]> sigrok.org Git - libsigrok.git/blob - src/hardware/sysclk-lwla/protocol.c
ba676f69a72c7804bfc6aed3b2bdcca359ce1fa8
[libsigrok.git] / src / hardware / sysclk-lwla / protocol.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2014 Daniel Elstner <daniel.kitta@gmail.com>
5  *
6  * This program is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <config.h>
21 #include <string.h>
22 #include "protocol.h"
23
24 /* Bit mask for the RLE repeat-count-follows flag. */
25 #define RLE_FLAG_LEN_FOLLOWS ((uint64_t)1 << 35)
26
27 /* Start address of capture status memory area to read. */
28 #define CAP_STAT_ADDR 5
29
30 /* Number of 64-bit words read from the capture status memory. */
31 #define CAP_STAT_LEN 5
32
33 /* The bitstream filenames are indexed by the clock_config enumeration.
34  */
35 static const char bitstream_map[][32] = {
36         "sysclk-lwla1034-off.rbf",
37         "sysclk-lwla1034-int.rbf",
38         "sysclk-lwla1034-extpos.rbf",
39         "sysclk-lwla1034-extneg.rbf",
40 };
41
42 /* Submit an already filled-in USB transfer.
43  */
44 static int submit_transfer(struct dev_context *devc,
45                            struct libusb_transfer *xfer)
46 {
47         int ret;
48
49         ret = libusb_submit_transfer(xfer);
50
51         if (ret != 0) {
52                 sr_err("Submit transfer failed: %s.", libusb_error_name(ret));
53                 devc->transfer_error = TRUE;
54                 return SR_ERR;
55         }
56
57         return SR_OK;
58 }
59
60 /* Set up the LWLA in preparation for an acquisition session.
61  */
62 static int capture_setup(const struct sr_dev_inst *sdi)
63 {
64         struct dev_context *devc;
65         struct acquisition_state *acq;
66         uint64_t divider_count;
67         uint64_t trigger_mask;
68         uint64_t memory_limit;
69         uint16_t command[3 + (10 * 4)];
70
71         devc = sdi->priv;
72         acq  = devc->acquisition;
73
74         command[0] = LWLA_WORD(CMD_CAP_SETUP);
75         command[1] = LWLA_WORD(0); /* address */
76         command[2] = LWLA_WORD(10); /* length */
77
78         command[3] = LWLA_WORD_0(devc->channel_mask);
79         command[4] = LWLA_WORD_1(devc->channel_mask);
80         command[5] = LWLA_WORD_2(devc->channel_mask);
81         command[6] = LWLA_WORD_3(devc->channel_mask);
82
83         /* Set the clock divide counter maximum for samplerates of up to
84          * 100 MHz. At the highest samplerate of 125 MHz the clock divider
85          * is bypassed.
86          */
87         if (!acq->bypass_clockdiv && devc->samplerate > 0)
88                 divider_count = SR_MHZ(100) / devc->samplerate - 1;
89         else
90                 divider_count = 0;
91
92         command[7]  = LWLA_WORD_0(divider_count);
93         command[8]  = LWLA_WORD_1(divider_count);
94         command[9]  = LWLA_WORD_2(divider_count);
95         command[10] = LWLA_WORD_3(divider_count);
96
97         command[11] = LWLA_WORD_0(devc->trigger_values);
98         command[12] = LWLA_WORD_1(devc->trigger_values);
99         command[13] = LWLA_WORD_2(devc->trigger_values);
100         command[14] = LWLA_WORD_3(devc->trigger_values);
101
102         command[15] = LWLA_WORD_0(devc->trigger_edge_mask);
103         command[16] = LWLA_WORD_1(devc->trigger_edge_mask);
104         command[17] = LWLA_WORD_2(devc->trigger_edge_mask);
105         command[18] = LWLA_WORD_3(devc->trigger_edge_mask);
106
107         trigger_mask = devc->trigger_mask;
108         /* Set bits to select external TRG input edge. */
109         if (devc->cfg_trigger_source == TRIGGER_EXT_TRG)
110                 switch (devc->cfg_trigger_slope) {
111                 case EDGE_POSITIVE:
112                         trigger_mask |= (uint64_t)1 << 35;
113                         break;
114                 case EDGE_NEGATIVE:
115                         trigger_mask |= (uint64_t)1 << 34;
116                         break;
117                 }
118
119         command[19] = LWLA_WORD_0(trigger_mask);
120         command[20] = LWLA_WORD_1(trigger_mask);
121         command[21] = LWLA_WORD_2(trigger_mask);
122         command[22] = LWLA_WORD_3(trigger_mask);
123
124         /* Set the capture memory full threshold. This is slightly less
125          * than the actual maximum, most likely in order to compensate for
126          * pipeline latency.
127          */
128         memory_limit = MEMORY_DEPTH - 16;
129
130         command[23] = LWLA_WORD_0(memory_limit);
131         command[24] = LWLA_WORD_1(memory_limit);
132         command[25] = LWLA_WORD_2(memory_limit);
133         command[26] = LWLA_WORD_3(memory_limit);
134
135         /* Fill remaining words with zeroes. */
136         memset(&command[27], 0, sizeof(command) - 27 * sizeof(command[0]));
137
138         return lwla_send_command(sdi->conn, command, ARRAY_SIZE(command));
139 }
140
141 /* Issue a register write command as an asynchronous USB transfer.
142  */
143 static int issue_write_reg(const struct sr_dev_inst *sdi,
144                            unsigned int reg, unsigned int value)
145 {
146         struct dev_context *devc;
147         struct acquisition_state *acq;
148
149         devc = sdi->priv;
150         acq  = devc->acquisition;
151
152         acq->xfer_buf_out[0] = LWLA_WORD(CMD_WRITE_REG);
153         acq->xfer_buf_out[1] = LWLA_WORD(reg);
154         acq->xfer_buf_out[2] = LWLA_WORD_0(value);
155         acq->xfer_buf_out[3] = LWLA_WORD_1(value);
156
157         acq->xfer_out->length = 4 * sizeof(uint16_t);
158
159         return submit_transfer(devc, acq->xfer_out);
160 }
161
162 /* Issue a register write command as an asynchronous USB transfer for the
163  * next register/value pair of the currently active register write sequence.
164  */
165 static int issue_next_write_reg(const struct sr_dev_inst *sdi)
166 {
167         struct dev_context *devc;
168         struct regval_pair *regval;
169         int ret;
170
171         devc = sdi->priv;
172
173         if (devc->reg_write_pos >= devc->reg_write_len) {
174                 sr_err("Already written all registers in sequence.");
175                 return SR_ERR_BUG;
176         }
177         regval = &devc->reg_write_seq[devc->reg_write_pos];
178
179         ret = issue_write_reg(sdi, regval->reg, regval->val);
180         if (ret != SR_OK)
181                 return ret;
182
183         ++devc->reg_write_pos;
184         return SR_OK;
185 }
186
187 /* Issue a capture status request as an asynchronous USB transfer.
188  */
189 static void request_capture_status(const struct sr_dev_inst *sdi)
190 {
191         struct dev_context *devc;
192         struct acquisition_state *acq;
193
194         devc = sdi->priv;
195         acq  = devc->acquisition;
196
197         acq->xfer_buf_out[0] = LWLA_WORD(CMD_CAP_STATUS);
198         acq->xfer_buf_out[1] = LWLA_WORD(CAP_STAT_ADDR);
199         acq->xfer_buf_out[2] = LWLA_WORD(CAP_STAT_LEN);
200
201         acq->xfer_out->length = 3 * sizeof(uint16_t);
202
203         if (submit_transfer(devc, acq->xfer_out) == SR_OK)
204                 devc->state = STATE_STATUS_REQUEST;
205 }
206
207 /* Issue a request for the capture buffer fill level as
208  * an asynchronous USB transfer.
209  */
210 static void request_capture_length(const struct sr_dev_inst *sdi)
211 {
212         struct dev_context *devc;
213         struct acquisition_state *acq;
214
215         devc = sdi->priv;
216         acq  = devc->acquisition;
217
218         acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_REG);
219         acq->xfer_buf_out[1] = LWLA_WORD(REG_MEM_FILL);
220
221         acq->xfer_out->length = 2 * sizeof(uint16_t);
222
223         if (submit_transfer(devc, acq->xfer_out) == SR_OK)
224                 devc->state = STATE_LENGTH_REQUEST;
225 }
226
227 /* Initiate the capture memory read operation:  Reset the acquisition state
228  * and start a sequence of register writes in order to set up the device for
229  * reading from the capture buffer.
230  */
231 static void issue_read_start(const struct sr_dev_inst *sdi)
232 {
233         struct dev_context *devc;
234         struct acquisition_state *acq;
235         struct regval_pair *regvals;
236
237         devc = sdi->priv;
238         acq  = devc->acquisition;
239
240         /* Reset RLE state. */
241         acq->rle = RLE_STATE_DATA;
242         acq->sample  = 0;
243         acq->run_len = 0;
244
245         acq->samples_done = 0;
246
247         /* For some reason, the start address is 4 rather than 0. */
248         acq->mem_addr_done = 4;
249         acq->mem_addr_next = 4;
250         acq->mem_addr_stop = acq->mem_addr_fill;
251
252         /* Sample position in the packet output buffer. */
253         acq->out_index = 0;
254
255         regvals = devc->reg_write_seq;
256
257         regvals[0].reg = REG_DIV_BYPASS;
258         regvals[0].val = 1;
259
260         regvals[1].reg = REG_MEM_CTRL;
261         regvals[1].val = MEM_CTRL_CLR_IDX;
262
263         regvals[2].reg = REG_MEM_START;
264         regvals[2].val = 4;
265
266         devc->reg_write_pos = 0;
267         devc->reg_write_len = 3;
268
269         if (issue_next_write_reg(sdi) == SR_OK)
270                 devc->state = STATE_READ_PREPARE;
271 }
272
273 /* Issue a command as an asynchronous USB transfer which returns the device
274  * to normal state after a read operation.  Sets a new device context state
275  * on success.
276  */
277 static void issue_read_end(const struct sr_dev_inst *sdi)
278 {
279         struct dev_context *devc;
280
281         devc = sdi->priv;
282
283         if (issue_write_reg(sdi, REG_DIV_BYPASS, 0) == SR_OK)
284                 devc->state = STATE_READ_END;
285 }
286
287 /* Decode an incoming response to a buffer fill level request and act on it
288  * as appropriate.  Note that this function changes the device context state.
289  */
290 static void process_capture_length(const struct sr_dev_inst *sdi)
291 {
292         struct dev_context *devc;
293         struct acquisition_state *acq;
294
295         devc = sdi->priv;
296         acq  = devc->acquisition;
297
298         if (acq->xfer_in->actual_length != 4) {
299                 sr_err("Received size %d doesn't match expected size 4.",
300                        acq->xfer_in->actual_length);
301                 devc->transfer_error = TRUE;
302                 return;
303         }
304         acq->mem_addr_fill = LWLA_TO_UINT32(acq->xfer_buf_in[0]);
305
306         sr_dbg("%zu words in capture buffer.", acq->mem_addr_fill);
307
308         if (acq->mem_addr_fill > 0 && !devc->cancel_requested)
309                 issue_read_start(sdi);
310         else
311                 issue_read_end(sdi);
312 }
313
314 /* Initiate a sequence of register write commands with the effect of
315  * cancelling a running capture operation.  This sets a new device state
316  * if issuing the first command succeeds.
317  */
318 static void issue_stop_capture(const struct sr_dev_inst *sdi)
319 {
320         struct dev_context *devc;
321         struct regval_pair *regvals;
322
323         devc = sdi->priv;
324
325         if (devc->stopping_in_progress)
326                 return;
327
328         regvals = devc->reg_write_seq;
329
330         regvals[0].reg = REG_LONG_ADDR;
331         regvals[0].val = LREG_CAP_CTRL;
332
333         regvals[1].reg = REG_LONG_LOW;
334         regvals[1].val = 0;
335
336         regvals[2].reg = REG_LONG_HIGH;
337         regvals[2].val = 0;
338
339         regvals[3].reg = REG_LONG_STROBE;
340         regvals[3].val = 0;
341
342         regvals[4].reg = REG_DIV_BYPASS;
343         regvals[4].val = 0;
344
345         devc->reg_write_pos = 0;
346         devc->reg_write_len = 5;
347
348         if (issue_next_write_reg(sdi) == SR_OK) {
349                 devc->stopping_in_progress = TRUE;
350                 devc->state = STATE_STOP_CAPTURE;
351         }
352 }
353
354 /* Decode an incoming capture status response and act on it as appropriate.
355  * Note that this function changes the device state.
356  */
357 static void process_capture_status(const struct sr_dev_inst *sdi)
358 {
359         uint64_t duration;
360         struct dev_context *devc;
361         struct acquisition_state *acq;
362         unsigned int mem_fill;
363         unsigned int flags;
364
365         devc = sdi->priv;
366         acq  = devc->acquisition;
367
368         if (acq->xfer_in->actual_length != CAP_STAT_LEN * 8) {
369                 sr_err("Received size %d doesn't match expected size %d.",
370                        acq->xfer_in->actual_length, CAP_STAT_LEN * 8);
371                 devc->transfer_error = TRUE;
372                 return;
373         }
374
375         mem_fill = LWLA_TO_UINT32(acq->xfer_buf_in[0]);
376         duration = LWLA_TO_UINT32(acq->xfer_buf_in[4])
377                 | ((uint64_t)LWLA_TO_UINT32(acq->xfer_buf_in[5]) << 32);
378         flags = LWLA_TO_UINT32(acq->xfer_buf_in[8]) & STATUS_FLAG_MASK;
379
380         /* The LWLA1034 runs at 125 MHz if the clock divider is bypassed.
381          * However, the time base used for the duration is apparently not
382          * adjusted for this "boost" mode.  Whereas normally the duration
383          * unit is 1 ms, it is 0.8 ms when the clock divider is bypassed.
384          * As 0.8 = 100 MHz / 125 MHz, it seems that the internal cycle
385          * counter period is the same as at the 100 MHz setting.
386          */
387         if (acq->bypass_clockdiv)
388                 acq->duration_now = duration * 4 / 5;
389         else
390                 acq->duration_now = duration;
391
392         sr_spew("Captured %u words, %" PRIu64 " ms, flags 0x%02X.",
393                 mem_fill, acq->duration_now, flags);
394
395         if ((flags & STATUS_TRIGGERED) > (acq->capture_flags & STATUS_TRIGGERED))
396                 sr_info("Capture triggered.");
397
398         acq->capture_flags = flags;
399
400         if (acq->duration_now >= acq->duration_max) {
401                 sr_dbg("Time limit reached, stopping capture.");
402                 issue_stop_capture(sdi);
403                 return;
404         }
405         devc->state = STATE_STATUS_WAIT;
406
407         if ((acq->capture_flags & STATUS_TRIGGERED) == 0) {
408                 sr_spew("Waiting for trigger.");
409         } else if ((acq->capture_flags & STATUS_MEM_AVAIL) == 0) {
410                 sr_dbg("Capture memory filled.");
411                 request_capture_length(sdi);
412         } else if ((acq->capture_flags & STATUS_CAPTURING) != 0) {
413                 sr_spew("Sampling in progress.");
414         }
415 }
416
417 /* Issue a capture buffer read request as an asynchronous USB transfer.
418  * The address and size of the memory area to read are derived from the
419  * current acquisition state.
420  */
421 static void request_read_mem(const struct sr_dev_inst *sdi)
422 {
423         struct dev_context *devc;
424         struct acquisition_state *acq;
425         size_t count;
426
427         devc = sdi->priv;
428         acq  = devc->acquisition;
429
430         if (acq->mem_addr_next >= acq->mem_addr_stop)
431                 return;
432
433         /* Always read a multiple of 8 device words. */
434         count = (acq->mem_addr_stop - acq->mem_addr_next + 7) / 8 * 8;
435         count = MIN(count, READ_CHUNK_LEN);
436
437         acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_MEM);
438         acq->xfer_buf_out[1] = LWLA_WORD_0(acq->mem_addr_next);
439         acq->xfer_buf_out[2] = LWLA_WORD_1(acq->mem_addr_next);
440         acq->xfer_buf_out[3] = LWLA_WORD_0(count);
441         acq->xfer_buf_out[4] = LWLA_WORD_1(count);
442
443         acq->xfer_out->length = 5 * sizeof(uint16_t);
444
445         if (submit_transfer(devc, acq->xfer_out) == SR_OK) {
446                 acq->mem_addr_next += count;
447                 devc->state = STATE_READ_REQUEST;
448         }
449 }
450
451 /* Demangle and decompress incoming sample data from the capture buffer.
452  * The data chunk is taken from the acquisition state, and is expected to
453  * contain a multiple of 8 device words.
454  * All data currently in the acquisition buffer will be processed.  Packets
455  * of decoded samples are sent off to the session bus whenever the output
456  * buffer becomes full while decoding.
457  */
458 static int process_sample_data(const struct sr_dev_inst *sdi)
459 {
460         uint64_t sample;
461         uint64_t high_nibbles;
462         uint64_t word;
463         struct dev_context *devc;
464         struct acquisition_state *acq;
465         uint8_t *out_p;
466         uint32_t *slice;
467         struct sr_datafeed_packet packet;
468         struct sr_datafeed_logic logic;
469         size_t expect_len;
470         size_t actual_len;
471         size_t out_max_samples;
472         size_t out_run_samples;
473         size_t ri;
474         size_t in_words_left;
475         size_t si;
476
477         devc = sdi->priv;
478         acq  = devc->acquisition;
479
480         if (acq->mem_addr_done >= acq->mem_addr_stop
481                         || acq->samples_done >= acq->samples_max)
482                 return SR_OK;
483
484         in_words_left = MIN(acq->mem_addr_stop - acq->mem_addr_done,
485                             READ_CHUNK_LEN);
486         expect_len = LWLA1034_MEMBUF_LEN(in_words_left) * sizeof(uint32_t);
487         actual_len = acq->xfer_in->actual_length;
488
489         if (actual_len != expect_len) {
490                 sr_err("Received size %zu does not match expected size %zu.",
491                        actual_len, expect_len);
492                 devc->transfer_error = TRUE;
493                 return SR_ERR;
494         }
495         acq->mem_addr_done += in_words_left;
496
497         /* Prepare session packet. */
498         packet.type    = SR_DF_LOGIC;
499         packet.payload = &logic;
500         logic.unitsize = UNIT_SIZE;
501         logic.data     = acq->out_packet;
502
503         slice = acq->xfer_buf_in;
504         si = 0; /* word index within slice */
505
506         for (;;) {
507                 /* Calculate number of samples to write into packet. */
508                 out_max_samples = MIN(acq->samples_max - acq->samples_done,
509                                       PACKET_LENGTH - acq->out_index);
510                 out_run_samples = MIN(acq->run_len, out_max_samples);
511
512                 /* Expand run-length samples into session packet. */
513                 sample = acq->sample;
514                 out_p = &acq->out_packet[acq->out_index * UNIT_SIZE];
515
516                 for (ri = 0; ri < out_run_samples; ++ri) {
517                         out_p[0] =  sample        & 0xFF;
518                         out_p[1] = (sample >>  8) & 0xFF;
519                         out_p[2] = (sample >> 16) & 0xFF;
520                         out_p[3] = (sample >> 24) & 0xFF;
521                         out_p[4] = (sample >> 32) & 0xFF;
522                         out_p += UNIT_SIZE;
523                 }
524                 acq->run_len -= out_run_samples;
525                 acq->out_index += out_run_samples;
526                 acq->samples_done += out_run_samples;
527
528                 /* Packet full or sample count limit reached? */
529                 if (out_run_samples == out_max_samples) {
530                         logic.length = acq->out_index * UNIT_SIZE;
531                         sr_session_send(sdi, &packet);
532                         acq->out_index = 0;
533
534                         if (acq->samples_done >= acq->samples_max)
535                                 return SR_OK; /* sample limit reached */
536                         if (acq->run_len > 0)
537                                 continue; /* need another packet */
538                 }
539
540                 if (in_words_left == 0)
541                         break; /* done with current chunk */
542
543                 /* Now work on the current slice. */
544                 high_nibbles = LWLA_TO_UINT32(slice[8]);
545                 word = LWLA_TO_UINT32(slice[si]);
546                 word |= (high_nibbles << (4 * si + 4)) & ((uint64_t)0xF << 32);
547
548                 if (acq->rle == RLE_STATE_DATA) {
549                         acq->sample = word & ALL_CHANNELS_MASK;
550                         acq->run_len = ((word >> NUM_CHANNELS) & 1) + 1;
551                         if (word & RLE_FLAG_LEN_FOLLOWS)
552                                 acq->rle = RLE_STATE_LEN;
553                 } else {
554                         acq->run_len += word << 1;
555                         acq->rle = RLE_STATE_DATA;
556                 }
557
558                 /* Move to next word. */
559                 si = (si + 1) % 8;
560                 if (si == 0)
561                         slice += 9;
562                 --in_words_left;
563         }
564
565         /* Send out partially filled packet if this was the last chunk. */
566         if (acq->mem_addr_done >= acq->mem_addr_stop && acq->out_index > 0) {
567                 logic.length = acq->out_index * UNIT_SIZE;
568                 sr_session_send(sdi, &packet);
569                 acq->out_index = 0;
570         }
571         return SR_OK;
572 }
573
574 /* Finish an acquisition session.  This sends the end packet to the session
575  * bus and removes the listener for asynchronous USB transfers.
576  */
577 static void end_acquisition(struct sr_dev_inst *sdi)
578 {
579         struct drv_context *drvc;
580         struct dev_context *devc;
581         struct sr_datafeed_packet packet;
582
583         drvc = sdi->driver->context;
584         devc = sdi->priv;
585
586         if (devc->state == STATE_IDLE)
587                 return;
588
589         devc->state = STATE_IDLE;
590
591         /* Remove USB file descriptors from polling. */
592         usb_source_remove(sdi->session, drvc->sr_ctx);
593
594         packet.type = SR_DF_END;
595         sr_session_send(sdi, &packet);
596
597         lwla_free_acquisition_state(devc->acquisition);
598         devc->acquisition = NULL;
599         devc->cancel_requested = FALSE;
600 }
601
602 /* USB output transfer completion callback.
603  */
604 static void LIBUSB_CALL receive_transfer_out(struct libusb_transfer *transfer)
605 {
606         struct sr_dev_inst *sdi;
607         struct dev_context *devc;
608
609         sdi  = transfer->user_data;
610         devc = sdi->priv;
611
612         if (transfer->status != LIBUSB_TRANSFER_COMPLETED) {
613                 sr_err("Transfer to device failed: %d.", transfer->status);
614                 devc->transfer_error = TRUE;
615                 return;
616         }
617
618         if (devc->reg_write_pos < devc->reg_write_len) {
619                 issue_next_write_reg(sdi);
620         } else {
621                 switch (devc->state) {
622                 case STATE_START_CAPTURE:
623                         devc->state = STATE_STATUS_WAIT;
624                         break;
625                 case STATE_STATUS_REQUEST:
626                         devc->state = STATE_STATUS_RESPONSE;
627                         submit_transfer(devc, devc->acquisition->xfer_in);
628                         break;
629                 case STATE_STOP_CAPTURE:
630                         if (!devc->cancel_requested)
631                                 request_capture_length(sdi);
632                         else
633                                 end_acquisition(sdi);
634                         break;
635                 case STATE_LENGTH_REQUEST:
636                         devc->state = STATE_LENGTH_RESPONSE;
637                         submit_transfer(devc, devc->acquisition->xfer_in);
638                         break;
639                 case STATE_READ_PREPARE:
640                         request_read_mem(sdi);
641                         break;
642                 case STATE_READ_REQUEST:
643                         devc->state = STATE_READ_RESPONSE;
644                         submit_transfer(devc, devc->acquisition->xfer_in);
645                         break;
646                 case STATE_READ_END:
647                         end_acquisition(sdi);
648                         break;
649                 default:
650                         sr_err("Unexpected device state %d.", devc->state);
651                         break;
652                 }
653         }
654 }
655
656 /* USB input transfer completion callback.
657  */
658 static void LIBUSB_CALL receive_transfer_in(struct libusb_transfer *transfer)
659 {
660         struct sr_dev_inst *sdi;
661         struct dev_context *devc;
662         struct acquisition_state *acq;
663
664         sdi  = transfer->user_data;
665         devc = sdi->priv;
666         acq  = devc->acquisition;
667
668         if (transfer->status != LIBUSB_TRANSFER_COMPLETED) {
669                 sr_err("Transfer from device failed: %d.", transfer->status);
670                 devc->transfer_error = TRUE;
671                 return;
672         }
673
674         switch (devc->state) {
675         case STATE_STATUS_RESPONSE:
676                 process_capture_status(sdi);
677                 break;
678         case STATE_LENGTH_RESPONSE:
679                 process_capture_length(sdi);
680                 break;
681         case STATE_READ_RESPONSE:
682                 if (process_sample_data(sdi) == SR_OK
683                                 && acq->mem_addr_next < acq->mem_addr_stop
684                                 && acq->samples_done < acq->samples_max)
685                         request_read_mem(sdi);
686                 else
687                         issue_read_end(sdi);
688                 break;
689         default:
690                 sr_err("Unexpected device state %d.", devc->state);
691                 break;
692         }
693 }
694
695 /* Initialize the LWLA.  This downloads a bitstream into the FPGA
696  * and executes a simple device test sequence.
697  */
698 SR_PRIV int lwla_init_device(const struct sr_dev_inst *sdi)
699 {
700         uint64_t value;
701         struct dev_context *devc;
702         int ret;
703
704         devc = sdi->priv;
705
706         /* Force reload of bitstream */
707         devc->cur_clock_config = CONF_CLOCK_NONE;
708
709         ret = lwla_set_clock_config(sdi);
710         if (ret != SR_OK)
711                 return ret;
712
713         ret = lwla_read_long_reg(sdi->conn, LREG_TEST_ID, &value);
714         if (ret != SR_OK)
715                 return ret;
716
717         /* Ignore the value returned by the first read */
718         ret = lwla_read_long_reg(sdi->conn, LREG_TEST_ID, &value);
719         if (ret != SR_OK)
720                 return ret;
721
722         if (value != UINT64_C(0x1234567887654321)) {
723                 sr_err("Received invalid test word 0x%016" PRIX64 ".", value);
724                 return SR_ERR;
725         }
726         return SR_OK;
727 }
728
729 /* Select the LWLA clock configuration.  If the clock source changed from
730  * the previous setting, this will download a new bitstream to the FPGA.
731  */
732 SR_PRIV int lwla_set_clock_config(const struct sr_dev_inst *sdi)
733 {
734         struct dev_context *devc;
735         struct drv_context *drvc;
736         int ret;
737         enum clock_config choice;
738
739         devc = sdi->priv;
740         drvc = sdi->driver->context;
741
742         if (sdi->status == SR_ST_INACTIVE)
743                 choice = CONF_CLOCK_NONE;
744         else if (devc->cfg_clock_source == CLOCK_INTERNAL)
745                 choice = CONF_CLOCK_INT;
746         else if (devc->cfg_clock_edge == EDGE_POSITIVE)
747                 choice = CONF_CLOCK_EXT_RISE;
748         else
749                 choice = CONF_CLOCK_EXT_FALL;
750
751         if (choice != devc->cur_clock_config) {
752                 devc->cur_clock_config = CONF_CLOCK_NONE;
753                 ret = lwla_send_bitstream(drvc->sr_ctx, sdi->conn,
754                                           bitstream_map[choice]);
755                 if (ret == SR_OK)
756                         devc->cur_clock_config = choice;
757                 return ret;
758         }
759         return SR_OK;
760 }
761
762 /* Configure the LWLA in preparation for an acquisition session.
763  */
764 SR_PRIV int lwla_setup_acquisition(const struct sr_dev_inst *sdi)
765 {
766         struct dev_context *devc;
767         struct sr_usb_dev_inst *usb;
768         struct acquisition_state *acq;
769         struct regval_pair regvals[7];
770         int ret;
771
772         devc = sdi->priv;
773         usb  = sdi->conn;
774         acq  = devc->acquisition;
775
776         if (devc->limit_msec > 0) {
777                 acq->duration_max = devc->limit_msec;
778                 sr_info("Acquisition time limit %" PRIu64 " ms.",
779                         devc->limit_msec);
780         } else
781                 acq->duration_max = MAX_LIMIT_MSEC;
782
783         if (devc->limit_samples > 0) {
784                 acq->samples_max = devc->limit_samples;
785                 sr_info("Acquisition sample count limit %" PRIu64 ".",
786                         devc->limit_samples);
787         } else
788                 acq->samples_max = MAX_LIMIT_SAMPLES;
789
790         if (devc->cfg_clock_source == CLOCK_INTERNAL) {
791                 sr_info("Internal clock, samplerate %" PRIu64 ".",
792                         devc->samplerate);
793                 if (devc->samplerate == 0)
794                         return SR_ERR_BUG;
795                 /* At 125 MHz, the clock divider is bypassed. */
796                 acq->bypass_clockdiv = (devc->samplerate > SR_MHZ(100));
797
798                 /* If only one of the limits is set, derive the other one. */
799                 if (devc->limit_msec == 0 && devc->limit_samples > 0)
800                         acq->duration_max = devc->limit_samples
801                                         * 1000 / devc->samplerate + 1;
802                 else if (devc->limit_samples == 0 && devc->limit_msec > 0)
803                         acq->samples_max = devc->limit_msec
804                                         * devc->samplerate / 1000;
805         } else {
806                 acq->bypass_clockdiv = TRUE;
807
808                 if (devc->cfg_clock_edge == EDGE_NEGATIVE)
809                         sr_info("External clock, falling edge.");
810                 else
811                         sr_info("External clock, rising edge.");
812         }
813
814         regvals[0].reg = REG_MEM_CTRL;
815         regvals[0].val = MEM_CTRL_CLR_IDX;
816
817         regvals[1].reg = REG_MEM_CTRL;
818         regvals[1].val = MEM_CTRL_WRITE;
819
820         regvals[2].reg = REG_LONG_ADDR;
821         regvals[2].val = LREG_CAP_CTRL;
822
823         regvals[3].reg = REG_LONG_LOW;
824         regvals[3].val = CAP_CTRL_CLR_TIMEBASE | CAP_CTRL_FLUSH_FIFO
825                        | CAP_CTRL_CLR_FIFOFULL | CAP_CTRL_CLR_COUNTER;
826         regvals[4].reg = REG_LONG_HIGH;
827         regvals[4].val = 0;
828
829         regvals[5].reg = REG_LONG_STROBE;
830         regvals[5].val = 0;
831
832         regvals[6].reg = REG_DIV_BYPASS;
833         regvals[6].val = acq->bypass_clockdiv;
834
835         ret = lwla_write_regs(usb, regvals, ARRAY_SIZE(regvals));
836         if (ret != SR_OK)
837                 return ret;
838
839         return capture_setup(sdi);
840 }
841
842 /* Start the capture operation on the LWLA device.  Beginning with this
843  * function, all USB transfers will be asynchronous until the end of the
844  * acquisition session.
845  */
846 SR_PRIV int lwla_start_acquisition(const struct sr_dev_inst *sdi)
847 {
848         struct dev_context *devc;
849         struct sr_usb_dev_inst *usb;
850         struct acquisition_state *acq;
851         struct regval_pair *regvals;
852
853         devc = sdi->priv;
854         usb  = sdi->conn;
855         acq  = devc->acquisition;
856
857         acq->duration_now  = 0;
858         acq->mem_addr_fill = 0;
859         acq->capture_flags = 0;
860
861         libusb_fill_bulk_transfer(acq->xfer_out, usb->devhdl, EP_COMMAND,
862                                   (unsigned char *)acq->xfer_buf_out, 0,
863                                   &receive_transfer_out,
864                                   (struct sr_dev_inst *)sdi, USB_TIMEOUT_MS);
865
866         libusb_fill_bulk_transfer(acq->xfer_in, usb->devhdl, EP_REPLY,
867                                   (unsigned char *)acq->xfer_buf_in,
868                                   sizeof acq->xfer_buf_in,
869                                   &receive_transfer_in,
870                                   (struct sr_dev_inst *)sdi, USB_TIMEOUT_MS);
871
872         regvals = devc->reg_write_seq;
873
874         regvals[0].reg = REG_LONG_ADDR;
875         regvals[0].val = LREG_CAP_CTRL;
876
877         regvals[1].reg = REG_LONG_LOW;
878         regvals[1].val = CAP_CTRL_TRG_EN;
879
880         regvals[2].reg = REG_LONG_HIGH;
881         regvals[2].val = 0;
882
883         regvals[3].reg = REG_LONG_STROBE;
884         regvals[3].val = 0;
885
886         devc->reg_write_pos = 0;
887         devc->reg_write_len = 4;
888
889         devc->state = STATE_START_CAPTURE;
890
891         return issue_next_write_reg(sdi);
892 }
893
894 /* Allocate an acquisition state object.
895  */
896 SR_PRIV struct acquisition_state *lwla_alloc_acquisition_state(void)
897 {
898         struct acquisition_state *acq;
899
900         acq = g_malloc0(sizeof(struct acquisition_state));
901
902         acq->xfer_in = libusb_alloc_transfer(0);
903         if (!acq->xfer_in) {
904                 sr_err("Transfer malloc failed.");
905                 g_free(acq);
906                 return NULL;
907         }
908
909         acq->xfer_out = libusb_alloc_transfer(0);
910         if (!acq->xfer_out) {
911                 sr_err("Transfer malloc failed.");
912                 libusb_free_transfer(acq->xfer_in);
913                 g_free(acq);
914                 return NULL;
915         }
916
917         return acq;
918 }
919
920 /* Deallocate an acquisition state object.
921  */
922 SR_PRIV void lwla_free_acquisition_state(struct acquisition_state *acq)
923 {
924         if (acq) {
925                 libusb_free_transfer(acq->xfer_out);
926                 libusb_free_transfer(acq->xfer_in);
927                 g_free(acq);
928         }
929 }
930
931 /* USB I/O source callback.
932  */
933 SR_PRIV int lwla_receive_data(int fd, int revents, void *cb_data)
934 {
935         struct sr_dev_inst *sdi;
936         struct dev_context *devc;
937         struct drv_context *drvc;
938         struct timeval tv;
939         int ret;
940
941         (void)fd;
942
943         sdi  = cb_data;
944         devc = sdi->priv;
945         drvc = sdi->driver->context;
946
947         if (!devc || !drvc)
948                 return FALSE;
949
950         /* No timeout: return immediately. */
951         tv.tv_sec  = 0;
952         tv.tv_usec = 0;
953
954         ret = libusb_handle_events_timeout_completed(drvc->sr_ctx->libusb_ctx,
955                                                      &tv, NULL);
956         if (ret != 0)
957                 sr_err("Event handling failed: %s.", libusb_error_name(ret));
958
959         /* If no event flags are set the timeout must have expired. */
960         if (revents == 0 && devc->state == STATE_STATUS_WAIT) {
961                 if (devc->cancel_requested)
962                         issue_stop_capture(sdi);
963                 else
964                         request_capture_status(sdi);
965         }
966
967         /* Check if an error occurred on a transfer. */
968         if (devc->transfer_error)
969                 end_acquisition(sdi);
970
971         return TRUE;
972 }