static int dev_open(struct sr_dev_inst *sdi)
260 {
261         struct sr_dev_driver *di = sdi->driver;
262         struct dev_context *devc;
263         struct drv_context *drvc;
264         struct sr_usb_dev_inst *usb;
265         int ret;
266
267         drvc = di->context;
268         usb = sdi->conn;
269         devc = sdi->priv;
270
271         ret = sr_usb_open(drvc->sr_ctx->libusb_ctx, usb);
272         if (ret != SR_OK)
273                 return ret;
274
275         sdi->status = SR_ST_ACTIVE;
276
277         ret = libusb_set_configuration(usb->devhdl, USB_CONFIGURATION);
278         if (ret < 0) {
279                 sr_err("Unable to set USB configuration %d: %s.",
280                        USB_CONFIGURATION, libusb_error_name(ret));
281                 return SR_ERR;
282         }
283
284         ret = libusb_claim_interface(usb->devhdl, USB_INTERFACE);
285         if (ret != 0) {
286                 sr_err("Unable to claim interface: %s.",
287                        libusb_error_name(ret));
288                 return SR_ERR;
289         }
290
291         /* Set default configuration after power on. */
292         if (analyzer_read_status(usb->devhdl) == 0)
293                 analyzer_configure(usb->devhdl);
294
295         analyzer_reset(usb->devhdl);
296         analyzer_initialize(usb->devhdl);
297
298         //analyzer_set_memory_size(MEMORY_SIZE_512K);
299         // analyzer_set_freq(g_freq, g_freq_scale);
300         analyzer_set_trigger_count(1);
301         // analyzer_set_ramsize_trigger_address((((100 - g_pre_trigger)
302         // * get_memory_size(g_memory_size)) / 100) >> 2);
303
304 #if 0
305         if (g_double_mode == 1)
306                 analyzer_set_compression(COMPRESSION_DOUBLE);
307         else if (g_compression == 1)
308                 analyzer_set_compression(COMPRESSION_ENABLE);
309         else
310 #endif
311         analyzer_set_compression(COMPRESSION_NONE);
312
313         if (devc->cur_samplerate == 0) {
314                 /* Samplerate hasn't been set. Default to 1MHz. */
315                 analyzer_set_freq(1, FREQ_SCALE_MHZ);
316                 devc->cur_samplerate = SR_MHZ(1);
317         }
318
319         if (devc->cur_threshold == 0)
320                 set_voltage_threshold(devc, 1.5);
321
322         return SR_OK;
323 }
324
325 static int dev_close(struct sr_dev_inst *sdi)
326 {
327         struct sr_usb_dev_inst *usb;
328
329         usb = sdi->conn;
330
331         if (!usb->devhdl)
332                 return SR_ERR;
333
334         sr_info("Closing device on %d.%d (logical) / %s (physical) interface %d.",
335                 usb->bus, usb->address, sdi->connection_id, USB_INTERFACE);
336         libusb_release_interface(usb->devhdl, USB_INTERFACE);
337         libusb_reset_device(usb->devhdl);
338         libusb_close(usb->devhdl);
339         usb->devhdl = NULL;
340         sdi->status = SR_ST_INACTIVE;
341
342         return SR_OK;
343 }
344
345 static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
346                 const struct sr_channel_group *cg)
347 {
348         struct dev_context *devc;
349         GVariant *range[2];
350
351         (void)cg;
352
353         if (!sdi)
354                 return SR_ERR_ARG;
355
356         devc = sdi->priv;
357
358         switch (key) {
359         case SR_CONF_SAMPLERATE:
360                 *data = g_variant_new_uint64(devc->cur_samplerate);
361                 break;
362         case SR_CONF_CAPTURE_RATIO:
363                 *data = g_variant_new_uint64(devc->capture_ratio);
364                 break;
365         case SR_CONF_VOLTAGE_THRESHOLD:
366                 range[0] = g_variant_new_double(devc->cur_threshold);
367                 range[1] = g_variant_new_double(devc->cur_threshold);
368                 *data = g_variant_new_tuple(range, 2);
369                 break;
370         default:
371                 return SR_ERR_NA;
372         }
373
374         return SR_OK;
375 }
376
377 static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi,
378                 const struct sr_channel_group *cg)
379 {
380         struct dev_context *devc;
381         gdouble low, high;
382
383         (void)cg;
384
385         if (sdi->status != SR_ST_ACTIVE)
386                 return SR_ERR_DEV_CLOSED;
387
388         if (!(devc = sdi->priv)) {
389                 sr_err("%s: sdi->priv was NULL", __func__);
390                 return SR_ERR_ARG;
391         }
392
393         switch (key) {
394         case SR_CONF_SAMPLERATE:
395                 return zp_set_samplerate(devc, g_variant_get_uint64(data));
396         case SR_CONF_LIMIT_SAMPLES:
397                 return set_limit_samples(devc, g_variant_get_uint64(data));
398         case SR_CONF_CAPTURE_RATIO:
399                 return set_capture_ratio(devc, g_variant_get_uint64(data));
400         case SR_CONF_VOLTAGE_THRESHOLD:
401                 g_variant_get(data, "(dd)", &low, &high);
402                 return set_voltage_threshold(devc, (low + high) / 2.0);
403         default:
404                 return SR_ERR_NA;
405         }
406
407         return SR_OK;
408 }
409
410 static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
411                 const struct sr_channel_group *cg)
412 {
413         struct dev_context *devc;
414         GVariant *gvar, *grange[2];
415         GVariantBuilder gvb;
416         double v;
417         GVariant *range[2];
418
419         (void)cg;
420
421         switch (key) {
422         case SR_CONF_DEVICE_OPTIONS:
423                 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
424                                 devopts, ARRAY_SIZE(devopts), sizeof(uint32_t));
425                 break;
426         case SR_CONF_SAMPLERATE:
427                 devc = sdi->priv;
428                 g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
429                 if (devc->prof->max_sampling_freq == 100) {
430                         gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
431                                         samplerates_100, ARRAY_SIZE(samplerates_100),
432                                         sizeof(uint64_t));
433                 } else if (devc->prof->max_sampling_freq == 200) {
434                         gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
435                                         samplerates_200, ARRAY_SIZE(samplerates_200),
436                                         sizeof(uint64_t));
437                 } else {
438                         sr_err("Internal error: Unknown max. samplerate: %d.",
439                                devc->prof->max_sampling_freq);
440                         return SR_ERR_ARG;
441                 }
442                 g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
443                 *data = g_variant_builder_end(&gvb);
444                 break;
445         case SR_CONF_TRIGGER_MATCH:
446                 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
447                                 trigger_matches, ARRAY_SIZE(trigger_matches),
448                                 sizeof(int32_t));
449                 break;
450         case SR_CONF_VOLTAGE_THRESHOLD:
451                 g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY);
452                 for (v = -6.0; v <= 6.0; v += 0.1) {
453                         range[0] = g_variant_new_double(v);
454                         range[1] = g_variant_new_double(v);
455                         gvar = g_variant_new_tuple(range, 2);
456                         g_variant_builder_add_value(&gvb, gvar);
457                 }
458                 *data = g_variant_builder_end(&gvb);
459                 break;
460         case SR_CONF_LIMIT_SAMPLES:
461                 if (!sdi)
462                         return SR_ERR_ARG;
463                 devc = sdi->priv;
464                 grange[0] = g_variant_new_uint64(0);
465                 grange[1] = g_variant_new_uint64(devc->max_sample_depth);
466                 *data = g_variant_new_tuple(grange, 2);
467                 break;
468         default:
469                 return SR_ERR_NA;
470         }
471
472         return SR_OK;
473 }
474
475 static int dev_acquisition_start(const struct sr_dev_inst *sdi)
476 {
477         struct dev_context *devc;
478         struct sr_usb_dev_inst *usb;
479         struct sr_datafeed_packet packet;
480         struct sr_datafeed_logic logic;
481         unsigned int samples_read;
482         int res;
483         unsigned int packet_num, n;
484         unsigned char *buf;
485         unsigned int status;
486         unsigned int stop_address;
487         unsigned int now_address;
488         unsigned int trigger_address;
489         unsigned int trigger_offset;
490         unsigned int triggerbar;
491         unsigned int ramsize_trigger;
492         unsigned int memory_size;
493         unsigned int valid_samples;
494         unsigned int discard;
495         int trigger_now;
496
497         if (sdi->status != SR_ST_ACTIVE)
498                 return SR_ERR_DEV_CLOSED;
499
500         devc = sdi->priv;
501
502         if (analyzer_add_triggers(sdi) != SR_OK) {
503                 sr_err("Failed to configure triggers.");
504                 return SR_ERR;
505         }
506
507         usb = sdi->conn;
508
509         set_triggerbar(devc);
510
511         /* Push configured settings to device. */
512         analyzer_configure(usb->devhdl);
513
514         analyzer_start(usb->devhdl);
515         sr_info("Waiting for data.");
516         analyzer_wait_data(usb->devhdl);
517
518         status = analyzer_read_status(usb->devhdl);
519         stop_address = analyzer_get_stop_address(usb->devhdl);
520         now_address = analyzer_get_now_address(usb->devhdl);
521         trigger_address = analyzer_get_trigger_address(usb->devhdl);
522
523         triggerbar = analyzer_get_triggerbar_address();
524         ramsize_trigger = analyzer_get_ramsize_trigger_address();
525
526         n = get_memory_size(devc->memory_size);
527         memory_size = n / 4;
528
529         sr_info("Status = 0x%x.", status);
530         sr_info("Stop address       = 0x%x.", stop_address);
531         sr_info("Now address        = 0x%x.", now_address);
532         sr_info("Trigger address    = 0x%x.", trigger_address);
533         sr_info("Triggerbar address = 0x%x.", triggerbar);
534         sr_info("Ramsize trigger    = 0x%x.", ramsize_trigger);
535         sr_info("Memory size        = 0x%x.", memory_size);
536
537         std_session_send_df_header(sdi, LOG_PREFIX);
538
539         /* Check for empty capture */
540         if ((status & STATUS_READY) && !stop_address) {
541                 std_session_send_df_end(sdi, LOG_PREFIX);
542                 return SR_OK;
543         }
544
545         buf = g_malloc(PACKET_SIZE);
546
547         /* Check if the trigger is in the samples we are throwing away */
548         trigger_now = now_address == trigger_address ||
549                 ((now_address + 1) % memory_size) == trigger_address;
550
551         /*
552          * STATUS_READY doesn't clear until now_address advances past
553          * addr 0, but for our logic, clear it in that case
554          */
555         if (!now_address)
556                 status &= ~STATUS_READY;
557
558         analyzer_read_start(usb->devhdl);
559
560         /* Calculate how much data to discard */
561         discard = 0;
562         if (status & STATUS_READY) {
563                 /*
564                  * We haven't wrapped around, we need to throw away data from
565                  * our current position to the end of the buffer.
566                  * Additionally, the first two samples captured are always
567                  * bogus.
568                  */
569                 discard += memory_size - now_address + 2;
570                 now_address = 2;
571         }
572
573         /* If we have more samples than we need, discard them */
574         valid_samples = (stop_address - now_address) % memory_size;
575         if (valid_samples > ramsize_trigger + triggerbar) {
576                 discard += valid_samples - (ramsize_trigger + triggerbar);
577                 now_address += valid_samples - (ramsize_trigger + triggerbar);
578         }
579
580         sr_info("Need to discard %d samples.", discard);
581
582         /* Calculate how far in the trigger is */
583         if (trigger_now)
584                 trigger_offset = 0;
585         else
586                 trigger_offset = (trigger_address - now_address) % memory_size;
587
588         /* Recalculate the number of samples available */
589         valid_samples = (stop_address - now_address) % memory_size;
590
591         /* Send the incoming transfer to the session bus. */
592         samples_read = 0;
593         for (packet_num = 0; packet_num < n / PACKET_SIZE; packet_num++) {
594                 unsigned int len;
595                 unsigned int buf_offset;
596
597                 res = analyzer_read_data(usb->devhdl, buf, PACKET_SIZE);
598                 sr_info("Tried to read %d bytes, actually read %d bytes.",
599                         PACKET_SIZE, res);
600
601                 if (discard >= PACKET_SIZE / 4) {
602                         discard -= PACKET_SIZE / 4;
603                         continue;
604                 }
605
606                 len = PACKET_SIZE - discard * 4;
607                 buf_offset = discard * 4;
608                 discard = 0;
609
610                 /* Check if we've read all the samples */
611                 if (samples_read + len / 4 >= valid_samples)
612                         len = (valid_samples - samples_read) * 4;
613                 if (!len)
614                         break;
615
616                 if (samples_read < trigger_offset &&
617                     samples_read + len / 4 > trigger_offset) {
618                         /* Send out samples remaining before trigger */
619                         packet.type = SR_DF_LOGIC;
620                         packet.payload = &logic;
621                         logic.length = (trigger_offset - samples_read) * 4;
622                         logic.unitsize = 4;
623                         logic.data = buf + buf_offset;
624                         sr_session_send(sdi, &packet);
625                         len -= logic.length;
626                         samples_read += logic.length / 4;
627                         buf_offset += logic.length;
628                 }
629
630                 if (samples_read == trigger_offset) {
631                         /* Send out trigger */
632                         packet.type = SR_DF_TRIGGER;
633                         packet.payload = NULL;
634                         sr_session_send(sdi, &packet);
635                 }
636
637                 /* Send out data (or data after trigger) */
638                 packet.type = SR_DF_LOGIC;
639                 packet.payload = &logic;
640                 logic.length = len;
641                 logic.unitsize = 4;
642                 logic.data = buf + buf_offset;
643                 sr_session_send(sdi, &packet);
644                 samples_read += len / 4;
645         }
646         analyzer_read_stop(usb->devhdl);
647         g_free(buf);
648
649         std_session_send_df_end(sdi, LOG_PREFIX);
650
651         return SR_OK;
652 }
653
654 /* TODO: This stops acquisition on ALL devices, ignoring dev_index. */
655 static int dev_acquisition_stop(struct sr_dev_inst *sdi)
656 {
657         struct sr_usb_dev_inst *usb;
658
659         std_session_send_df_end(sdi, LOG_PREFIX);
660
661         usb = sdi->conn;
662         analyzer_reset(usb->devhdl);
663         /* TODO: Need to cancel and free any queued up transfers. */
664
665         return SR_OK;
666 }
667
668 SR_PRIV struct sr_dev_driver zeroplus_logic_cube_driver_info = {
669         .name = "zeroplus-logic-cube",
670         .longname = "ZEROPLUS Logic Cube LAP-C series",
671         .api_version = 1,
672         .init = init,
673         .cleanup = std_cleanup,
674         .scan = scan,
675         .dev_list = std_dev_list,
676         .dev_clear = NULL,
677         .config_get = config_get,
678         .config_set = config_set,
679         .config_list = config_list,
680         .dev_open = dev_open,
681         .dev_close = dev_close,
682         .dev_acquisition_start = dev_acquisition_start,
683         .dev_acquisition_stop = dev_acquisition_stop,
684         .context = NULL,
685 };