]> sigrok.org Git - libsigrok.git/blob - src/hardware/sysclk-lwla/protocol.c
windows: Fix various compiler warnings.
[libsigrok.git] / src / hardware / sysclk-lwla / protocol.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2014 Daniel Elstner <daniel.kitta@gmail.com>
5  *
6  * This program is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <string.h>
21 #include "protocol.h"
22
23 /* Bit mask for the RLE repeat-count-follows flag. */
24 #define RLE_FLAG_LEN_FOLLOWS ((uint64_t)1 << 35)
25
26 /* Start address of capture status memory area to read. */
27 #define CAP_STAT_ADDR 5
28
29 /* Number of 64-bit words read from the capture status memory. */
30 #define CAP_STAT_LEN 5
31
32 /* The bitstream filenames are indexed by the clock_config enumeration.
33  */
34 static const char bitstream_map[][32] = {
35         "sysclk-lwla1034-off.rbf",
36         "sysclk-lwla1034-int.rbf",
37         "sysclk-lwla1034-extpos.rbf",
38         "sysclk-lwla1034-extneg.rbf",
39 };
40
41 /* Submit an already filled-in USB transfer.
42  */
43 static int submit_transfer(struct dev_context *devc,
44                            struct libusb_transfer *xfer)
45 {
46         int ret;
47
48         ret = libusb_submit_transfer(xfer);
49
50         if (ret != 0) {
51                 sr_err("Submit transfer failed: %s.", libusb_error_name(ret));
52                 devc->transfer_error = TRUE;
53                 return SR_ERR;
54         }
55
56         return SR_OK;
57 }
58
59 /* Set up the LWLA in preparation for an acquisition session.
60  */
61 static int capture_setup(const struct sr_dev_inst *sdi)
62 {
63         struct dev_context *devc;
64         struct acquisition_state *acq;
65         uint64_t divider_count;
66         uint64_t trigger_mask;
67         uint64_t memory_limit;
68         uint16_t command[3 + (10 * 4)];
69
70         devc = sdi->priv;
71         acq  = devc->acquisition;
72
73         command[0] = LWLA_WORD(CMD_CAP_SETUP);
74         command[1] = LWLA_WORD(0); /* address */
75         command[2] = LWLA_WORD(10); /* length */
76
77         command[3] = LWLA_WORD_0(devc->channel_mask);
78         command[4] = LWLA_WORD_1(devc->channel_mask);
79         command[5] = LWLA_WORD_2(devc->channel_mask);
80         command[6] = LWLA_WORD_3(devc->channel_mask);
81
82         /* Set the clock divide counter maximum for samplerates of up to
83          * 100 MHz. At the highest samplerate of 125 MHz the clock divider
84          * is bypassed.
85          */
86         if (!acq->bypass_clockdiv && devc->samplerate > 0)
87                 divider_count = SR_MHZ(100) / devc->samplerate - 1;
88         else
89                 divider_count = 0;
90
91         command[7]  = LWLA_WORD_0(divider_count);
92         command[8]  = LWLA_WORD_1(divider_count);
93         command[9]  = LWLA_WORD_2(divider_count);
94         command[10] = LWLA_WORD_3(divider_count);
95
96         command[11] = LWLA_WORD_0(devc->trigger_values);
97         command[12] = LWLA_WORD_1(devc->trigger_values);
98         command[13] = LWLA_WORD_2(devc->trigger_values);
99         command[14] = LWLA_WORD_3(devc->trigger_values);
100
101         command[15] = LWLA_WORD_0(devc->trigger_edge_mask);
102         command[16] = LWLA_WORD_1(devc->trigger_edge_mask);
103         command[17] = LWLA_WORD_2(devc->trigger_edge_mask);
104         command[18] = LWLA_WORD_3(devc->trigger_edge_mask);
105
106         trigger_mask = devc->trigger_mask;
107         /* Set bits to select external TRG input edge. */
108         if (devc->cfg_trigger_source == TRIGGER_EXT_TRG)
109                 switch (devc->cfg_trigger_slope) {
110                 case EDGE_POSITIVE:
111                         trigger_mask |= (uint64_t)1 << 35;
112                         break; 
113                 case EDGE_NEGATIVE:
114                         trigger_mask |= (uint64_t)1 << 34;
115                         break; 
116                 }
117
118         command[19] = LWLA_WORD_0(trigger_mask);
119         command[20] = LWLA_WORD_1(trigger_mask);
120         command[21] = LWLA_WORD_2(trigger_mask);
121         command[22] = LWLA_WORD_3(trigger_mask);
122
123         /* Set the capture memory full threshold. This is slightly less
124          * than the actual maximum, most likely in order to compensate for
125          * pipeline latency.
126          */
127         memory_limit = MEMORY_DEPTH - 16;
128
129         command[23] = LWLA_WORD_0(memory_limit);
130         command[24] = LWLA_WORD_1(memory_limit);
131         command[25] = LWLA_WORD_2(memory_limit);
132         command[26] = LWLA_WORD_3(memory_limit);
133
134         /* Fill remaining 64-bit words with zeroes. */
135         memset(&command[27], 0, 16 * sizeof(uint16_t));
136
137         return lwla_send_command(sdi->conn, command, ARRAY_SIZE(command));
138 }
139
140 /* Issue a register write command as an asynchronous USB transfer.
141  */
142 static int issue_write_reg(const struct sr_dev_inst *sdi,
143                            unsigned int reg, unsigned int value)
144 {
145         struct dev_context *devc;
146         struct acquisition_state *acq;
147
148         devc = sdi->priv;
149         acq  = devc->acquisition;
150
151         acq->xfer_buf_out[0] = LWLA_WORD(CMD_WRITE_REG);
152         acq->xfer_buf_out[1] = LWLA_WORD(reg);
153         acq->xfer_buf_out[2] = LWLA_WORD_0(value);
154         acq->xfer_buf_out[3] = LWLA_WORD_1(value);
155
156         acq->xfer_out->length = 4 * sizeof(uint16_t);
157
158         return submit_transfer(devc, acq->xfer_out);
159 }
160
161 /* Issue a register write command as an asynchronous USB transfer for the
162  * next register/value pair of the currently active register write sequence.
163  */
164 static int issue_next_write_reg(const struct sr_dev_inst *sdi)
165 {
166         struct dev_context *devc;
167         struct regval_pair *regval;
168         int ret;
169
170         devc = sdi->priv;
171
172         if (devc->reg_write_pos >= devc->reg_write_len) {
173                 sr_err("Already written all registers in sequence.");
174                 return SR_ERR_BUG;
175         }
176         regval = &devc->reg_write_seq[devc->reg_write_pos];
177
178         ret = issue_write_reg(sdi, regval->reg, regval->val);
179         if (ret != SR_OK)
180                 return ret;
181
182         ++devc->reg_write_pos;
183         return SR_OK;
184 }
185
186 /* Issue a capture status request as an asynchronous USB transfer.
187  */
188 static void request_capture_status(const struct sr_dev_inst *sdi)
189 {
190         struct dev_context *devc;
191         struct acquisition_state *acq;
192
193         devc = sdi->priv;
194         acq  = devc->acquisition;
195
196         acq->xfer_buf_out[0] = LWLA_WORD(CMD_CAP_STATUS);
197         acq->xfer_buf_out[1] = LWLA_WORD(CAP_STAT_ADDR);
198         acq->xfer_buf_out[2] = LWLA_WORD(CAP_STAT_LEN);
199
200         acq->xfer_out->length = 3 * sizeof(uint16_t);
201
202         if (submit_transfer(devc, acq->xfer_out) == SR_OK)
203                 devc->state = STATE_STATUS_REQUEST;
204 }
205
206 /* Issue a request for the capture buffer fill level as
207  * an asynchronous USB transfer.
208  */
209 static void request_capture_length(const struct sr_dev_inst *sdi)
210 {
211         struct dev_context *devc;
212         struct acquisition_state *acq;
213
214         devc = sdi->priv;
215         acq  = devc->acquisition;
216
217         acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_REG);
218         acq->xfer_buf_out[1] = LWLA_WORD(REG_MEM_FILL);
219
220         acq->xfer_out->length = 2 * sizeof(uint16_t);
221
222         if (submit_transfer(devc, acq->xfer_out) == SR_OK)
223                 devc->state = STATE_LENGTH_REQUEST;
224 }
225
226 /* Initiate the capture memory read operation:  Reset the acquisition state
227  * and start a sequence of register writes in order to set up the device for
228  * reading from the capture buffer.
229  */
230 static void issue_read_start(const struct sr_dev_inst *sdi)
231 {
232         struct dev_context *devc;
233         struct acquisition_state *acq;
234         struct regval_pair *regvals;
235
236         devc = sdi->priv;
237         acq  = devc->acquisition;
238
239         /* Reset RLE state. */
240         acq->rle = RLE_STATE_DATA;
241         acq->sample  = 0;
242         acq->run_len = 0;
243
244         acq->samples_done = 0;
245
246         /* For some reason, the start address is 4 rather than 0. */
247         acq->mem_addr_done = 4;
248         acq->mem_addr_next = 4;
249         acq->mem_addr_stop = acq->mem_addr_fill;
250
251         /* Sample position in the packet output buffer. */
252         acq->out_index = 0;
253
254         regvals = devc->reg_write_seq;
255
256         regvals[0].reg = REG_DIV_BYPASS;
257         regvals[0].val = 1;
258
259         regvals[1].reg = REG_MEM_CTRL2;
260         regvals[1].val = 2;
261
262         regvals[2].reg = REG_MEM_CTRL4;
263         regvals[2].val = 4;
264
265         devc->reg_write_pos = 0;
266         devc->reg_write_len = 3;
267
268         if (issue_next_write_reg(sdi) == SR_OK)
269                 devc->state = STATE_READ_PREPARE;
270 }
271
272 /* Issue a command as an asynchronous USB transfer which returns the device
273  * to normal state after a read operation.  Sets a new device context state
274  * on success.
275  */
276 static void issue_read_end(const struct sr_dev_inst *sdi)
277 {
278         struct dev_context *devc;
279
280         devc = sdi->priv;
281
282         if (issue_write_reg(sdi, REG_DIV_BYPASS, 0) == SR_OK)
283                 devc->state = STATE_READ_END;
284 }
285
286 /* Decode an incoming response to a buffer fill level request and act on it
287  * as appropriate.  Note that this function changes the device context state.
288  */
289 static void process_capture_length(const struct sr_dev_inst *sdi)
290 {
291         struct dev_context *devc;
292         struct acquisition_state *acq;
293
294         devc = sdi->priv;
295         acq  = devc->acquisition;
296
297         if (acq->xfer_in->actual_length != 4) {
298                 sr_err("Received size %d doesn't match expected size 4.",
299                        acq->xfer_in->actual_length);
300                 devc->transfer_error = TRUE;
301                 return;
302         }
303         acq->mem_addr_fill = LWLA_TO_UINT32(acq->xfer_buf_in[0]);
304
305         sr_dbg("%zu words in capture buffer.", acq->mem_addr_fill);
306
307         if (acq->mem_addr_fill > 0 && sdi->status == SR_ST_ACTIVE)
308                 issue_read_start(sdi);
309         else
310                 issue_read_end(sdi);
311 }
312
313 /* Initiate a sequence of register write commands with the effect of
314  * cancelling a running capture operation.  This sets a new device state
315  * if issuing the first command succeeds.
316  */
317 static void issue_stop_capture(const struct sr_dev_inst *sdi)
318 {
319         struct dev_context *devc;
320         struct regval_pair *regvals;
321
322         devc = sdi->priv;
323
324         if (devc->stopping_in_progress)
325                 return;
326
327         regvals = devc->reg_write_seq;
328
329         regvals[0].reg = REG_CMD_CTRL2;
330         regvals[0].val = 10;
331
332         regvals[1].reg = REG_CMD_CTRL3;
333         regvals[1].val = 0;
334
335         regvals[2].reg = REG_CMD_CTRL4;
336         regvals[2].val = 0;
337
338         regvals[3].reg = REG_CMD_CTRL1;
339         regvals[3].val = 0;
340
341         regvals[4].reg = REG_DIV_BYPASS;
342         regvals[4].val = 0;
343
344         devc->reg_write_pos = 0;
345         devc->reg_write_len = 5;
346
347         if (issue_next_write_reg(sdi) == SR_OK) {
348                 devc->stopping_in_progress = TRUE;
349                 devc->state = STATE_STOP_CAPTURE;
350         }
351 }
352
353 /* Decode an incoming capture status response and act on it as appropriate.
354  * Note that this function changes the device state.
355  */
356 static void process_capture_status(const struct sr_dev_inst *sdi)
357 {
358         uint64_t duration;
359         struct dev_context *devc;
360         struct acquisition_state *acq;
361         unsigned int mem_fill;
362         unsigned int flags;
363
364         devc = sdi->priv;
365         acq  = devc->acquisition;
366
367         if (acq->xfer_in->actual_length != CAP_STAT_LEN * 8) {
368                 sr_err("Received size %d doesn't match expected size %d.",
369                        acq->xfer_in->actual_length, CAP_STAT_LEN * 8);
370                 devc->transfer_error = TRUE;
371                 return;
372         }
373
374         /* TODO: Find out the actual bit width of these fields as stored
375          * in the FPGA.  These fields are definitely less than 64 bit wide
376          * internally, and the unused bits occasionally even contain garbage.
377          */
378         mem_fill = LWLA_TO_UINT32(acq->xfer_buf_in[0]);
379         duration = LWLA_TO_UINT32(acq->xfer_buf_in[4]);
380         flags    = LWLA_TO_UINT32(acq->xfer_buf_in[8]) & STATUS_FLAG_MASK;
381
382         /* The LWLA1034 runs at 125 MHz if the clock divider is bypassed.
383          * However, the time base used for the duration is apparently not
384          * adjusted for this "boost" mode.  Whereas normally the duration
385          * unit is 1 ms, it is 0.8 ms when the clock divider is bypassed.
386          * As 0.8 = 100 MHz / 125 MHz, it seems that the internal cycle
387          * counter period is the same as at the 100 MHz setting.
388          */
389         if (acq->bypass_clockdiv)
390                 acq->duration_now = duration * 4 / 5;
391         else
392                 acq->duration_now = duration;
393
394         sr_spew("Captured %u words, %" PRIu64 " ms, flags 0x%02X.",
395                 mem_fill, acq->duration_now, flags);
396
397         if ((flags & STATUS_TRIGGERED) > (acq->capture_flags & STATUS_TRIGGERED))
398                 sr_info("Capture triggered.");
399
400         acq->capture_flags = flags;
401
402         if (acq->duration_now >= acq->duration_max) {
403                 sr_dbg("Time limit reached, stopping capture.");
404                 issue_stop_capture(sdi);
405                 return;
406         }
407         devc->state = STATE_STATUS_WAIT;
408
409         if ((acq->capture_flags & STATUS_TRIGGERED) == 0) {
410                 sr_spew("Waiting for trigger.");
411         } else if ((acq->capture_flags & STATUS_MEM_AVAIL) == 0) {
412                 sr_dbg("Capture memory filled.");
413                 request_capture_length(sdi);
414         } else if ((acq->capture_flags & STATUS_CAPTURING) != 0) {
415                 sr_spew("Sampling in progress.");
416         }
417 }
418
419 /* Issue a capture buffer read request as an asynchronous USB transfer.
420  * The address and size of the memory area to read are derived from the
421  * current acquisition state.
422  */
423 static void request_read_mem(const struct sr_dev_inst *sdi)
424 {
425         struct dev_context *devc;
426         struct acquisition_state *acq;
427         size_t count;
428
429         devc = sdi->priv;
430         acq  = devc->acquisition;
431
432         if (acq->mem_addr_next >= acq->mem_addr_stop)
433                 return;
434
435         /* Always read a multiple of 8 device words. */
436         count = (acq->mem_addr_stop - acq->mem_addr_next + 7) / 8 * 8;
437         count = MIN(count, READ_CHUNK_LEN);
438
439         acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_MEM);
440         acq->xfer_buf_out[1] = LWLA_WORD_0(acq->mem_addr_next);
441         acq->xfer_buf_out[2] = LWLA_WORD_1(acq->mem_addr_next);
442         acq->xfer_buf_out[3] = LWLA_WORD_0(count);
443         acq->xfer_buf_out[4] = LWLA_WORD_1(count);
444
445         acq->xfer_out->length = 5 * sizeof(uint16_t);
446
447         if (submit_transfer(devc, acq->xfer_out) == SR_OK) {
448                 acq->mem_addr_next += count;
449                 devc->state = STATE_READ_REQUEST;
450         }
451 }
452
453 /* Demangle and decompress incoming sample data from the capture buffer.
454  * The data chunk is taken from the acquisition state, and is expected to
455  * contain a multiple of 8 device words.
456  * All data currently in the acquisition buffer will be processed.  Packets
457  * of decoded samples are sent off to the session bus whenever the output
458  * buffer becomes full while decoding.
459  */
460 static int process_sample_data(const struct sr_dev_inst *sdi)
461 {
462         uint64_t sample;
463         uint64_t high_nibbles;
464         uint64_t word;
465         struct dev_context *devc;
466         struct acquisition_state *acq;
467         uint8_t *out_p;
468         uint32_t *slice;
469         struct sr_datafeed_packet packet;
470         struct sr_datafeed_logic logic;
471         size_t expect_len;
472         size_t actual_len;
473         size_t out_max_samples;
474         size_t out_run_samples;
475         size_t ri;
476         size_t in_words_left;
477         size_t si;
478
479         devc = sdi->priv;
480         acq  = devc->acquisition;
481
482         if (acq->mem_addr_done >= acq->mem_addr_stop
483                         || acq->samples_done >= acq->samples_max)
484                 return SR_OK;
485
486         in_words_left = MIN(acq->mem_addr_stop - acq->mem_addr_done,
487                             READ_CHUNK_LEN);
488         expect_len = LWLA1034_MEMBUF_LEN(in_words_left) * sizeof(uint32_t);
489         actual_len = acq->xfer_in->actual_length;
490
491         if (actual_len != expect_len) {
492                 sr_err("Received size %zu does not match expected size %zu.",
493                        actual_len, expect_len);
494                 devc->transfer_error = TRUE;
495                 return SR_ERR;
496         }
497         acq->mem_addr_done += in_words_left;
498
499         /* Prepare session packet. */
500         packet.type    = SR_DF_LOGIC;
501         packet.payload = &logic;
502         logic.unitsize = UNIT_SIZE;
503         logic.data     = acq->out_packet;
504
505         slice = acq->xfer_buf_in;
506         si = 0; /* word index within slice */
507
508         for (;;) {
509                 /* Calculate number of samples to write into packet. */
510                 out_max_samples = MIN(acq->samples_max - acq->samples_done,
511                                       PACKET_LENGTH - acq->out_index);
512                 out_run_samples = MIN(acq->run_len, out_max_samples);
513
514                 /* Expand run-length samples into session packet. */
515                 sample = acq->sample;
516                 out_p = &acq->out_packet[acq->out_index * UNIT_SIZE];
517
518                 for (ri = 0; ri < out_run_samples; ++ri) {
519                         out_p[0] =  sample        & 0xFF;
520                         out_p[1] = (sample >>  8) & 0xFF;
521                         out_p[2] = (sample >> 16) & 0xFF;
522                         out_p[3] = (sample >> 24) & 0xFF;
523                         out_p[4] = (sample >> 32) & 0xFF;
524                         out_p += UNIT_SIZE;
525                 }
526                 acq->run_len -= out_run_samples;
527                 acq->out_index += out_run_samples;
528                 acq->samples_done += out_run_samples;
529
530                 /* Packet full or sample count limit reached? */
531                 if (out_run_samples == out_max_samples) {
532                         logic.length = acq->out_index * UNIT_SIZE;
533                         sr_session_send(sdi, &packet);
534                         acq->out_index = 0;
535
536                         if (acq->samples_done >= acq->samples_max)
537                                 return SR_OK; /* sample limit reached */
538                         if (acq->run_len > 0)
539                                 continue; /* need another packet */
540                 }
541
542                 if (in_words_left == 0)
543                         break; /* done with current chunk */
544
545                 /* Now work on the current slice. */
546                 high_nibbles = LWLA_TO_UINT32(slice[8]);
547                 word = LWLA_TO_UINT32(slice[si]);
548                 word |= (high_nibbles << (4 * si + 4)) & ((uint64_t)0xF << 32);
549
550                 if (acq->rle == RLE_STATE_DATA) {
551                         acq->sample = word & ALL_CHANNELS_MASK;
552                         acq->run_len = ((word >> NUM_CHANNELS) & 1) + 1;
553                         if (word & RLE_FLAG_LEN_FOLLOWS)
554                                 acq->rle = RLE_STATE_LEN;
555                 } else {
556                         acq->run_len += word << 1;
557                         acq->rle = RLE_STATE_DATA;
558                 }
559
560                 /* Move to next word. */
561                 si = (si + 1) % 8;
562                 if (si == 0)
563                         slice += 9;
564                 --in_words_left;
565         }
566
567         /* Send out partially filled packet if this was the last chunk. */
568         if (acq->mem_addr_done >= acq->mem_addr_stop && acq->out_index > 0) {
569                 logic.length = acq->out_index * UNIT_SIZE;
570                 sr_session_send(sdi, &packet);
571                 acq->out_index = 0;
572         }
573         return SR_OK;
574 }
575
576 /* Finish an acquisition session.  This sends the end packet to the session
577  * bus and removes the listener for asynchronous USB transfers.
578  */
579 static void end_acquisition(struct sr_dev_inst *sdi)
580 {
581         struct drv_context *drvc;
582         struct dev_context *devc;
583         struct sr_datafeed_packet packet;
584
585         drvc = sdi->driver->priv;
586         devc = sdi->priv;
587
588         if (devc->state == STATE_IDLE)
589                 return;
590
591         devc->state = STATE_IDLE;
592
593         /* Remove USB file descriptors from polling. */
594         usb_source_remove(sdi->session, drvc->sr_ctx);
595
596         packet.type = SR_DF_END;
597         sr_session_send(sdi, &packet);
598
599         lwla_free_acquisition_state(devc->acquisition);
600         devc->acquisition = NULL;
601
602         sdi->status = SR_ST_ACTIVE;
603 }
604
605 /* USB output transfer completion callback.
606  */
607 static void LIBUSB_CALL receive_transfer_out(struct libusb_transfer *transfer)
608 {
609         struct sr_dev_inst *sdi;
610         struct dev_context *devc;
611
612         sdi  = transfer->user_data;
613         devc = sdi->priv;
614
615         if (transfer->status != LIBUSB_TRANSFER_COMPLETED) {
616                 sr_err("Transfer to device failed: %d.", transfer->status);
617                 devc->transfer_error = TRUE;
618                 return;
619         }
620
621         if (devc->reg_write_pos < devc->reg_write_len) {
622                 issue_next_write_reg(sdi);
623         } else {
624                 switch (devc->state) {
625                 case STATE_START_CAPTURE:
626                         devc->state = STATE_STATUS_WAIT;
627                         break;
628                 case STATE_STATUS_REQUEST:
629                         devc->state = STATE_STATUS_RESPONSE;
630                         submit_transfer(devc, devc->acquisition->xfer_in);
631                         break;
632                 case STATE_STOP_CAPTURE:
633                         if (sdi->status == SR_ST_ACTIVE)
634                                 request_capture_length(sdi);
635                         else
636                                 end_acquisition(sdi);
637                         break;
638                 case STATE_LENGTH_REQUEST:
639                         devc->state = STATE_LENGTH_RESPONSE;
640                         submit_transfer(devc, devc->acquisition->xfer_in);
641                         break;
642                 case STATE_READ_PREPARE:
643                         request_read_mem(sdi);
644                         break;
645                 case STATE_READ_REQUEST:
646                         devc->state = STATE_READ_RESPONSE;
647                         submit_transfer(devc, devc->acquisition->xfer_in);
648                         break;
649                 case STATE_READ_END:
650                         end_acquisition(sdi);
651                         break;
652                 default:
653                         sr_err("Unexpected device state %d.", devc->state);
654                         break;
655                 }
656         }
657 }
658
659 /* USB input transfer completion callback.
660  */
661 static void LIBUSB_CALL receive_transfer_in(struct libusb_transfer *transfer)
662 {
663         struct sr_dev_inst *sdi;
664         struct dev_context *devc;
665         struct acquisition_state *acq;
666
667         sdi  = transfer->user_data;
668         devc = sdi->priv;
669         acq  = devc->acquisition;
670
671         if (transfer->status != LIBUSB_TRANSFER_COMPLETED) {
672                 sr_err("Transfer from device failed: %d.", transfer->status);
673                 devc->transfer_error = TRUE;
674                 return;
675         }
676
677         switch (devc->state) {
678         case STATE_STATUS_RESPONSE:
679                 process_capture_status(sdi);
680                 break;
681         case STATE_LENGTH_RESPONSE:
682                 process_capture_length(sdi);
683                 break;
684         case STATE_READ_RESPONSE:
685                 if (process_sample_data(sdi) == SR_OK
686                                 && acq->mem_addr_next < acq->mem_addr_stop
687                                 && acq->samples_done < acq->samples_max)
688                         request_read_mem(sdi);
689                 else
690                         issue_read_end(sdi);
691                 break;
692         default:
693                 sr_err("Unexpected device state %d.", devc->state);
694                 break;
695         }
696 }
697
698 /* Initialize the LWLA.  This downloads a bitstream into the FPGA
699  * and executes a simple device test sequence.
700  */
701 SR_PRIV int lwla_init_device(const struct sr_dev_inst *sdi)
702 {
703         struct dev_context *devc;
704         int ret;
705         uint32_t value;
706
707         devc = sdi->priv;
708
709         /* Force reload of bitstream */
710         devc->cur_clock_config = CONF_CLOCK_NONE;
711
712         ret = lwla_set_clock_config(sdi);
713
714         if (ret != SR_OK)
715                 return ret;
716
717         ret = lwla_write_reg(sdi->conn, REG_CMD_CTRL2, 100);
718         if (ret != SR_OK)
719                 return ret;
720
721         ret = lwla_read_reg(sdi->conn, REG_CMD_CTRL1, &value);
722         if (ret != SR_OK)
723                 return ret;
724         sr_dbg("Received test word 0x%08X back.", value);
725         if (value != 0x12345678)
726                 return SR_ERR;
727
728         ret = lwla_read_reg(sdi->conn, REG_CMD_CTRL4, &value);
729         if (ret != SR_OK)
730                 return ret;
731         sr_dbg("Received test word 0x%08X back.", value);
732         if (value != 0x12345678)
733                 return SR_ERR;
734
735         ret = lwla_read_reg(sdi->conn, REG_CMD_CTRL3, &value);
736         if (ret != SR_OK)
737                 return ret;
738         sr_dbg("Received test word 0x%08X back.", value);
739         if (value != 0x87654321)
740                 return SR_ERR;
741
742         return ret;
743 }
744
745 SR_PRIV int lwla_convert_trigger(const struct sr_dev_inst *sdi)
746 {
747         struct dev_context *devc;
748         struct sr_trigger *trigger;
749         struct sr_trigger_stage *stage;
750         struct sr_trigger_match *match;
751         const GSList *l, *m;
752         uint64_t channel_index;
753
754         devc = sdi->priv;
755
756         devc->trigger_mask = 0;
757         devc->trigger_values = 0;
758         devc->trigger_edge_mask = 0;
759
760         if (!(trigger = sr_session_trigger_get(sdi->session)))
761                 return SR_OK;
762
763         if (g_slist_length(trigger->stages) > 1) {
764                 sr_err("This device only supports 1 trigger stage.");
765                 return SR_ERR;
766         }
767
768         for (l = trigger->stages; l; l = l->next) {
769                 stage = l->data;
770                 for (m = stage->matches; m; m = m->next) {
771                         match = m->data;
772                         if (!match->channel->enabled)
773                                 /* Ignore disabled channels with a trigger. */
774                                 continue;
775                         channel_index = (uint64_t)1 << match->channel->index;
776                         devc->trigger_mask |= channel_index;
777                         switch (match->match) {
778                         case SR_TRIGGER_ONE:
779                                 devc->trigger_values |= channel_index;
780                                 break;
781                         case SR_TRIGGER_RISING:
782                                 devc->trigger_values |= channel_index;
783                                 /* Fall through for edge mask. */
784                         case SR_TRIGGER_FALLING:
785                                 devc->trigger_edge_mask |= channel_index;
786                                 break;
787                         }
788                 }
789         }
790
791         return SR_OK;
792 }
793
794 /* Select the LWLA clock configuration.  If the clock source changed from
795  * the previous setting, this will download a new bitstream to the FPGA.
796  */
797 SR_PRIV int lwla_set_clock_config(const struct sr_dev_inst *sdi)
798 {
799         struct dev_context *devc;
800         int ret;
801         enum clock_config choice;
802
803         devc = sdi->priv;
804
805         if (sdi->status == SR_ST_INACTIVE)
806                 choice = CONF_CLOCK_NONE;
807         else if (devc->cfg_clock_source == CLOCK_INTERNAL)
808                 choice = CONF_CLOCK_INT;
809         else if (devc->cfg_clock_edge == EDGE_POSITIVE)
810                 choice = CONF_CLOCK_EXT_RISE;
811         else
812                 choice = CONF_CLOCK_EXT_FALL;
813
814         if (choice != devc->cur_clock_config) {
815                 devc->cur_clock_config = CONF_CLOCK_NONE;
816                 ret = lwla_send_bitstream(sdi->conn, bitstream_map[choice]);
817                 if (ret == SR_OK)
818                         devc->cur_clock_config = choice;
819                 return ret;
820         }
821         return SR_OK;
822 }
823
824 /* Configure the LWLA in preparation for an acquisition session.
825  */
826 SR_PRIV int lwla_setup_acquisition(const struct sr_dev_inst *sdi)
827 {
828         struct dev_context *devc;
829         struct sr_usb_dev_inst *usb;
830         struct acquisition_state *acq;
831         struct regval_pair regvals[7];
832         int ret;
833
834         devc = sdi->priv;
835         usb  = sdi->conn;
836         acq  = devc->acquisition;
837
838         if (devc->limit_msec > 0) {
839                 acq->duration_max = devc->limit_msec;
840                 sr_info("Acquisition time limit %" PRIu64 " ms.",
841                         devc->limit_msec);
842         } else
843                 acq->duration_max = MAX_LIMIT_MSEC;
844
845         if (devc->limit_samples > 0) {
846                 acq->samples_max = devc->limit_samples;
847                 sr_info("Acquisition sample count limit %" PRIu64 ".",
848                         devc->limit_samples);
849         } else
850                 acq->samples_max = MAX_LIMIT_SAMPLES;
851
852         if (devc->cfg_clock_source == CLOCK_INTERNAL) {
853                 sr_info("Internal clock, samplerate %" PRIu64 ".",
854                         devc->samplerate);
855                 if (devc->samplerate == 0)
856                         return SR_ERR_BUG;
857                 /* At 125 MHz, the clock divider is bypassed. */
858                 acq->bypass_clockdiv = (devc->samplerate > SR_MHZ(100));
859
860                 /* If only one of the limits is set, derive the other one. */
861                 if (devc->limit_msec == 0 && devc->limit_samples > 0)
862                         acq->duration_max = devc->limit_samples
863                                         * 1000 / devc->samplerate + 1;
864                 else if (devc->limit_samples == 0 && devc->limit_msec > 0)
865                         acq->samples_max = devc->limit_msec
866                                         * devc->samplerate / 1000;
867         } else {
868                 acq->bypass_clockdiv = TRUE;
869
870                 if (devc->cfg_clock_edge == EDGE_NEGATIVE)
871                         sr_info("External clock, falling edge.");
872                 else
873                         sr_info("External clock, rising edge.");
874         }
875
876         regvals[0].reg = REG_MEM_CTRL2;
877         regvals[0].val = 2;
878
879         regvals[1].reg = REG_MEM_CTRL2;
880         regvals[1].val = 1;
881
882         regvals[2].reg = REG_CMD_CTRL2;
883         regvals[2].val = 10;
884
885         regvals[3].reg = REG_CMD_CTRL3;
886         regvals[3].val = 0x74;
887
888         regvals[4].reg = REG_CMD_CTRL4;
889         regvals[4].val = 0;
890
891         regvals[5].reg = REG_CMD_CTRL1;
892         regvals[5].val = 0;
893
894         regvals[6].reg = REG_DIV_BYPASS;
895         regvals[6].val = acq->bypass_clockdiv;
896
897         ret = lwla_write_regs(usb, regvals, ARRAY_SIZE(regvals));
898         if (ret != SR_OK)
899                 return ret;
900
901         return capture_setup(sdi);
902 }
903
904 /* Start the capture operation on the LWLA device.  Beginning with this
905  * function, all USB transfers will be asynchronous until the end of the
906  * acquisition session.
907  */
908 SR_PRIV int lwla_start_acquisition(const struct sr_dev_inst *sdi)
909 {
910         struct dev_context *devc;
911         struct sr_usb_dev_inst *usb;
912         struct acquisition_state *acq;
913         struct regval_pair *regvals;
914
915         devc = sdi->priv;
916         usb  = sdi->conn;
917         acq  = devc->acquisition;
918
919         acq->duration_now  = 0;
920         acq->mem_addr_fill = 0;
921         acq->capture_flags = 0;
922
923         libusb_fill_bulk_transfer(acq->xfer_out, usb->devhdl, EP_COMMAND,
924                                   (unsigned char *)acq->xfer_buf_out, 0,
925                                   &receive_transfer_out,
926                                   (struct sr_dev_inst *)sdi, USB_TIMEOUT_MS);
927
928         libusb_fill_bulk_transfer(acq->xfer_in, usb->devhdl, EP_REPLY,
929                                   (unsigned char *)acq->xfer_buf_in,
930                                   sizeof acq->xfer_buf_in,
931                                   &receive_transfer_in,
932                                   (struct sr_dev_inst *)sdi, USB_TIMEOUT_MS);
933
934         regvals = devc->reg_write_seq;
935
936         regvals[0].reg = REG_CMD_CTRL2;
937         regvals[0].val = 10;
938
939         regvals[1].reg = REG_CMD_CTRL3;
940         regvals[1].val = 1;
941
942         regvals[2].reg = REG_CMD_CTRL4;
943         regvals[2].val = 0;
944
945         regvals[3].reg = REG_CMD_CTRL1;
946         regvals[3].val = 0;
947
948         devc->reg_write_pos = 0;
949         devc->reg_write_len = 4;
950
951         devc->state = STATE_START_CAPTURE;
952
953         return issue_next_write_reg(sdi);
954 }
955
956 /* Allocate an acquisition state object.
957  */
958 SR_PRIV struct acquisition_state *lwla_alloc_acquisition_state(void)
959 {
960         struct acquisition_state *acq;
961
962         acq = g_malloc0(sizeof(struct acquisition_state));
963
964         acq->xfer_in = libusb_alloc_transfer(0);
965         if (!acq->xfer_in) {
966                 sr_err("Transfer malloc failed.");
967                 g_free(acq);
968                 return NULL;
969         }
970
971         acq->xfer_out = libusb_alloc_transfer(0);
972         if (!acq->xfer_out) {
973                 sr_err("Transfer malloc failed.");
974                 libusb_free_transfer(acq->xfer_in);
975                 g_free(acq);
976                 return NULL;
977         }
978
979         return acq;
980 }
981
982 /* Deallocate an acquisition state object.
983  */
984 SR_PRIV void lwla_free_acquisition_state(struct acquisition_state *acq)
985 {
986         if (acq) {
987                 libusb_free_transfer(acq->xfer_out);
988                 libusb_free_transfer(acq->xfer_in);
989                 g_free(acq);
990         }
991 }
992
993 /* USB I/O source callback.
994  */
995 SR_PRIV int lwla_receive_data(int fd, int revents, void *cb_data)
996 {
997         struct sr_dev_inst *sdi;
998         struct dev_context *devc;
999         struct drv_context *drvc;
1000         struct timeval tv;
1001         int ret;
1002
1003         (void)fd;
1004
1005         sdi  = cb_data;
1006         devc = sdi->priv;
1007         drvc = sdi->driver->priv;
1008
1009         if (!devc || !drvc)
1010                 return FALSE;
1011
1012         /* No timeout: return immediately. */
1013         tv.tv_sec  = 0;
1014         tv.tv_usec = 0;
1015
1016         ret = libusb_handle_events_timeout_completed(drvc->sr_ctx->libusb_ctx,
1017                                                      &tv, NULL);
1018         if (ret != 0)
1019                 sr_err("Event handling failed: %s.", libusb_error_name(ret));
1020
1021         /* If no event flags are set the timeout must have expired. */
1022         if (revents == 0 && devc->state == STATE_STATUS_WAIT) {
1023                 if (sdi->status == SR_ST_STOPPING)
1024                         issue_stop_capture(sdi);
1025                 else
1026                         request_capture_status(sdi);
1027         }
1028
1029         /* Check if an error occurred on a transfer. */
1030         if (devc->transfer_error)
1031                 end_acquisition(sdi);
1032
1033         return TRUE;
1034 }