]> sigrok.org Git - libsigrok.git/blob - src/hardware/saleae-logic16/protocol.c
997a829a0190b6ce4de1213ec4790828f6ca99d1
[libsigrok.git] / src / hardware / saleae-logic16 / protocol.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2013 Marcus Comstedt <marcus@mc.pp.se>
5  * Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
6  * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
7  *
8  * This program is free software: you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 3 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21
22 #include <config.h>
23 #include <stdint.h>
24 #include <string.h>
25 #include <glib.h>
26 #include <glib/gstdio.h>
27 #include <stdio.h>
28 #include <errno.h>
29 #include <math.h>
30 #include <libsigrok/libsigrok.h>
31 #include "libsigrok-internal.h"
32 #include "protocol.h"
33
34 #define FPGA_FIRMWARE_18        "saleae-logic16-fpga-18.bitstream"
35 #define FPGA_FIRMWARE_33        "saleae-logic16-fpga-33.bitstream"
36
37 #define MAX_SAMPLE_RATE         SR_MHZ(100)
38 #define MAX_SAMPLE_RATE_X_CH    SR_MHZ(300)
39
40 #define BASE_CLOCK_0_FREQ       SR_MHZ(100)
41 #define BASE_CLOCK_1_FREQ       SR_MHZ(160)
42
43 #define COMMAND_START_ACQUISITION       1
44 #define COMMAND_ABORT_ACQUISITION_ASYNC 2
45 #define COMMAND_WRITE_EEPROM            6
46 #define COMMAND_READ_EEPROM             7
47 #define COMMAND_WRITE_LED_TABLE         0x7a
48 #define COMMAND_SET_LED_MODE            0x7b
49 #define COMMAND_RETURN_TO_BOOTLOADER    0x7c
50 #define COMMAND_ABORT_ACQUISITION_SYNC  0x7d
51 #define COMMAND_FPGA_UPLOAD_INIT        0x7e
52 #define COMMAND_FPGA_UPLOAD_SEND_DATA   0x7f
53 #define COMMAND_FPGA_WRITE_REGISTER     0x80
54 #define COMMAND_FPGA_READ_REGISTER      0x81
55 #define COMMAND_GET_REVID               0x82
56
57 #define WRITE_EEPROM_COOKIE1            0x42
58 #define WRITE_EEPROM_COOKIE2            0x55
59 #define READ_EEPROM_COOKIE1             0x33
60 #define READ_EEPROM_COOKIE2             0x81
61 #define ABORT_ACQUISITION_SYNC_PATTERN  0x55
62
63 #define MAX_EMPTY_TRANSFERS             64
64
65 /* Register mappings for old and new bitstream versions */
66
67 enum fpga_register_id {
68         FPGA_REGISTER_VERSION,
69         FPGA_REGISTER_STATUS_CONTROL,
70         FPGA_REGISTER_CHANNEL_SELECT_LOW,
71         FPGA_REGISTER_CHANNEL_SELECT_HIGH,
72         FPGA_REGISTER_SAMPLE_RATE_DIVISOR,
73         FPGA_REGISTER_LED_BRIGHTNESS,
74         FPGA_REGISTER_PRIMER_DATA1,
75         FPGA_REGISTER_PRIMER_CONTROL,
76         FPGA_REGISTER_MODE,
77         FPGA_REGISTER_PRIMER_DATA2,
78         FPGA_REGISTER_MAX = FPGA_REGISTER_PRIMER_DATA2
79 };
80
81 enum fpga_status_control_bit {
82         FPGA_STATUS_CONTROL_BIT_RUNNING,
83         FPGA_STATUS_CONTROL_BIT_UPDATE,
84         FPGA_STATUS_CONTROL_BIT_UNKNOWN1,
85         FPGA_STATUS_CONTROL_BIT_OVERFLOW,
86         FPGA_STATUS_CONTROL_BIT_UNKNOWN2,
87         FPGA_STATUS_CONTROL_BIT_MAX = FPGA_STATUS_CONTROL_BIT_UNKNOWN2
88 };
89
90 enum fpga_mode_bit {
91         FPGA_MODE_BIT_CLOCK,
92         FPGA_MODE_BIT_UNKNOWN1,
93         FPGA_MODE_BIT_UNKNOWN2,
94         FPGA_MODE_BIT_MAX = FPGA_MODE_BIT_UNKNOWN2
95 };
96
97 static const uint8_t fpga_register_map_old[FPGA_REGISTER_MAX + 1] = {
98         [FPGA_REGISTER_VERSION]                 = 0,
99         [FPGA_REGISTER_STATUS_CONTROL]          = 1,
100         [FPGA_REGISTER_CHANNEL_SELECT_LOW]      = 2,
101         [FPGA_REGISTER_CHANNEL_SELECT_HIGH]     = 3,
102         [FPGA_REGISTER_SAMPLE_RATE_DIVISOR]     = 4,
103         [FPGA_REGISTER_LED_BRIGHTNESS]          = 5,
104         [FPGA_REGISTER_PRIMER_DATA1]            = 6,
105         [FPGA_REGISTER_PRIMER_CONTROL]          = 7,
106         [FPGA_REGISTER_MODE]                    = 10,
107         [FPGA_REGISTER_PRIMER_DATA2]            = 12,
108 };
109
110 static const uint8_t fpga_register_map_new[FPGA_REGISTER_MAX + 1] = {
111         [FPGA_REGISTER_VERSION]                 = 7,
112         [FPGA_REGISTER_STATUS_CONTROL]          = 15,
113         [FPGA_REGISTER_CHANNEL_SELECT_LOW]      = 1,
114         [FPGA_REGISTER_CHANNEL_SELECT_HIGH]     = 6,
115         [FPGA_REGISTER_SAMPLE_RATE_DIVISOR]     = 11,
116         [FPGA_REGISTER_LED_BRIGHTNESS]          = 5,
117         [FPGA_REGISTER_PRIMER_DATA1]            = 14,
118         [FPGA_REGISTER_PRIMER_CONTROL]          = 2,
119         [FPGA_REGISTER_MODE]                    = 4,
120         [FPGA_REGISTER_PRIMER_DATA2]            = 3,
121 };
122
123 static const uint8_t fpga_status_control_bit_map_old[FPGA_STATUS_CONTROL_BIT_MAX + 1] = {
124         [FPGA_STATUS_CONTROL_BIT_RUNNING]       = 0x01,
125         [FPGA_STATUS_CONTROL_BIT_UPDATE]        = 0x02,
126         [FPGA_STATUS_CONTROL_BIT_UNKNOWN1]      = 0x08,
127         [FPGA_STATUS_CONTROL_BIT_OVERFLOW]      = 0x20,
128         [FPGA_STATUS_CONTROL_BIT_UNKNOWN2]      = 0x40,
129 };
130
131 static const uint8_t fpga_status_control_bit_map_new[FPGA_STATUS_CONTROL_BIT_MAX + 1] = {
132         [FPGA_STATUS_CONTROL_BIT_RUNNING]       = 0x20,
133         [FPGA_STATUS_CONTROL_BIT_UPDATE]        = 0x08,
134         [FPGA_STATUS_CONTROL_BIT_UNKNOWN1]      = 0x10,
135         [FPGA_STATUS_CONTROL_BIT_OVERFLOW]      = 0x01,
136         [FPGA_STATUS_CONTROL_BIT_UNKNOWN2]      = 0x04,
137 };
138
139 static const uint8_t fpga_mode_bit_map_old[FPGA_MODE_BIT_MAX + 1] = {
140         [FPGA_MODE_BIT_CLOCK]           = 0x01,
141         [FPGA_MODE_BIT_UNKNOWN1]        = 0x40,
142         [FPGA_MODE_BIT_UNKNOWN2]        = 0x80,
143 };
144
145 static const uint8_t fpga_mode_bit_map_new[FPGA_MODE_BIT_MAX + 1] = {
146         [FPGA_MODE_BIT_CLOCK]           = 0x04,
147         [FPGA_MODE_BIT_UNKNOWN1]        = 0x80,
148         [FPGA_MODE_BIT_UNKNOWN2]        = 0x01,
149 };
150
151 #define FPGA_REG(x) \
152         (devc->fpga_register_map[FPGA_REGISTER_ ## x])
153
154 #define FPGA_STATUS_CONTROL(x) \
155         (devc->fpga_status_control_bit_map[FPGA_STATUS_CONTROL_BIT_ ## x])
156
157 #define FPGA_MODE(x) \
158         (devc->fpga_mode_bit_map[FPGA_MODE_BIT_ ## x])
159
160 static void encrypt(uint8_t *dest, const uint8_t *src, uint8_t cnt)
161 {
162         uint8_t state1 = 0x9b, state2 = 0x54;
163         uint8_t t, v;
164         int i;
165
166         for (i = 0; i < cnt; i++) {
167                 v = src[i];
168                 t = (((v ^ state2 ^ 0x2b) - 0x05) ^ 0x35) - 0x39;
169                 t = (((t ^ state1 ^ 0x5a) - 0xb0) ^ 0x38) - 0x45;
170                 dest[i] = state2 = t;
171                 state1 = v;
172         }
173 }
174
175 static void decrypt(uint8_t *dest, const uint8_t *src, uint8_t cnt)
176 {
177         uint8_t state1 = 0x9b, state2 = 0x54;
178         uint8_t t, v;
179         int i;
180
181         for (i = 0; i < cnt; i++) {
182                 v = src[i];
183                 t = (((v + 0x45) ^ 0x38) + 0xb0) ^ 0x5a ^ state1;
184                 t = (((t + 0x39) ^ 0x35) + 0x05) ^ 0x2b ^ state2;
185                 dest[i] = state1 = t;
186                 state2 = v;
187         }
188 }
189
190 static int do_ep1_command(const struct sr_dev_inst *sdi,
191                           const uint8_t *command, uint8_t cmd_len,
192                           uint8_t *reply, uint8_t reply_len)
193 {
194         uint8_t buf[64];
195         struct sr_usb_dev_inst *usb;
196         int ret, xfer;
197
198         usb = sdi->conn;
199
200         if (cmd_len < 1 || cmd_len > 64 || reply_len > 64 ||
201             !command || (reply_len > 0 && !reply))
202                 return SR_ERR_ARG;
203
204         encrypt(buf, command, cmd_len);
205
206         ret = libusb_bulk_transfer(usb->devhdl, 1, buf, cmd_len, &xfer, 1000);
207         if (ret != 0) {
208                 sr_dbg("Failed to send EP1 command 0x%02x: %s.",
209                        command[0], libusb_error_name(ret));
210                 return SR_ERR;
211         }
212         if (xfer != cmd_len) {
213                 sr_dbg("Failed to send EP1 command 0x%02x: incorrect length "
214                        "%d != %d.", command[0], xfer, cmd_len);
215                 return SR_ERR;
216         }
217
218         if (reply_len == 0)
219                 return SR_OK;
220
221         ret = libusb_bulk_transfer(usb->devhdl, 0x80 | 1, buf, reply_len,
222                                    &xfer, 1000);
223         if (ret != 0) {
224                 sr_dbg("Failed to receive reply to EP1 command 0x%02x: %s.",
225                        command[0], libusb_error_name(ret));
226                 return SR_ERR;
227         }
228         if (xfer != reply_len) {
229                 sr_dbg("Failed to receive reply to EP1 command 0x%02x: "
230                        "incorrect length %d != %d.", command[0], xfer, reply_len);
231                 return SR_ERR;
232         }
233
234         decrypt(reply, buf, reply_len);
235
236         return SR_OK;
237 }
238
239 static int read_eeprom(const struct sr_dev_inst *sdi,
240                        uint8_t address, uint8_t length, uint8_t *buf)
241 {
242         uint8_t command[5] = {
243                 COMMAND_READ_EEPROM,
244                 READ_EEPROM_COOKIE1,
245                 READ_EEPROM_COOKIE2,
246                 address,
247                 length,
248         };
249
250         return do_ep1_command(sdi, command, 5, buf, length);
251 }
252
253 static int upload_led_table(const struct sr_dev_inst *sdi,
254                             const uint8_t *table, uint8_t offset, uint8_t cnt)
255 {
256         uint8_t chunk, command[64];
257         int ret;
258
259         if (cnt < 1 || cnt + offset > 64 || !table)
260                 return SR_ERR_ARG;
261
262         while (cnt > 0) {
263                 chunk = (cnt > 32 ? 32 : cnt);
264
265                 command[0] = COMMAND_WRITE_LED_TABLE;
266                 command[1] = offset;
267                 command[2] = chunk;
268                 memcpy(command + 3, table, chunk);
269
270                 ret = do_ep1_command(sdi, command, 3 + chunk, NULL, 0);
271                 if (ret != SR_OK)
272                         return ret;
273
274                 table += chunk;
275                 offset += chunk;
276                 cnt -= chunk;
277         }
278
279         return SR_OK;
280 }
281
282 static int set_led_mode(const struct sr_dev_inst *sdi,
283                         uint8_t animate, uint16_t t2reload, uint8_t div,
284                         uint8_t repeat)
285 {
286         uint8_t command[6] = {
287                 COMMAND_SET_LED_MODE,
288                 animate,
289                 t2reload & 0xff,
290                 t2reload >> 8,
291                 div,
292                 repeat,
293         };
294
295         return do_ep1_command(sdi, command, 6, NULL, 0);
296 }
297
298 static int read_fpga_register(const struct sr_dev_inst *sdi,
299                               uint8_t address, uint8_t *value)
300 {
301         uint8_t command[3] = {
302                 COMMAND_FPGA_READ_REGISTER,
303                 1,
304                 address,
305         };
306
307         return do_ep1_command(sdi, command, 3, value, 1);
308 }
309
310 static int write_fpga_registers(const struct sr_dev_inst *sdi,
311                                 uint8_t (*regs)[2], uint8_t cnt)
312 {
313         uint8_t command[64];
314         int i;
315
316         if (cnt < 1 || cnt > 31)
317                 return SR_ERR_ARG;
318
319         command[0] = COMMAND_FPGA_WRITE_REGISTER;
320         command[1] = cnt;
321         for (i = 0; i < cnt; i++) {
322                 command[2 + 2 * i] = regs[i][0];
323                 command[3 + 2 * i] = regs[i][1];
324         }
325
326         return do_ep1_command(sdi, command, 2 * (cnt + 1), NULL, 0);
327 }
328
329 static int write_fpga_register(const struct sr_dev_inst *sdi,
330                                uint8_t address, uint8_t value)
331 {
332         uint8_t regs[2] = { address, value };
333
334         return write_fpga_registers(sdi, &regs, 1);
335 }
336
337 static uint8_t map_eeprom_data(uint8_t v)
338 {
339         return (((v ^ 0x80) + 0x44) ^ 0xd5) + 0x69;
340 }
341
342 static int setup_register_mapping(const struct sr_dev_inst *sdi)
343 {
344         struct dev_context *devc;
345         int ret;
346
347         devc = sdi->priv;
348
349         if (devc->fpga_variant != FPGA_VARIANT_MCUPRO) {
350                 uint8_t reg0, reg7;
351
352                 /*
353                  * Check for newer bitstream version by polling the
354                  * version register at the old and new location.
355                  */
356
357                 if ((ret = read_fpga_register(sdi, 0 /* No mapping */, &reg0)) != SR_OK)
358                         return ret;
359
360                 if ((ret = read_fpga_register(sdi, 7 /* No mapping */, &reg7)) != SR_OK)
361                         return ret;
362
363                 if (reg0 == 0 && reg7 > 0x10) {
364                         sr_info("Original Saleae Logic16 using new bitstream.");
365                         devc->fpga_variant = FPGA_VARIANT_ORIGINAL_NEW_BITSTREAM;
366                 } else {
367                         sr_info("Original Saleae Logic16 using old bitstream.");
368                         devc->fpga_variant = FPGA_VARIANT_ORIGINAL;
369                 }
370         }
371
372         if (devc->fpga_variant == FPGA_VARIANT_ORIGINAL_NEW_BITSTREAM) {
373                 devc->fpga_register_map = fpga_register_map_new;
374                 devc->fpga_status_control_bit_map = fpga_status_control_bit_map_new;
375                 devc->fpga_mode_bit_map = fpga_mode_bit_map_new;
376         } else {
377                 devc->fpga_register_map = fpga_register_map_old;
378                 devc->fpga_status_control_bit_map = fpga_status_control_bit_map_old;
379                 devc->fpga_mode_bit_map = fpga_mode_bit_map_old;
380         }
381
382         return SR_OK;
383 }
384
385 static int prime_fpga(const struct sr_dev_inst *sdi)
386 {
387         struct dev_context *devc = sdi->priv;
388         uint8_t eeprom_data[16];
389         uint8_t old_mode_reg, version;
390         uint8_t regs[8][2] = {
391                 {FPGA_REG(MODE), 0x00},
392                 {FPGA_REG(MODE), FPGA_MODE(UNKNOWN1)},
393                 {FPGA_REG(PRIMER_DATA2), 0},
394                 {FPGA_REG(MODE), FPGA_MODE(UNKNOWN1) | FPGA_MODE(UNKNOWN2)},
395                 {FPGA_REG(MODE), FPGA_MODE(UNKNOWN1)},
396                 {FPGA_REG(PRIMER_DATA1), 0},
397                 {FPGA_REG(PRIMER_CONTROL), 1},
398                 {FPGA_REG(PRIMER_CONTROL), 0}
399         };
400         int i, ret;
401
402         if ((ret = read_eeprom(sdi, 16, 16, eeprom_data)) != SR_OK)
403                 return ret;
404
405         if ((ret = read_fpga_register(sdi, FPGA_REG(MODE), &old_mode_reg)) != SR_OK)
406                 return ret;
407
408         regs[0][1] = (old_mode_reg &= ~FPGA_MODE(UNKNOWN2));
409         regs[1][1] |= old_mode_reg;
410         regs[3][1] |= old_mode_reg;
411         regs[4][1] |= old_mode_reg;
412
413         for (i = 0; i < 16; i++) {
414                 regs[2][1] = eeprom_data[i];
415                 regs[5][1] = map_eeprom_data(eeprom_data[i]);
416                 if (i)
417                         ret = write_fpga_registers(sdi, &regs[2], 6);
418                 else
419                         ret = write_fpga_registers(sdi, &regs[0], 8);
420                 if (ret != SR_OK)
421                         return ret;
422         }
423
424         if ((ret = write_fpga_register(sdi, FPGA_REG(MODE), old_mode_reg)) != SR_OK)
425                 return ret;
426
427         if ((ret = read_fpga_register(sdi, FPGA_REG(VERSION), &version)) != SR_OK)
428                 return ret;
429
430         if (version != 0x10 && version != 0x13 && version != 0x40 && version != 0x41) {
431                 sr_err("Unsupported FPGA version: 0x%02x.", version);
432                 return SR_ERR;
433         }
434
435         return SR_OK;
436 }
437
438 static void make_heartbeat(uint8_t *table, int len)
439 {
440         int i, j;
441
442         memset(table, 0, len);
443         len >>= 3;
444         for (i = 0; i < 2; i++)
445                 for (j = 0; j < len; j++)
446                         *table++ = sin(j * G_PI / len) * 255;
447 }
448
449 static int configure_led(const struct sr_dev_inst *sdi)
450 {
451         uint8_t table[64];
452         int ret;
453
454         make_heartbeat(table, 64);
455         if ((ret = upload_led_table(sdi, table, 0, 64)) != SR_OK)
456                 return ret;
457
458         return set_led_mode(sdi, 1, 6250, 0, 1);
459 }
460
461 static int upload_fpga_bitstream(const struct sr_dev_inst *sdi,
462                                  enum voltage_range vrange)
463 {
464         uint64_t sum;
465         struct sr_resource bitstream;
466         struct dev_context *devc;
467         struct drv_context *drvc;
468         const char *name;
469         ssize_t chunksize;
470         int ret;
471         uint8_t command[64];
472
473         devc = sdi->priv;
474         drvc = sdi->driver->context;
475
476         if (devc->cur_voltage_range == vrange)
477                 return SR_OK;
478
479         if (devc->fpga_variant != FPGA_VARIANT_MCUPRO) {
480                 switch (vrange) {
481                 case VOLTAGE_RANGE_18_33_V:
482                         name = FPGA_FIRMWARE_18;
483                         break;
484                 case VOLTAGE_RANGE_5_V:
485                         name = FPGA_FIRMWARE_33;
486                         break;
487                 default:
488                         sr_err("Unsupported voltage range.");
489                         return SR_ERR;
490                 }
491
492                 sr_info("Uploading FPGA bitstream '%s'.", name);
493                 ret = sr_resource_open(drvc->sr_ctx, &bitstream,
494                                 SR_RESOURCE_FIRMWARE, name);
495                 if (ret != SR_OK)
496                         return ret;
497
498                 command[0] = COMMAND_FPGA_UPLOAD_INIT;
499                 if ((ret = do_ep1_command(sdi, command, 1, NULL, 0)) != SR_OK) {
500                         sr_resource_close(drvc->sr_ctx, &bitstream);
501                         return ret;
502                 }
503
504                 sum = 0;
505                 while (1) {
506                         chunksize = sr_resource_read(drvc->sr_ctx, &bitstream,
507                                         &command[2], sizeof(command) - 2);
508                         if (chunksize < 0) {
509                                 sr_resource_close(drvc->sr_ctx, &bitstream);
510                                 return SR_ERR;
511                         }
512                         if (chunksize == 0)
513                                 break;
514                         command[0] = COMMAND_FPGA_UPLOAD_SEND_DATA;
515                         command[1] = chunksize;
516
517                         ret = do_ep1_command(sdi, command, chunksize + 2,
518                                         NULL, 0);
519                         if (ret != SR_OK) {
520                                 sr_resource_close(drvc->sr_ctx, &bitstream);
521                                 return ret;
522                         }
523                         sum += chunksize;
524                 }
525                 sr_resource_close(drvc->sr_ctx, &bitstream);
526                 sr_info("FPGA bitstream upload (%" PRIu64 " bytes) done.", sum);
527         }
528
529         /* This needs to be called before accessing any FPGA registers. */
530         if ((ret = setup_register_mapping(sdi)) != SR_OK)
531                 return ret;
532
533         if ((ret = prime_fpga(sdi)) != SR_OK)
534                 return ret;
535
536         if ((ret = configure_led(sdi)) != SR_OK)
537                 return ret;
538
539         devc->cur_voltage_range = vrange;
540         return SR_OK;
541 }
542
543 static int abort_acquisition_sync(const struct sr_dev_inst *sdi)
544 {
545         static const uint8_t command[2] = {
546                 COMMAND_ABORT_ACQUISITION_SYNC,
547                 ABORT_ACQUISITION_SYNC_PATTERN,
548         };
549         uint8_t reply, expected_reply;
550         int ret;
551
552         if ((ret = do_ep1_command(sdi, command, 2, &reply, 1)) != SR_OK)
553                 return ret;
554
555         expected_reply = ~command[1];
556         if (reply != expected_reply) {
557                 sr_err("Invalid response for abort acquisition command: "
558                        "0x%02x != 0x%02x.", reply, expected_reply);
559                 return SR_ERR;
560         }
561
562         return SR_OK;
563 }
564
565 SR_PRIV int logic16_setup_acquisition(const struct sr_dev_inst *sdi,
566                              uint64_t samplerate, uint16_t channels)
567 {
568         uint8_t clock_select, sta_con_reg, mode_reg;
569         uint64_t div;
570         int i, ret, nchan = 0;
571         struct dev_context *devc;
572
573         devc = sdi->priv;
574
575         if (samplerate == 0 || samplerate > MAX_SAMPLE_RATE) {
576                 sr_err("Unable to sample at %" PRIu64 "Hz.", samplerate);
577                 return SR_ERR;
578         }
579
580         if (BASE_CLOCK_0_FREQ % samplerate == 0 &&
581             (div = BASE_CLOCK_0_FREQ / samplerate) <= 256) {
582                 clock_select = 0;
583         } else if (BASE_CLOCK_1_FREQ % samplerate == 0 &&
584                    (div = BASE_CLOCK_1_FREQ / samplerate) <= 256) {
585                 clock_select = 1;
586         } else {
587                 sr_err("Unable to sample at %" PRIu64 "Hz.", samplerate);
588                 return SR_ERR;
589         }
590
591         for (i = 0; i < 16; i++)
592                 if (channels & (1U << i))
593                         nchan++;
594
595         if (nchan * samplerate > MAX_SAMPLE_RATE_X_CH) {
596                 sr_err("Unable to sample at %" PRIu64 "Hz "
597                        "with this many channels.", samplerate);
598                 return SR_ERR;
599         }
600
601         ret = upload_fpga_bitstream(sdi, devc->selected_voltage_range);
602         if (ret != SR_OK)
603                 return ret;
604
605         if ((ret = read_fpga_register(sdi, FPGA_REG(STATUS_CONTROL), &sta_con_reg)) != SR_OK)
606                 return ret;
607
608         /* Ignore FIFO overflow on previous capture */
609         sta_con_reg &= ~FPGA_STATUS_CONTROL(OVERFLOW);
610
611         if (devc->fpga_variant != FPGA_VARIANT_MCUPRO && sta_con_reg != FPGA_STATUS_CONTROL(UNKNOWN1)) {
612                 sr_dbg("Invalid state at acquisition setup register 1: 0x%02x != 0x%02x. "
613                        "Proceeding anyway.", sta_con_reg, FPGA_STATUS_CONTROL(UNKNOWN1));
614         }
615
616         if ((ret = write_fpga_register(sdi, FPGA_REG(STATUS_CONTROL), FPGA_STATUS_CONTROL(UNKNOWN2))) != SR_OK)
617                 return ret;
618
619         if ((ret = write_fpga_register(sdi, FPGA_REG(MODE), (clock_select? FPGA_MODE(CLOCK) : 0))) != SR_OK)
620                 return ret;
621
622         if ((ret = write_fpga_register(sdi, FPGA_REG(SAMPLE_RATE_DIVISOR), (uint8_t)(div - 1))) != SR_OK)
623                 return ret;
624
625         if ((ret = write_fpga_register(sdi, FPGA_REG(CHANNEL_SELECT_LOW), (uint8_t)(channels & 0xff))) != SR_OK)
626                 return ret;
627
628         if ((ret = write_fpga_register(sdi, FPGA_REG(CHANNEL_SELECT_HIGH), (uint8_t)(channels >> 8))) != SR_OK)
629                 return ret;
630
631         if ((ret = write_fpga_register(sdi, FPGA_REG(STATUS_CONTROL), FPGA_STATUS_CONTROL(UNKNOWN2) | FPGA_STATUS_CONTROL(UPDATE))) != SR_OK)
632                 return ret;
633
634         if ((ret = write_fpga_register(sdi, FPGA_REG(STATUS_CONTROL), FPGA_STATUS_CONTROL(UNKNOWN2))) != SR_OK)
635                 return ret;
636
637         if ((ret = read_fpga_register(sdi, FPGA_REG(STATUS_CONTROL), &sta_con_reg)) != SR_OK)
638                 return ret;
639
640         if (devc->fpga_variant != FPGA_VARIANT_MCUPRO && sta_con_reg != (FPGA_STATUS_CONTROL(UNKNOWN2) | FPGA_STATUS_CONTROL(UNKNOWN1))) {
641                 sr_dbg("Invalid state at acquisition setup register 1: 0x%02x != 0x%02x. "
642                        "Proceeding anyway.", sta_con_reg, FPGA_STATUS_CONTROL(UNKNOWN2) | FPGA_STATUS_CONTROL(UNKNOWN1));
643         }
644
645         if ((ret = read_fpga_register(sdi, FPGA_REG(MODE), &mode_reg)) != SR_OK)
646                 return ret;
647
648         if (devc->fpga_variant != FPGA_VARIANT_MCUPRO && mode_reg != (clock_select? FPGA_MODE(CLOCK) : 0)) {
649                 sr_dbg("Invalid state at acquisition setup register 10: 0x%02x != 0x%02x. "
650                        "Proceeding anyway.", mode_reg, (clock_select? FPGA_MODE(CLOCK) : 0));
651         }
652
653         return SR_OK;
654 }
655
656 SR_PRIV int logic16_start_acquisition(const struct sr_dev_inst *sdi)
657 {
658         static const uint8_t command[1] = {
659                 COMMAND_START_ACQUISITION,
660         };
661         int ret;
662         struct dev_context *devc;
663
664         devc = sdi->priv;
665
666         if ((ret = do_ep1_command(sdi, command, 1, NULL, 0)) != SR_OK)
667                 return ret;
668
669         return write_fpga_register(sdi, FPGA_REG(STATUS_CONTROL), FPGA_STATUS_CONTROL(UNKNOWN2) | FPGA_STATUS_CONTROL(RUNNING));
670 }
671
672 SR_PRIV int logic16_abort_acquisition(const struct sr_dev_inst *sdi)
673 {
674         static const uint8_t command[1] = {
675                 COMMAND_ABORT_ACQUISITION_ASYNC,
676         };
677         int ret;
678         uint8_t sta_con_reg;
679         struct dev_context *devc;
680
681         devc = sdi->priv;
682
683         if ((ret = do_ep1_command(sdi, command, 1, NULL, 0)) != SR_OK)
684                 return ret;
685
686         if ((ret = write_fpga_register(sdi, FPGA_REG(STATUS_CONTROL), 0x00)) != SR_OK)
687                 return ret;
688
689         if ((ret = read_fpga_register(sdi, FPGA_REG(STATUS_CONTROL), &sta_con_reg)) != SR_OK)
690                 return ret;
691
692         if (devc->fpga_variant != FPGA_VARIANT_MCUPRO && (sta_con_reg & ~FPGA_STATUS_CONTROL(OVERFLOW)) != FPGA_STATUS_CONTROL(UNKNOWN1)) {
693                 sr_dbg("Invalid state at acquisition stop: 0x%02x != 0x%02x.", sta_con_reg & ~0x20, FPGA_STATUS_CONTROL(UNKNOWN1));
694                 return SR_ERR;
695         }
696
697
698         if (devc->fpga_variant == FPGA_VARIANT_ORIGINAL) {
699                 uint8_t reg8, reg9;
700
701                 if ((ret = read_fpga_register(sdi, 8, &reg8)) != SR_OK)
702                         return ret;
703
704                 if ((ret = read_fpga_register(sdi, 9, &reg9)) != SR_OK)
705                         return ret;
706         }
707
708         if (devc->fpga_variant != FPGA_VARIANT_MCUPRO && sta_con_reg & FPGA_STATUS_CONTROL(OVERFLOW)) {
709                 sr_warn("FIFO overflow, capture data may be truncated.");
710                 return SR_ERR;
711         }
712
713         return SR_OK;
714 }
715
716 SR_PRIV int logic16_init_device(const struct sr_dev_inst *sdi)
717 {
718         uint8_t version;
719         struct dev_context *devc;
720         int ret;
721
722         devc = sdi->priv;
723
724         devc->cur_voltage_range = VOLTAGE_RANGE_UNKNOWN;
725
726         if ((ret = abort_acquisition_sync(sdi)) != SR_OK)
727                 return ret;
728
729         if ((ret = read_eeprom(sdi, 8, 8, devc->eeprom_data)) != SR_OK)
730                 return ret;
731
732         /* mcupro Saleae16 has firmware pre-stored in FPGA.
733            So, we can query it right away. */
734         if (read_fpga_register(sdi, 0 /* No mapping */, &version) == SR_OK &&
735             (version == 0x40 || version == 0x41)) {
736                 sr_info("mcupro Saleae16 detected.");
737                 devc->fpga_variant = FPGA_VARIANT_MCUPRO;
738         } else {
739                 sr_info("Original Saleae Logic16 detected.");
740                 devc->fpga_variant = FPGA_VARIANT_ORIGINAL;
741         }
742
743         ret = upload_fpga_bitstream(sdi, devc->selected_voltage_range);
744         if (ret != SR_OK)
745                 return ret;
746
747         return SR_OK;
748 }
749
750 static void finish_acquisition(struct sr_dev_inst *sdi)
751 {
752         struct dev_context *devc;
753
754         devc = sdi->priv;
755
756         std_session_send_df_end(sdi, LOG_PREFIX);
757
758         usb_source_remove(sdi->session, devc->ctx);
759
760         devc->num_transfers = 0;
761         g_free(devc->transfers);
762         g_free(devc->convbuffer);
763         if (devc->stl) {
764                 soft_trigger_logic_free(devc->stl);
765                 devc->stl = NULL;
766         }
767 }
768
769 static void free_transfer(struct libusb_transfer *transfer)
770 {
771         struct sr_dev_inst *sdi;
772         struct dev_context *devc;
773         unsigned int i;
774
775         sdi = transfer->user_data;
776         devc = sdi->priv;
777
778         g_free(transfer->buffer);
779         transfer->buffer = NULL;
780         libusb_free_transfer(transfer);
781
782         for (i = 0; i < devc->num_transfers; i++) {
783                 if (devc->transfers[i] == transfer) {
784                         devc->transfers[i] = NULL;
785                         break;
786                 }
787         }
788
789         devc->submitted_transfers--;
790         if (devc->submitted_transfers == 0)
791                 finish_acquisition(sdi);
792 }
793
794 static void resubmit_transfer(struct libusb_transfer *transfer)
795 {
796         int ret;
797
798         if ((ret = libusb_submit_transfer(transfer)) == LIBUSB_SUCCESS)
799                 return;
800
801         free_transfer(transfer);
802         /* TODO: Stop session? */
803
804         sr_err("%s: %s", __func__, libusb_error_name(ret));
805 }
806
807 static size_t convert_sample_data(struct dev_context *devc,
808                 uint8_t *dest, size_t destcnt, const uint8_t *src, size_t srccnt)
809 {
810         uint16_t *channel_data;
811         int i, cur_channel;
812         size_t ret = 0;
813         uint16_t sample, channel_mask;
814
815         srccnt /= 2;
816
817         channel_data = devc->channel_data;
818         cur_channel = devc->cur_channel;
819
820         while (srccnt--) {
821                 sample = src[0] | (src[1] << 8);
822                 src += 2;
823
824                 channel_mask = devc->channel_masks[cur_channel];
825
826                 for (i = 15; i >= 0; --i, sample >>= 1)
827                         if (sample & 1)
828                                 channel_data[i] |= channel_mask;
829
830                 if (++cur_channel == devc->num_channels) {
831                         cur_channel = 0;
832                         if (destcnt < 16 * 2) {
833                                 sr_err("Conversion buffer too small!");
834                                 break;
835                         }
836                         memcpy(dest, channel_data, 16 * 2);
837                         memset(channel_data, 0, 16 * 2);
838                         dest += 16 * 2;
839                         ret += 16;
840                         destcnt -= 16 * 2;
841                 }
842         }
843
844         devc->cur_channel = cur_channel;
845
846         return ret;
847 }
848
849 SR_PRIV void LIBUSB_CALL logic16_receive_transfer(struct libusb_transfer *transfer)
850 {
851         gboolean packet_has_error = FALSE;
852         struct sr_datafeed_packet packet;
853         struct sr_datafeed_logic logic;
854         struct sr_dev_inst *sdi;
855         struct dev_context *devc;
856         size_t new_samples, num_samples;
857         int trigger_offset;
858         int pre_trigger_samples;
859
860         sdi = transfer->user_data;
861         devc = sdi->priv;
862
863         /*
864          * If acquisition has already ended, just free any queued up
865          * transfer that come in.
866          */
867         if (devc->sent_samples < 0) {
868                 free_transfer(transfer);
869                 return;
870         }
871
872         sr_info("receive_transfer(): status %s received %d bytes.",
873                 libusb_error_name(transfer->status), transfer->actual_length);
874
875         switch (transfer->status) {
876         case LIBUSB_TRANSFER_NO_DEVICE:
877                 devc->sent_samples = -2;
878                 free_transfer(transfer);
879                 return;
880         case LIBUSB_TRANSFER_COMPLETED:
881         case LIBUSB_TRANSFER_TIMED_OUT: /* We may have received some data though. */
882                 break;
883         default:
884                 packet_has_error = TRUE;
885                 break;
886         }
887
888         if (transfer->actual_length & 1) {
889                 sr_err("Got an odd number of bytes from the device. "
890                        "This should not happen.");
891                 /* Bail out right away. */
892                 packet_has_error = TRUE;
893                 devc->empty_transfer_count = MAX_EMPTY_TRANSFERS;
894         }
895
896         if (transfer->actual_length == 0 || packet_has_error) {
897                 devc->empty_transfer_count++;
898                 if (devc->empty_transfer_count > MAX_EMPTY_TRANSFERS) {
899                         /*
900                          * The FX2 gave up. End the acquisition, the frontend
901                          * will work out that the samplecount is short.
902                          */
903                         devc->sent_samples = -2;
904                         free_transfer(transfer);
905                 } else {
906                         resubmit_transfer(transfer);
907                 }
908                 return;
909         } else {
910                 devc->empty_transfer_count = 0;
911         }
912
913         new_samples = convert_sample_data(devc, devc->convbuffer,
914                         devc->convbuffer_size, transfer->buffer, transfer->actual_length);
915
916         if (new_samples > 0) {
917                 if (devc->trigger_fired) {
918                         /* Send the incoming transfer to the session bus. */
919                         packet.type = SR_DF_LOGIC;
920                         packet.payload = &logic;
921                         if (devc->limit_samples &&
922                                         new_samples > devc->limit_samples - devc->sent_samples)
923                                 new_samples = devc->limit_samples - devc->sent_samples;
924                         logic.length = new_samples * 2;
925                         logic.unitsize = 2;
926                         logic.data = devc->convbuffer;
927                         sr_session_send(sdi, &packet);
928                         devc->sent_samples += new_samples;
929                 } else {
930                         trigger_offset = soft_trigger_logic_check(devc->stl,
931                                         devc->convbuffer, new_samples * 2, &pre_trigger_samples);
932                         if (trigger_offset > -1) {
933                                 devc->sent_samples += pre_trigger_samples;
934                                 packet.type = SR_DF_LOGIC;
935                                 packet.payload = &logic;
936                                 num_samples = new_samples - trigger_offset;
937                                 if (devc->limit_samples &&
938                                                 num_samples > devc->limit_samples - devc->sent_samples)
939                                         num_samples = devc->limit_samples - devc->sent_samples;
940                                 logic.length = num_samples * 2;
941                                 logic.unitsize = 2;
942                                 logic.data = devc->convbuffer + trigger_offset * 2;
943                                 sr_session_send(sdi, &packet);
944                                 devc->sent_samples += num_samples;
945
946                                 devc->trigger_fired = TRUE;
947                         }
948                 }
949
950                 if (devc->limit_samples &&
951                                 (uint64_t)devc->sent_samples >= devc->limit_samples) {
952                         devc->sent_samples = -2;
953                         free_transfer(transfer);
954                         return;
955                 }
956         }
957
958         resubmit_transfer(transfer);
959 }