]> sigrok.org Git - libsigrok.git/blob - src/hardware/zeroplus-logic-cube/api.c
Add helper function for scan completion
[libsigrok.git] / src / hardware / zeroplus-logic-cube / api.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2010-2012 Bert Vermeulen <bert@biot.com>
5  *
6  * This program is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <config.h>
21 #include "protocol.h"
22
23 #define VENDOR_NAME                     "ZEROPLUS"
24 #define USB_INTERFACE                   0
25 #define USB_CONFIGURATION               1
26 #define NUM_TRIGGER_STAGES              4
27 #define PACKET_SIZE                     2048    /* ?? */
28
29 //#define ZP_EXPERIMENTAL
30
31 struct zp_model {
32         uint16_t vid;
33         uint16_t pid;
34         const char *model_name;
35         unsigned int channels;
36         unsigned int sample_depth;      /* In Ksamples/channel */
37         unsigned int max_sampling_freq;
38 };
39
40 /*
41  * Note -- 16032, 16064 and 16128 *usually* -- but not always -- have the
42  * same 128K sample depth.
43  */
44 static const struct zp_model zeroplus_models[] = {
45         {0x0c12, 0x7002, "LAP-16128U",    16, 128,  200},
46         {0x0c12, 0x7009, "LAP-C(16064)",  16, 64,   100},
47         {0x0c12, 0x700a, "LAP-C(16128)",  16, 128,  200},
48         {0x0c12, 0x700b, "LAP-C(32128)",  32, 128,  200},
49         {0x0c12, 0x700c, "LAP-C(321000)", 32, 1024, 200},
50         {0x0c12, 0x700d, "LAP-C(322000)", 32, 2048, 200},
51         {0x0c12, 0x700e, "LAP-C(16032)",  16, 32,   100},
52         {0x0c12, 0x7016, "LAP-C(162000)", 16, 2048, 200},
53         {0x0c12, 0x7100, "AKIP-9101", 16, 256, 200},
54         ALL_ZERO
55 };
56
57 static const uint32_t devopts[] = {
58         SR_CONF_LOGIC_ANALYZER,
59         SR_CONF_LIMIT_SAMPLES | SR_CONF_SET | SR_CONF_LIST,
60         SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
61         SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
62         SR_CONF_CAPTURE_RATIO | SR_CONF_GET | SR_CONF_SET,
63         SR_CONF_VOLTAGE_THRESHOLD | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
64 };
65
66 static const int32_t trigger_matches[] = {
67         SR_TRIGGER_ZERO,
68         SR_TRIGGER_ONE,
69 };
70
71 /*
72  * ZEROPLUS LAP-C (16032) numbers the 16 channels A0-A7 and B0-B7.
73  * We currently ignore other untested/unsupported devices here.
74  */
75 static const char *channel_names[] = {
76         "A0", "A1", "A2", "A3", "A4", "A5", "A6", "A7",
77         "B0", "B1", "B2", "B3", "B4", "B5", "B6", "B7",
78         "C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7",
79         "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
80 };
81
82 /*
83  * The hardware supports more samplerates than these, but these are the
84  * options hardcoded into the vendor's Windows GUI.
85  */
86
87 static const uint64_t samplerates_100[] = {
88         SR_HZ(100),
89         SR_HZ(500),
90         SR_KHZ(1),
91         SR_KHZ(5),
92         SR_KHZ(25),
93         SR_KHZ(50),
94         SR_KHZ(100),
95         SR_KHZ(200),
96         SR_KHZ(400),
97         SR_KHZ(800),
98         SR_MHZ(1),
99         SR_MHZ(10),
100         SR_MHZ(25),
101         SR_MHZ(50),
102         SR_MHZ(80),
103         SR_MHZ(100),
104 };
105
106 const uint64_t samplerates_200[] = {
107         SR_HZ(100),
108         SR_HZ(500),
109         SR_KHZ(1),
110         SR_KHZ(5),
111         SR_KHZ(25),
112         SR_KHZ(50),
113         SR_KHZ(100),
114         SR_KHZ(200),
115         SR_KHZ(400),
116         SR_KHZ(800),
117         SR_MHZ(1),
118         SR_MHZ(10),
119         SR_MHZ(25),
120         SR_MHZ(50),
121         SR_MHZ(80),
122         SR_MHZ(100),
123         SR_MHZ(150),
124         SR_MHZ(200),
125 };
126
127 static int dev_close(struct sr_dev_inst *sdi);
128
129 SR_PRIV int zp_set_samplerate(struct dev_context *devc, uint64_t samplerate)
130 {
131         int i;
132
133         for (i = 0; ARRAY_SIZE(samplerates_200); i++)
134                 if (samplerate == samplerates_200[i])
135                         break;
136
137         if (i == ARRAY_SIZE(samplerates_200) || samplerate > devc->max_samplerate) {
138                 sr_err("Unsupported samplerate: %" PRIu64 "Hz.", samplerate);
139                 return SR_ERR_ARG;
140         }
141
142         sr_info("Setting samplerate to %" PRIu64 "Hz.", samplerate);
143
144         if (samplerate >= SR_MHZ(1))
145                 analyzer_set_freq(samplerate / SR_MHZ(1), FREQ_SCALE_MHZ);
146         else if (samplerate >= SR_KHZ(1))
147                 analyzer_set_freq(samplerate / SR_KHZ(1), FREQ_SCALE_KHZ);
148         else
149                 analyzer_set_freq(samplerate, FREQ_SCALE_HZ);
150
151         devc->cur_samplerate = samplerate;
152
153         return SR_OK;
154 }
155
156 static GSList *scan(struct sr_dev_driver *di, GSList *options)
157 {
158         struct sr_dev_inst *sdi;
159         struct drv_context *drvc;
160         struct dev_context *devc;
161         const struct zp_model *prof;
162         struct libusb_device_descriptor des;
163         struct libusb_device_handle *hdl;
164         libusb_device **devlist;
165         GSList *devices;
166         int ret, i, j;
167         char serial_num[64], connection_id[64];
168
169         (void)options;
170
171         drvc = di->context;
172
173         devices = NULL;
174
175         /* Find all ZEROPLUS analyzers and add them to device list. */
176         libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist); /* TODO: Errors. */
177
178         for (i = 0; devlist[i]; i++) {
179                 libusb_get_device_descriptor(devlist[i], &des);
180
181                 if ((ret = libusb_open(devlist[i], &hdl)) < 0)
182                         continue;
183
184                 if (des.iSerialNumber == 0) {
185                         serial_num[0] = '\0';
186                 } else if ((ret = libusb_get_string_descriptor_ascii(hdl,
187                                 des.iSerialNumber, (unsigned char *) serial_num,
188                                 sizeof(serial_num))) < 0) {
189                         sr_warn("Failed to get serial number string descriptor: %s.",
190                                 libusb_error_name(ret));
191                         continue;
192                 }
193
194                 libusb_close(hdl);
195
196                 usb_get_port_path(devlist[i], connection_id, sizeof(connection_id));
197
198                 prof = NULL;
199                 for (j = 0; j < zeroplus_models[j].vid; j++) {
200                         if (des.idVendor == zeroplus_models[j].vid &&
201                                 des.idProduct == zeroplus_models[j].pid) {
202                                 prof = &zeroplus_models[j];
203                         }
204                 }
205                 /* Skip if the device was not found. */
206                 if (!prof)
207                         continue;
208                 sr_info("Found ZEROPLUS %s.", prof->model_name);
209
210                 /* Register the device with libsigrok. */
211                 sdi = g_malloc0(sizeof(struct sr_dev_inst));
212                 sdi->status = SR_ST_INACTIVE;
213                 sdi->vendor = g_strdup(VENDOR_NAME);
214                 sdi->model = g_strdup(prof->model_name);
215                 sdi->serial_num = g_strdup(serial_num);
216                 sdi->connection_id = g_strdup(connection_id);
217
218                 /* Allocate memory for our private driver context. */
219                 devc = g_malloc0(sizeof(struct dev_context));
220                 sdi->priv = devc;
221                 devc->prof = prof;
222                 devc->num_channels = prof->channels;
223 #ifdef ZP_EXPERIMENTAL
224                 devc->max_sample_depth = 128 * 1024;
225                 devc->max_samplerate = 200;
226 #else
227                 devc->max_sample_depth = prof->sample_depth * 1024;
228                 devc->max_samplerate = prof->max_sampling_freq;
229 #endif
230                 devc->max_samplerate *= SR_MHZ(1);
231                 devc->memory_size = MEMORY_SIZE_8K;
232                 // memset(devc->trigger_buffer, 0, NUM_TRIGGER_STAGES);
233
234                 /* Fill in channellist according to this device's profile. */
235                 for (j = 0; j < devc->num_channels; j++)
236                         sr_channel_new(sdi, j, SR_CHANNEL_LOGIC, TRUE,
237                                         channel_names[j]);
238
239                 devices = g_slist_append(devices, sdi);
240                 sdi->inst_type = SR_INST_USB;
241                 sdi->conn = sr_usb_dev_inst_new(
242                         libusb_get_bus_number(devlist[i]),
243                         libusb_get_device_address(devlist[i]), NULL);
244         }
245         libusb_free_device_list(devlist, 1);
246
247         return std_scan_complete(di, devices);
248 }
249
250 static int dev_open(struct sr_dev_inst *sdi)
251 {
252         struct sr_dev_driver *di = sdi->driver;
253         struct dev_context *devc;
254         struct drv_context *drvc;
255         struct sr_usb_dev_inst *usb;
256         int ret;
257
258         drvc = di->context;
259         usb = sdi->conn;
260         devc = sdi->priv;
261
262         ret = sr_usb_open(drvc->sr_ctx->libusb_ctx, usb);
263         if (ret != SR_OK)
264                 return ret;
265
266         sdi->status = SR_ST_ACTIVE;
267
268         ret = libusb_set_configuration(usb->devhdl, USB_CONFIGURATION);
269         if (ret < 0) {
270                 sr_err("Unable to set USB configuration %d: %s.",
271                        USB_CONFIGURATION, libusb_error_name(ret));
272                 return SR_ERR;
273         }
274
275         ret = libusb_claim_interface(usb->devhdl, USB_INTERFACE);
276         if (ret != 0) {
277                 sr_err("Unable to claim interface: %s.",
278                        libusb_error_name(ret));
279                 return SR_ERR;
280         }
281
282         /* Set default configuration after power on. */
283         if (analyzer_read_status(usb->devhdl) == 0)
284                 analyzer_configure(usb->devhdl);
285
286         analyzer_reset(usb->devhdl);
287         analyzer_initialize(usb->devhdl);
288
289         //analyzer_set_memory_size(MEMORY_SIZE_512K);
290         // analyzer_set_freq(g_freq, g_freq_scale);
291         analyzer_set_trigger_count(1);
292         // analyzer_set_ramsize_trigger_address((((100 - g_pre_trigger)
293         // * get_memory_size(g_memory_size)) / 100) >> 2);
294
295 #if 0
296         if (g_double_mode == 1)
297                 analyzer_set_compression(COMPRESSION_DOUBLE);
298         else if (g_compression == 1)
299                 analyzer_set_compression(COMPRESSION_ENABLE);
300         else
301 #endif
302         analyzer_set_compression(COMPRESSION_NONE);
303
304         if (devc->cur_samplerate == 0) {
305                 /* Samplerate hasn't been set. Default to 1MHz. */
306                 analyzer_set_freq(1, FREQ_SCALE_MHZ);
307                 devc->cur_samplerate = SR_MHZ(1);
308         }
309
310         if (devc->cur_threshold == 0)
311                 set_voltage_threshold(devc, 1.5);
312
313         return SR_OK;
314 }
315
316 static int dev_close(struct sr_dev_inst *sdi)
317 {
318         struct sr_usb_dev_inst *usb;
319
320         usb = sdi->conn;
321
322         if (!usb->devhdl)
323                 return SR_ERR;
324
325         sr_info("Closing device on %d.%d (logical) / %s (physical) interface %d.",
326                 usb->bus, usb->address, sdi->connection_id, USB_INTERFACE);
327         libusb_release_interface(usb->devhdl, USB_INTERFACE);
328         libusb_reset_device(usb->devhdl);
329         libusb_close(usb->devhdl);
330         usb->devhdl = NULL;
331         sdi->status = SR_ST_INACTIVE;
332
333         return SR_OK;
334 }
335
336 static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
337                 const struct sr_channel_group *cg)
338 {
339         struct dev_context *devc;
340         GVariant *range[2];
341
342         (void)cg;
343
344         if (!sdi)
345                 return SR_ERR_ARG;
346
347         devc = sdi->priv;
348
349         switch (key) {
350         case SR_CONF_SAMPLERATE:
351                 *data = g_variant_new_uint64(devc->cur_samplerate);
352                 break;
353         case SR_CONF_CAPTURE_RATIO:
354                 *data = g_variant_new_uint64(devc->capture_ratio);
355                 break;
356         case SR_CONF_VOLTAGE_THRESHOLD:
357                 range[0] = g_variant_new_double(devc->cur_threshold);
358                 range[1] = g_variant_new_double(devc->cur_threshold);
359                 *data = g_variant_new_tuple(range, 2);
360                 break;
361         default:
362                 return SR_ERR_NA;
363         }
364
365         return SR_OK;
366 }
367
368 static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi,
369                 const struct sr_channel_group *cg)
370 {
371         struct dev_context *devc;
372         gdouble low, high;
373
374         (void)cg;
375
376         if (sdi->status != SR_ST_ACTIVE)
377                 return SR_ERR_DEV_CLOSED;
378
379         devc = sdi->priv;
380
381         switch (key) {
382         case SR_CONF_SAMPLERATE:
383                 return zp_set_samplerate(devc, g_variant_get_uint64(data));
384         case SR_CONF_LIMIT_SAMPLES:
385                 return set_limit_samples(devc, g_variant_get_uint64(data));
386         case SR_CONF_CAPTURE_RATIO:
387                 return set_capture_ratio(devc, g_variant_get_uint64(data));
388         case SR_CONF_VOLTAGE_THRESHOLD:
389                 g_variant_get(data, "(dd)", &low, &high);
390                 return set_voltage_threshold(devc, (low + high) / 2.0);
391         default:
392                 return SR_ERR_NA;
393         }
394
395         return SR_OK;
396 }
397
398 static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
399                 const struct sr_channel_group *cg)
400 {
401         struct dev_context *devc;
402         GVariant *gvar, *grange[2];
403         GVariantBuilder gvb;
404         double v;
405         GVariant *range[2];
406
407         (void)cg;
408
409         switch (key) {
410         case SR_CONF_DEVICE_OPTIONS:
411                 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
412                                 devopts, ARRAY_SIZE(devopts), sizeof(uint32_t));
413                 break;
414         case SR_CONF_SAMPLERATE:
415                 devc = sdi->priv;
416                 g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
417                 if (devc->prof->max_sampling_freq == 100) {
418                         gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
419                                         samplerates_100, ARRAY_SIZE(samplerates_100),
420                                         sizeof(uint64_t));
421                 } else if (devc->prof->max_sampling_freq == 200) {
422                         gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
423                                         samplerates_200, ARRAY_SIZE(samplerates_200),
424                                         sizeof(uint64_t));
425                 } else {
426                         sr_err("Internal error: Unknown max. samplerate: %d.",
427                                devc->prof->max_sampling_freq);
428                         return SR_ERR_ARG;
429                 }
430                 g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
431                 *data = g_variant_builder_end(&gvb);
432                 break;
433         case SR_CONF_TRIGGER_MATCH:
434                 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
435                                 trigger_matches, ARRAY_SIZE(trigger_matches),
436                                 sizeof(int32_t));
437                 break;
438         case SR_CONF_VOLTAGE_THRESHOLD:
439                 g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY);
440                 for (v = -6.0; v <= 6.0; v += 0.1) {
441                         range[0] = g_variant_new_double(v);
442                         range[1] = g_variant_new_double(v);
443                         gvar = g_variant_new_tuple(range, 2);
444                         g_variant_builder_add_value(&gvb, gvar);
445                 }
446                 *data = g_variant_builder_end(&gvb);
447                 break;
448         case SR_CONF_LIMIT_SAMPLES:
449                 if (!sdi)
450                         return SR_ERR_ARG;
451                 devc = sdi->priv;
452                 grange[0] = g_variant_new_uint64(0);
453                 grange[1] = g_variant_new_uint64(devc->max_sample_depth);
454                 *data = g_variant_new_tuple(grange, 2);
455                 break;
456         default:
457                 return SR_ERR_NA;
458         }
459
460         return SR_OK;
461 }
462
463 static int dev_acquisition_start(const struct sr_dev_inst *sdi)
464 {
465         struct dev_context *devc;
466         struct sr_usb_dev_inst *usb;
467         struct sr_datafeed_packet packet;
468         struct sr_datafeed_logic logic;
469         unsigned int samples_read;
470         int res;
471         unsigned int packet_num, n;
472         unsigned char *buf;
473         unsigned int status;
474         unsigned int stop_address;
475         unsigned int now_address;
476         unsigned int trigger_address;
477         unsigned int trigger_offset;
478         unsigned int triggerbar;
479         unsigned int ramsize_trigger;
480         unsigned int memory_size;
481         unsigned int valid_samples;
482         unsigned int discard;
483         int trigger_now;
484
485         if (sdi->status != SR_ST_ACTIVE)
486                 return SR_ERR_DEV_CLOSED;
487
488         devc = sdi->priv;
489
490         if (analyzer_add_triggers(sdi) != SR_OK) {
491                 sr_err("Failed to configure triggers.");
492                 return SR_ERR;
493         }
494
495         usb = sdi->conn;
496
497         set_triggerbar(devc);
498
499         /* Push configured settings to device. */
500         analyzer_configure(usb->devhdl);
501
502         analyzer_start(usb->devhdl);
503         sr_info("Waiting for data.");
504         analyzer_wait_data(usb->devhdl);
505
506         status = analyzer_read_status(usb->devhdl);
507         stop_address = analyzer_get_stop_address(usb->devhdl);
508         now_address = analyzer_get_now_address(usb->devhdl);
509         trigger_address = analyzer_get_trigger_address(usb->devhdl);
510
511         triggerbar = analyzer_get_triggerbar_address();
512         ramsize_trigger = analyzer_get_ramsize_trigger_address();
513
514         n = get_memory_size(devc->memory_size);
515         memory_size = n / 4;
516
517         sr_info("Status = 0x%x.", status);
518         sr_info("Stop address       = 0x%x.", stop_address);
519         sr_info("Now address        = 0x%x.", now_address);
520         sr_info("Trigger address    = 0x%x.", trigger_address);
521         sr_info("Triggerbar address = 0x%x.", triggerbar);
522         sr_info("Ramsize trigger    = 0x%x.", ramsize_trigger);
523         sr_info("Memory size        = 0x%x.", memory_size);
524
525         std_session_send_df_header(sdi, LOG_PREFIX);
526
527         /* Check for empty capture */
528         if ((status & STATUS_READY) && !stop_address) {
529                 std_session_send_df_end(sdi, LOG_PREFIX);
530                 return SR_OK;
531         }
532
533         buf = g_malloc(PACKET_SIZE);
534
535         /* Check if the trigger is in the samples we are throwing away */
536         trigger_now = now_address == trigger_address ||
537                 ((now_address + 1) % memory_size) == trigger_address;
538
539         /*
540          * STATUS_READY doesn't clear until now_address advances past
541          * addr 0, but for our logic, clear it in that case
542          */
543         if (!now_address)
544                 status &= ~STATUS_READY;
545
546         analyzer_read_start(usb->devhdl);
547
548         /* Calculate how much data to discard */
549         discard = 0;
550         if (status & STATUS_READY) {
551                 /*
552                  * We haven't wrapped around, we need to throw away data from
553                  * our current position to the end of the buffer.
554                  * Additionally, the first two samples captured are always
555                  * bogus.
556                  */
557                 discard += memory_size - now_address + 2;
558                 now_address = 2;
559         }
560
561         /* If we have more samples than we need, discard them */
562         valid_samples = (stop_address - now_address) % memory_size;
563         if (valid_samples > ramsize_trigger + triggerbar) {
564                 discard += valid_samples - (ramsize_trigger + triggerbar);
565                 now_address += valid_samples - (ramsize_trigger + triggerbar);
566         }
567
568         sr_info("Need to discard %d samples.", discard);
569
570         /* Calculate how far in the trigger is */
571         if (trigger_now)
572                 trigger_offset = 0;
573         else
574                 trigger_offset = (trigger_address - now_address) % memory_size;
575
576         /* Recalculate the number of samples available */
577         valid_samples = (stop_address - now_address) % memory_size;
578
579         /* Send the incoming transfer to the session bus. */
580         samples_read = 0;
581         for (packet_num = 0; packet_num < n / PACKET_SIZE; packet_num++) {
582                 unsigned int len;
583                 unsigned int buf_offset;
584
585                 res = analyzer_read_data(usb->devhdl, buf, PACKET_SIZE);
586                 sr_info("Tried to read %d bytes, actually read %d bytes.",
587                         PACKET_SIZE, res);
588
589                 if (discard >= PACKET_SIZE / 4) {
590                         discard -= PACKET_SIZE / 4;
591                         continue;
592                 }
593
594                 len = PACKET_SIZE - discard * 4;
595                 buf_offset = discard * 4;
596                 discard = 0;
597
598                 /* Check if we've read all the samples */
599                 if (samples_read + len / 4 >= valid_samples)
600                         len = (valid_samples - samples_read) * 4;
601                 if (!len)
602                         break;
603
604                 if (samples_read < trigger_offset &&
605                     samples_read + len / 4 > trigger_offset) {
606                         /* Send out samples remaining before trigger */
607                         packet.type = SR_DF_LOGIC;
608                         packet.payload = &logic;
609                         logic.length = (trigger_offset - samples_read) * 4;
610                         logic.unitsize = 4;
611                         logic.data = buf + buf_offset;
612                         sr_session_send(sdi, &packet);
613                         len -= logic.length;
614                         samples_read += logic.length / 4;
615                         buf_offset += logic.length;
616                 }
617
618                 if (samples_read == trigger_offset) {
619                         /* Send out trigger */
620                         packet.type = SR_DF_TRIGGER;
621                         packet.payload = NULL;
622                         sr_session_send(sdi, &packet);
623                 }
624
625                 /* Send out data (or data after trigger) */
626                 packet.type = SR_DF_LOGIC;
627                 packet.payload = &logic;
628                 logic.length = len;
629                 logic.unitsize = 4;
630                 logic.data = buf + buf_offset;
631                 sr_session_send(sdi, &packet);
632                 samples_read += len / 4;
633         }
634         analyzer_read_stop(usb->devhdl);
635         g_free(buf);
636
637         std_session_send_df_end(sdi, LOG_PREFIX);
638
639         return SR_OK;
640 }
641
642 /* TODO: This stops acquisition on ALL devices, ignoring dev_index. */
643 static int dev_acquisition_stop(struct sr_dev_inst *sdi)
644 {
645         struct sr_usb_dev_inst *usb;
646
647         std_session_send_df_end(sdi, LOG_PREFIX);
648
649         usb = sdi->conn;
650         analyzer_reset(usb->devhdl);
651         /* TODO: Need to cancel and free any queued up transfers. */
652
653         return SR_OK;
654 }
655
656 static struct sr_dev_driver zeroplus_logic_cube_driver_info = {
657         .name = "zeroplus-logic-cube",
658         .longname = "ZEROPLUS Logic Cube LAP-C series",
659         .api_version = 1,
660         .init = std_init,
661         .cleanup = std_cleanup,
662         .scan = scan,
663         .dev_list = std_dev_list,
664         .dev_clear = NULL,
665         .config_get = config_get,
666         .config_set = config_set,
667         .config_list = config_list,
668         .dev_open = dev_open,
669         .dev_close = dev_close,
670         .dev_acquisition_start = dev_acquisition_start,
671         .dev_acquisition_stop = dev_acquisition_stop,
672         .context = NULL,
673 };
674 SR_REGISTER_DEV_DRIVER(zeroplus_logic_cube_driver_info);