]> sigrok.org Git - libsigrok.git/blob - src/hardware/zeroplus-logic-cube/api.c
sr_dev_close(): Set status to SR_ST_INACTIVE.
[libsigrok.git] / src / hardware / zeroplus-logic-cube / api.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2010-2012 Bert Vermeulen <bert@biot.com>
5  *
6  * This program is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <config.h>
21 #include "protocol.h"
22
23 #define VENDOR_NAME                     "ZEROPLUS"
24 #define USB_INTERFACE                   0
25 #define USB_CONFIGURATION               1
26 #define NUM_TRIGGER_STAGES              4
27 #define PACKET_SIZE                     2048    /* ?? */
28
29 //#define ZP_EXPERIMENTAL
30
31 struct zp_model {
32         uint16_t vid;
33         uint16_t pid;
34         const char *model_name;
35         unsigned int channels;
36         unsigned int sample_depth;      /* In Ksamples/channel */
37         unsigned int max_sampling_freq;
38 };
39
40 /*
41  * Note -- 16032, 16064 and 16128 *usually* -- but not always -- have the
42  * same 128K sample depth.
43  */
44 static const struct zp_model zeroplus_models[] = {
45         {0x0c12, 0x7002, "LAP-16128U",    16, 128,  200},
46         {0x0c12, 0x7009, "LAP-C(16064)",  16, 64,   100},
47         {0x0c12, 0x700a, "LAP-C(16128)",  16, 128,  200},
48         {0x0c12, 0x700b, "LAP-C(32128)",  32, 128,  200},
49         {0x0c12, 0x700c, "LAP-C(321000)", 32, 1024, 200},
50         {0x0c12, 0x700d, "LAP-C(322000)", 32, 2048, 200},
51         {0x0c12, 0x700e, "LAP-C(16032)",  16, 32,   100},
52         {0x0c12, 0x7016, "LAP-C(162000)", 16, 2048, 200},
53         {0x0c12, 0x7100, "AKIP-9101", 16, 256, 200},
54         ALL_ZERO
55 };
56
57 static const uint32_t drvopts[] = {
58         SR_CONF_LOGIC_ANALYZER,
59 };
60
61 static const uint32_t devopts[] = {
62         SR_CONF_LIMIT_SAMPLES | SR_CONF_SET | SR_CONF_LIST,
63         SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
64         SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
65         SR_CONF_CAPTURE_RATIO | SR_CONF_GET | SR_CONF_SET,
66         SR_CONF_VOLTAGE_THRESHOLD | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
67 };
68
69 static const int32_t trigger_matches[] = {
70         SR_TRIGGER_ZERO,
71         SR_TRIGGER_ONE,
72 };
73
74 /*
75  * ZEROPLUS LAP-C (16032) numbers the 16 channels A0-A7 and B0-B7.
76  * We currently ignore other untested/unsupported devices here.
77  */
78 static const char *channel_names[] = {
79         "A0", "A1", "A2", "A3", "A4", "A5", "A6", "A7",
80         "B0", "B1", "B2", "B3", "B4", "B5", "B6", "B7",
81         "C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7",
82         "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
83 };
84
85 /*
86  * The hardware supports more samplerates than these, but these are the
87  * options hardcoded into the vendor's Windows GUI.
88  */
89
90 static const uint64_t samplerates_100[] = {
91         SR_HZ(100),
92         SR_HZ(500),
93         SR_KHZ(1),
94         SR_KHZ(5),
95         SR_KHZ(25),
96         SR_KHZ(50),
97         SR_KHZ(100),
98         SR_KHZ(200),
99         SR_KHZ(400),
100         SR_KHZ(800),
101         SR_MHZ(1),
102         SR_MHZ(10),
103         SR_MHZ(25),
104         SR_MHZ(50),
105         SR_MHZ(80),
106         SR_MHZ(100),
107 };
108
109 const uint64_t samplerates_200[] = {
110         SR_HZ(100),
111         SR_HZ(500),
112         SR_KHZ(1),
113         SR_KHZ(5),
114         SR_KHZ(25),
115         SR_KHZ(50),
116         SR_KHZ(100),
117         SR_KHZ(200),
118         SR_KHZ(400),
119         SR_KHZ(800),
120         SR_MHZ(1),
121         SR_MHZ(10),
122         SR_MHZ(25),
123         SR_MHZ(50),
124         SR_MHZ(80),
125         SR_MHZ(100),
126         SR_MHZ(150),
127         SR_MHZ(200),
128 };
129
130 SR_PRIV int zp_set_samplerate(struct dev_context *devc, uint64_t samplerate)
131 {
132         int i;
133
134         for (i = 0; ARRAY_SIZE(samplerates_200); i++)
135                 if (samplerate == samplerates_200[i])
136                         break;
137
138         if (i == ARRAY_SIZE(samplerates_200) || samplerate > devc->max_samplerate) {
139                 sr_err("Unsupported samplerate: %" PRIu64 "Hz.", samplerate);
140                 return SR_ERR_ARG;
141         }
142
143         sr_info("Setting samplerate to %" PRIu64 "Hz.", samplerate);
144
145         if (samplerate >= SR_MHZ(1))
146                 analyzer_set_freq(samplerate / SR_MHZ(1), FREQ_SCALE_MHZ);
147         else if (samplerate >= SR_KHZ(1))
148                 analyzer_set_freq(samplerate / SR_KHZ(1), FREQ_SCALE_KHZ);
149         else
150                 analyzer_set_freq(samplerate, FREQ_SCALE_HZ);
151
152         devc->cur_samplerate = samplerate;
153
154         return SR_OK;
155 }
156
157 static GSList *scan(struct sr_dev_driver *di, GSList *options)
158 {
159         struct sr_dev_inst *sdi;
160         struct drv_context *drvc;
161         struct dev_context *devc;
162         const struct zp_model *prof;
163         struct libusb_device_descriptor des;
164         struct libusb_device_handle *hdl;
165         libusb_device **devlist;
166         GSList *devices;
167         int ret, i, j;
168         char serial_num[64], connection_id[64];
169
170         (void)options;
171
172         drvc = di->context;
173
174         devices = NULL;
175
176         /* Find all ZEROPLUS analyzers and add them to device list. */
177         libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist); /* TODO: Errors. */
178
179         for (i = 0; devlist[i]; i++) {
180                 libusb_get_device_descriptor(devlist[i], &des);
181
182                 if ((ret = libusb_open(devlist[i], &hdl)) < 0)
183                         continue;
184
185                 if (des.iSerialNumber == 0) {
186                         serial_num[0] = '\0';
187                 } else if ((ret = libusb_get_string_descriptor_ascii(hdl,
188                                 des.iSerialNumber, (unsigned char *) serial_num,
189                                 sizeof(serial_num))) < 0) {
190                         sr_warn("Failed to get serial number string descriptor: %s.",
191                                 libusb_error_name(ret));
192                         continue;
193                 }
194
195                 libusb_close(hdl);
196
197                 usb_get_port_path(devlist[i], connection_id, sizeof(connection_id));
198
199                 prof = NULL;
200                 for (j = 0; j < zeroplus_models[j].vid; j++) {
201                         if (des.idVendor == zeroplus_models[j].vid &&
202                                 des.idProduct == zeroplus_models[j].pid) {
203                                 prof = &zeroplus_models[j];
204                         }
205                 }
206                 /* Skip if the device was not found. */
207                 if (!prof)
208                         continue;
209                 sr_info("Found ZEROPLUS %s.", prof->model_name);
210
211                 /* Register the device with libsigrok. */
212                 sdi = g_malloc0(sizeof(struct sr_dev_inst));
213                 sdi->status = SR_ST_INACTIVE;
214                 sdi->vendor = g_strdup(VENDOR_NAME);
215                 sdi->model = g_strdup(prof->model_name);
216                 sdi->serial_num = g_strdup(serial_num);
217                 sdi->connection_id = g_strdup(connection_id);
218
219                 /* Allocate memory for our private driver context. */
220                 devc = g_malloc0(sizeof(struct dev_context));
221                 sdi->priv = devc;
222                 devc->prof = prof;
223                 devc->num_channels = prof->channels;
224 #ifdef ZP_EXPERIMENTAL
225                 devc->max_sample_depth = 128 * 1024;
226                 devc->max_samplerate = 200;
227 #else
228                 devc->max_sample_depth = prof->sample_depth * 1024;
229                 devc->max_samplerate = prof->max_sampling_freq;
230 #endif
231                 devc->max_samplerate *= SR_MHZ(1);
232                 devc->memory_size = MEMORY_SIZE_8K;
233                 // memset(devc->trigger_buffer, 0, NUM_TRIGGER_STAGES);
234
235                 /* Fill in channellist according to this device's profile. */
236                 for (j = 0; j < devc->num_channels; j++)
237                         sr_channel_new(sdi, j, SR_CHANNEL_LOGIC, TRUE,
238                                         channel_names[j]);
239
240                 devices = g_slist_append(devices, sdi);
241                 sdi->inst_type = SR_INST_USB;
242                 sdi->conn = sr_usb_dev_inst_new(
243                         libusb_get_bus_number(devlist[i]),
244                         libusb_get_device_address(devlist[i]), NULL);
245         }
246         libusb_free_device_list(devlist, 1);
247
248         return std_scan_complete(di, devices);
249 }
250
251 static int dev_open(struct sr_dev_inst *sdi)
252 {
253         struct sr_dev_driver *di = sdi->driver;
254         struct dev_context *devc;
255         struct drv_context *drvc;
256         struct sr_usb_dev_inst *usb;
257         int ret;
258
259         drvc = di->context;
260         usb = sdi->conn;
261         devc = sdi->priv;
262
263         ret = sr_usb_open(drvc->sr_ctx->libusb_ctx, usb);
264         if (ret != SR_OK)
265                 return ret;
266
267         ret = libusb_set_configuration(usb->devhdl, USB_CONFIGURATION);
268         if (ret < 0) {
269                 sr_err("Unable to set USB configuration %d: %s.",
270                        USB_CONFIGURATION, libusb_error_name(ret));
271                 return SR_ERR;
272         }
273
274         ret = libusb_claim_interface(usb->devhdl, USB_INTERFACE);
275         if (ret != 0) {
276                 sr_err("Unable to claim interface: %s.",
277                        libusb_error_name(ret));
278                 return SR_ERR;
279         }
280
281         /* Set default configuration after power on. */
282         if (analyzer_read_status(usb->devhdl) == 0)
283                 analyzer_configure(usb->devhdl);
284
285         analyzer_reset(usb->devhdl);
286         analyzer_initialize(usb->devhdl);
287
288         //analyzer_set_memory_size(MEMORY_SIZE_512K);
289         // analyzer_set_freq(g_freq, g_freq_scale);
290         analyzer_set_trigger_count(1);
291         // analyzer_set_ramsize_trigger_address((((100 - g_pre_trigger)
292         // * get_memory_size(g_memory_size)) / 100) >> 2);
293
294 #if 0
295         if (g_double_mode == 1)
296                 analyzer_set_compression(COMPRESSION_DOUBLE);
297         else if (g_compression == 1)
298                 analyzer_set_compression(COMPRESSION_ENABLE);
299         else
300 #endif
301         analyzer_set_compression(COMPRESSION_NONE);
302
303         if (devc->cur_samplerate == 0) {
304                 /* Samplerate hasn't been set. Default to 1MHz. */
305                 analyzer_set_freq(1, FREQ_SCALE_MHZ);
306                 devc->cur_samplerate = SR_MHZ(1);
307         }
308
309         if (devc->cur_threshold == 0)
310                 set_voltage_threshold(devc, 1.5);
311
312         return SR_OK;
313 }
314
315 static int dev_close(struct sr_dev_inst *sdi)
316 {
317         struct sr_usb_dev_inst *usb;
318
319         usb = sdi->conn;
320
321         if (!usb->devhdl)
322                 return SR_ERR_BUG;
323
324         sr_info("Closing device on %d.%d (logical) / %s (physical) interface %d.",
325                 usb->bus, usb->address, sdi->connection_id, USB_INTERFACE);
326         libusb_release_interface(usb->devhdl, USB_INTERFACE);
327         libusb_reset_device(usb->devhdl);
328         libusb_close(usb->devhdl);
329         usb->devhdl = NULL;
330
331         return SR_OK;
332 }
333
334 static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
335                 const struct sr_channel_group *cg)
336 {
337         struct dev_context *devc;
338         GVariant *range[2];
339
340         (void)cg;
341
342         if (!sdi)
343                 return SR_ERR_ARG;
344
345         devc = sdi->priv;
346
347         switch (key) {
348         case SR_CONF_SAMPLERATE:
349                 *data = g_variant_new_uint64(devc->cur_samplerate);
350                 break;
351         case SR_CONF_CAPTURE_RATIO:
352                 *data = g_variant_new_uint64(devc->capture_ratio);
353                 break;
354         case SR_CONF_VOLTAGE_THRESHOLD:
355                 range[0] = g_variant_new_double(devc->cur_threshold);
356                 range[1] = g_variant_new_double(devc->cur_threshold);
357                 *data = g_variant_new_tuple(range, 2);
358                 break;
359         default:
360                 return SR_ERR_NA;
361         }
362
363         return SR_OK;
364 }
365
366 static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi,
367                 const struct sr_channel_group *cg)
368 {
369         struct dev_context *devc;
370         gdouble low, high;
371
372         (void)cg;
373
374         devc = sdi->priv;
375
376         switch (key) {
377         case SR_CONF_SAMPLERATE:
378                 return zp_set_samplerate(devc, g_variant_get_uint64(data));
379         case SR_CONF_LIMIT_SAMPLES:
380                 return set_limit_samples(devc, g_variant_get_uint64(data));
381         case SR_CONF_CAPTURE_RATIO:
382                 return set_capture_ratio(devc, g_variant_get_uint64(data));
383         case SR_CONF_VOLTAGE_THRESHOLD:
384                 g_variant_get(data, "(dd)", &low, &high);
385                 return set_voltage_threshold(devc, (low + high) / 2.0);
386         default:
387                 return SR_ERR_NA;
388         }
389
390         return SR_OK;
391 }
392
393 static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
394                 const struct sr_channel_group *cg)
395 {
396         struct dev_context *devc;
397         GVariant *gvar, *grange[2];
398         GVariantBuilder gvb;
399         double v;
400         GVariant *range[2];
401
402         (void)cg;
403
404         switch (key) {
405         case SR_CONF_DEVICE_OPTIONS:
406                 if (!sdi) {
407                         *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
408                                 drvopts, ARRAY_SIZE(drvopts), sizeof(uint32_t));
409                 } else {
410                         *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
411                                 devopts, ARRAY_SIZE(devopts), sizeof(uint32_t));
412                 }
413                 break;
414         case SR_CONF_SAMPLERATE:
415                 devc = sdi->priv;
416                 g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
417                 if (devc->prof->max_sampling_freq == 100) {
418                         gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
419                                         samplerates_100, ARRAY_SIZE(samplerates_100),
420                                         sizeof(uint64_t));
421                 } else if (devc->prof->max_sampling_freq == 200) {
422                         gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
423                                         samplerates_200, ARRAY_SIZE(samplerates_200),
424                                         sizeof(uint64_t));
425                 } else {
426                         sr_err("Internal error: Unknown max. samplerate: %d.",
427                                devc->prof->max_sampling_freq);
428                         return SR_ERR_ARG;
429                 }
430                 g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
431                 *data = g_variant_builder_end(&gvb);
432                 break;
433         case SR_CONF_TRIGGER_MATCH:
434                 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
435                                 trigger_matches, ARRAY_SIZE(trigger_matches),
436                                 sizeof(int32_t));
437                 break;
438         case SR_CONF_VOLTAGE_THRESHOLD:
439                 g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY);
440                 for (v = -6.0; v <= 6.0; v += 0.1) {
441                         range[0] = g_variant_new_double(v);
442                         range[1] = g_variant_new_double(v);
443                         gvar = g_variant_new_tuple(range, 2);
444                         g_variant_builder_add_value(&gvb, gvar);
445                 }
446                 *data = g_variant_builder_end(&gvb);
447                 break;
448         case SR_CONF_LIMIT_SAMPLES:
449                 if (!sdi)
450                         return SR_ERR_ARG;
451                 devc = sdi->priv;
452                 grange[0] = g_variant_new_uint64(0);
453                 grange[1] = g_variant_new_uint64(devc->max_sample_depth);
454                 *data = g_variant_new_tuple(grange, 2);
455                 break;
456         default:
457                 return SR_ERR_NA;
458         }
459
460         return SR_OK;
461 }
462
463 static int dev_acquisition_start(const struct sr_dev_inst *sdi)
464 {
465         struct dev_context *devc;
466         struct sr_usb_dev_inst *usb;
467         struct sr_datafeed_packet packet;
468         struct sr_datafeed_logic logic;
469         unsigned int samples_read;
470         int res;
471         unsigned int packet_num, n;
472         unsigned char *buf;
473         unsigned int status;
474         unsigned int stop_address;
475         unsigned int now_address;
476         unsigned int trigger_address;
477         unsigned int trigger_offset;
478         unsigned int triggerbar;
479         unsigned int ramsize_trigger;
480         unsigned int memory_size;
481         unsigned int valid_samples;
482         unsigned int discard;
483         int trigger_now;
484
485         devc = sdi->priv;
486
487         if (analyzer_add_triggers(sdi) != SR_OK) {
488                 sr_err("Failed to configure triggers.");
489                 return SR_ERR;
490         }
491
492         usb = sdi->conn;
493
494         set_triggerbar(devc);
495
496         /* Push configured settings to device. */
497         analyzer_configure(usb->devhdl);
498
499         analyzer_start(usb->devhdl);
500         sr_info("Waiting for data.");
501         analyzer_wait_data(usb->devhdl);
502
503         status = analyzer_read_status(usb->devhdl);
504         stop_address = analyzer_get_stop_address(usb->devhdl);
505         now_address = analyzer_get_now_address(usb->devhdl);
506         trigger_address = analyzer_get_trigger_address(usb->devhdl);
507
508         triggerbar = analyzer_get_triggerbar_address();
509         ramsize_trigger = analyzer_get_ramsize_trigger_address();
510
511         n = get_memory_size(devc->memory_size);
512         memory_size = n / 4;
513
514         sr_info("Status = 0x%x.", status);
515         sr_info("Stop address       = 0x%x.", stop_address);
516         sr_info("Now address        = 0x%x.", now_address);
517         sr_info("Trigger address    = 0x%x.", trigger_address);
518         sr_info("Triggerbar address = 0x%x.", triggerbar);
519         sr_info("Ramsize trigger    = 0x%x.", ramsize_trigger);
520         sr_info("Memory size        = 0x%x.", memory_size);
521
522         std_session_send_df_header(sdi);
523
524         /* Check for empty capture */
525         if ((status & STATUS_READY) && !stop_address) {
526                 std_session_send_df_end(sdi);
527                 return SR_OK;
528         }
529
530         buf = g_malloc(PACKET_SIZE);
531
532         /* Check if the trigger is in the samples we are throwing away */
533         trigger_now = now_address == trigger_address ||
534                 ((now_address + 1) % memory_size) == trigger_address;
535
536         /*
537          * STATUS_READY doesn't clear until now_address advances past
538          * addr 0, but for our logic, clear it in that case
539          */
540         if (!now_address)
541                 status &= ~STATUS_READY;
542
543         analyzer_read_start(usb->devhdl);
544
545         /* Calculate how much data to discard */
546         discard = 0;
547         if (status & STATUS_READY) {
548                 /*
549                  * We haven't wrapped around, we need to throw away data from
550                  * our current position to the end of the buffer.
551                  * Additionally, the first two samples captured are always
552                  * bogus.
553                  */
554                 discard += memory_size - now_address + 2;
555                 now_address = 2;
556         }
557
558         /* If we have more samples than we need, discard them */
559         valid_samples = (stop_address - now_address) % memory_size;
560         if (valid_samples > ramsize_trigger + triggerbar) {
561                 discard += valid_samples - (ramsize_trigger + triggerbar);
562                 now_address += valid_samples - (ramsize_trigger + triggerbar);
563         }
564
565         sr_info("Need to discard %d samples.", discard);
566
567         /* Calculate how far in the trigger is */
568         if (trigger_now)
569                 trigger_offset = 0;
570         else
571                 trigger_offset = (trigger_address - now_address) % memory_size;
572
573         /* Recalculate the number of samples available */
574         valid_samples = (stop_address - now_address) % memory_size;
575
576         /* Send the incoming transfer to the session bus. */
577         samples_read = 0;
578         for (packet_num = 0; packet_num < n / PACKET_SIZE; packet_num++) {
579                 unsigned int len;
580                 unsigned int buf_offset;
581
582                 res = analyzer_read_data(usb->devhdl, buf, PACKET_SIZE);
583                 sr_info("Tried to read %d bytes, actually read %d bytes.",
584                         PACKET_SIZE, res);
585
586                 if (discard >= PACKET_SIZE / 4) {
587                         discard -= PACKET_SIZE / 4;
588                         continue;
589                 }
590
591                 len = PACKET_SIZE - discard * 4;
592                 buf_offset = discard * 4;
593                 discard = 0;
594
595                 /* Check if we've read all the samples */
596                 if (samples_read + len / 4 >= valid_samples)
597                         len = (valid_samples - samples_read) * 4;
598                 if (!len)
599                         break;
600
601                 if (samples_read < trigger_offset &&
602                     samples_read + len / 4 > trigger_offset) {
603                         /* Send out samples remaining before trigger */
604                         packet.type = SR_DF_LOGIC;
605                         packet.payload = &logic;
606                         logic.length = (trigger_offset - samples_read) * 4;
607                         logic.unitsize = 4;
608                         logic.data = buf + buf_offset;
609                         sr_session_send(sdi, &packet);
610                         len -= logic.length;
611                         samples_read += logic.length / 4;
612                         buf_offset += logic.length;
613                 }
614
615                 if (samples_read == trigger_offset) {
616                         /* Send out trigger */
617                         packet.type = SR_DF_TRIGGER;
618                         packet.payload = NULL;
619                         sr_session_send(sdi, &packet);
620                 }
621
622                 /* Send out data (or data after trigger) */
623                 packet.type = SR_DF_LOGIC;
624                 packet.payload = &logic;
625                 logic.length = len;
626                 logic.unitsize = 4;
627                 logic.data = buf + buf_offset;
628                 sr_session_send(sdi, &packet);
629                 samples_read += len / 4;
630         }
631         analyzer_read_stop(usb->devhdl);
632         g_free(buf);
633
634         std_session_send_df_end(sdi);
635
636         return SR_OK;
637 }
638
639 /* TODO: This stops acquisition on ALL devices, ignoring dev_index. */
640 static int dev_acquisition_stop(struct sr_dev_inst *sdi)
641 {
642         struct sr_usb_dev_inst *usb;
643
644         std_session_send_df_end(sdi);
645
646         usb = sdi->conn;
647         analyzer_reset(usb->devhdl);
648         /* TODO: Need to cancel and free any queued up transfers. */
649
650         return SR_OK;
651 }
652
653 static struct sr_dev_driver zeroplus_logic_cube_driver_info = {
654         .name = "zeroplus-logic-cube",
655         .longname = "ZEROPLUS Logic Cube LAP-C series",
656         .api_version = 1,
657         .init = std_init,
658         .cleanup = std_cleanup,
659         .scan = scan,
660         .dev_list = std_dev_list,
661         .dev_clear = NULL,
662         .config_get = config_get,
663         .config_set = config_set,
664         .config_list = config_list,
665         .dev_open = dev_open,
666         .dev_close = dev_close,
667         .dev_acquisition_start = dev_acquisition_start,
668         .dev_acquisition_stop = dev_acquisition_stop,
669         .context = NULL,
670 };
671 SR_REGISTER_DEV_DRIVER(zeroplus_logic_cube_driver_info);