]> sigrok.org Git - libsigrok.git/blob - src/hardware/saleae-logic16/protocol.c
839397f8cdc83c32462268aeaf2e28dc7e641e25
[libsigrok.git] / src / hardware / saleae-logic16 / protocol.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2013 Marcus Comstedt <marcus@mc.pp.se>
5  * Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
6  * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
7  *
8  * This program is free software: you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 3 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21
22 #include "protocol.h"
23
24 #include <stdint.h>
25 #include <string.h>
26 #include <glib.h>
27 #include <glib/gstdio.h>
28 #include <stdio.h>
29 #include <errno.h>
30 #include <math.h>
31 #include "libsigrok.h"
32 #include "libsigrok-internal.h"
33
34 #define FPGA_FIRMWARE_18        FIRMWARE_DIR"/saleae-logic16-fpga-18.bitstream"
35 #define FPGA_FIRMWARE_33        FIRMWARE_DIR"/saleae-logic16-fpga-33.bitstream"
36
37 #define MAX_SAMPLE_RATE         SR_MHZ(100)
38 #define MAX_4CH_SAMPLE_RATE     SR_MHZ(50)
39 #define MAX_7CH_SAMPLE_RATE     SR_MHZ(40)
40 #define MAX_8CH_SAMPLE_RATE     SR_MHZ(32)
41 #define MAX_10CH_SAMPLE_RATE    SR_MHZ(25)
42 #define MAX_13CH_SAMPLE_RATE    SR_MHZ(16)
43
44 #define BASE_CLOCK_0_FREQ       SR_MHZ(100)
45 #define BASE_CLOCK_1_FREQ       SR_MHZ(160)
46
47 #define COMMAND_START_ACQUISITION       1
48 #define COMMAND_ABORT_ACQUISITION_ASYNC 2
49 #define COMMAND_WRITE_EEPROM            6
50 #define COMMAND_READ_EEPROM             7
51 #define COMMAND_WRITE_LED_TABLE         0x7a
52 #define COMMAND_SET_LED_MODE            0x7b
53 #define COMMAND_RETURN_TO_BOOTLOADER    0x7c
54 #define COMMAND_ABORT_ACQUISITION_SYNC  0x7d
55 #define COMMAND_FPGA_UPLOAD_INIT        0x7e
56 #define COMMAND_FPGA_UPLOAD_SEND_DATA   0x7f
57 #define COMMAND_FPGA_WRITE_REGISTER     0x80
58 #define COMMAND_FPGA_READ_REGISTER      0x81
59 #define COMMAND_GET_REVID               0x82
60
61 #define WRITE_EEPROM_COOKIE1            0x42
62 #define WRITE_EEPROM_COOKIE2            0x55
63 #define READ_EEPROM_COOKIE1             0x33
64 #define READ_EEPROM_COOKIE2             0x81
65 #define ABORT_ACQUISITION_SYNC_PATTERN  0x55
66
67 #define MAX_EMPTY_TRANSFERS             64
68
69 static void encrypt(uint8_t *dest, const uint8_t *src, uint8_t cnt)
70 {
71         uint8_t state1 = 0x9b, state2 = 0x54;
72         uint8_t t, v;
73         int i;
74
75         for (i = 0; i < cnt; i++) {
76                 v = src[i];
77                 t = (((v ^ state2 ^ 0x2b) - 0x05) ^ 0x35) - 0x39;
78                 t = (((t ^ state1 ^ 0x5a) - 0xb0) ^ 0x38) - 0x45;
79                 dest[i] = state2 = t;
80                 state1 = v;
81         }
82 }
83
84 static void decrypt(uint8_t *dest, const uint8_t *src, uint8_t cnt)
85 {
86         uint8_t state1 = 0x9b, state2 = 0x54;
87         uint8_t t, v;
88         int i;
89
90         for (i = 0; i < cnt; i++) {
91                 v = src[i];
92                 t = (((v + 0x45) ^ 0x38) + 0xb0) ^ 0x5a ^ state1;
93                 t = (((t + 0x39) ^ 0x35) + 0x05) ^ 0x2b ^ state2;
94                 dest[i] = state1 = t;
95                 state2 = v;
96         }
97 }
98
99 static int do_ep1_command(const struct sr_dev_inst *sdi,
100                           const uint8_t *command, uint8_t cmd_len,
101                           uint8_t *reply, uint8_t reply_len)
102 {
103         uint8_t buf[64];
104         struct sr_usb_dev_inst *usb;
105         int ret, xfer;
106
107         usb = sdi->conn;
108
109         if (cmd_len < 1 || cmd_len > 64 || reply_len > 64 ||
110             command == NULL || (reply_len > 0 && reply == NULL))
111                 return SR_ERR_ARG;
112
113         encrypt(buf, command, cmd_len);
114
115         ret = libusb_bulk_transfer(usb->devhdl, 1, buf, cmd_len, &xfer, 1000);
116         if (ret != 0) {
117                 sr_dbg("Failed to send EP1 command 0x%02x: %s.",
118                        command[0], libusb_error_name(ret));
119                 return SR_ERR;
120         }
121         if (xfer != cmd_len) {
122                 sr_dbg("Failed to send EP1 command 0x%02x: incorrect length "
123                        "%d != %d.", xfer, cmd_len);
124                 return SR_ERR;
125         }
126
127         if (reply_len == 0)
128                 return SR_OK;
129
130         ret = libusb_bulk_transfer(usb->devhdl, 0x80 | 1, buf, reply_len,
131                                    &xfer, 1000);
132         if (ret != 0) {
133                 sr_dbg("Failed to receive reply to EP1 command 0x%02x: %s.",
134                        command[0], libusb_error_name(ret));
135                 return SR_ERR;
136         }
137         if (xfer != reply_len) {
138                 sr_dbg("Failed to receive reply to EP1 command 0x%02x: "
139                        "incorrect length %d != %d.", xfer, reply_len);
140                 return SR_ERR;
141         }
142
143         decrypt(reply, buf, reply_len);
144
145         return SR_OK;
146 }
147
148 static int read_eeprom(const struct sr_dev_inst *sdi,
149                        uint8_t address, uint8_t length, uint8_t *buf)
150 {
151         uint8_t command[5] = {
152                 COMMAND_READ_EEPROM,
153                 READ_EEPROM_COOKIE1,
154                 READ_EEPROM_COOKIE2,
155                 address,
156                 length,
157         };
158
159         return do_ep1_command(sdi, command, 5, buf, length);
160 }
161
162 static int upload_led_table(const struct sr_dev_inst *sdi,
163                             const uint8_t *table, uint8_t offset, uint8_t cnt)
164 {
165         uint8_t chunk, command[64];
166         int ret;
167
168         if (cnt < 1 || cnt + offset > 64 || table == NULL)
169                 return SR_ERR_ARG;
170
171         while (cnt > 0) {
172                 chunk = (cnt > 32 ? 32 : cnt);
173
174                 command[0] = COMMAND_WRITE_LED_TABLE;
175                 command[1] = offset;
176                 command[2] = chunk;
177                 memcpy(command + 3, table, chunk);
178
179                 ret = do_ep1_command(sdi, command, 3 + chunk, NULL, 0);
180                 if (ret != SR_OK)
181                         return ret;
182
183                 table += chunk;
184                 offset += chunk;
185                 cnt -= chunk;
186         }
187
188         return SR_OK;
189 }
190
191 static int set_led_mode(const struct sr_dev_inst *sdi,
192                         uint8_t animate, uint16_t t2reload, uint8_t div,
193                         uint8_t repeat)
194 {
195         uint8_t command[6] = {
196                 COMMAND_SET_LED_MODE,
197                 animate,
198                 t2reload & 0xff,
199                 t2reload >> 8,
200                 div,
201                 repeat,
202         };
203
204         return do_ep1_command(sdi, command, 6, NULL, 0);
205 }
206
207 static int read_fpga_register(const struct sr_dev_inst *sdi,
208                               uint8_t address, uint8_t *value)
209 {
210         uint8_t command[3] = {
211                 COMMAND_FPGA_READ_REGISTER,
212                 1,
213                 address,
214         };
215
216         return do_ep1_command(sdi, command, 3, value, 1);
217 }
218
219 static int write_fpga_registers(const struct sr_dev_inst *sdi,
220                                 uint8_t (*regs)[2], uint8_t cnt)
221 {
222         uint8_t command[64];
223         int i;
224
225         if (cnt < 1 || cnt > 31)
226                 return SR_ERR_ARG;
227
228         command[0] = COMMAND_FPGA_WRITE_REGISTER;
229         command[1] = cnt;
230         for (i = 0; i < cnt; i++) {
231                 command[2 + 2 * i] = regs[i][0];
232                 command[3 + 2 * i] = regs[i][1];
233         }
234
235         return do_ep1_command(sdi, command, 2 * (cnt + 1), NULL, 0);
236 }
237
238 static int write_fpga_register(const struct sr_dev_inst *sdi,
239                                uint8_t address, uint8_t value)
240 {
241         uint8_t regs[2] = { address, value };
242
243         return write_fpga_registers(sdi, &regs, 1);
244 }
245
246 static uint8_t map_eeprom_data(uint8_t v)
247 {
248         return (((v ^ 0x80) + 0x44) ^ 0xd5) + 0x69;
249 }
250
251 static int prime_fpga(const struct sr_dev_inst *sdi)
252 {
253         uint8_t eeprom_data[16];
254         uint8_t old_reg_10, version;
255         uint8_t regs[8][2] = {
256                 {10, 0x00},
257                 {10, 0x40},
258                 {12, 0},
259                 {10, 0xc0},
260                 {10, 0x40},
261                 {6, 0},
262                 {7, 1},
263                 {7, 0}
264         };
265         int i, ret;
266
267         if ((ret = read_eeprom(sdi, 16, 16, eeprom_data)) != SR_OK)
268                 return ret;
269
270         if ((ret = read_fpga_register(sdi, 10, &old_reg_10)) != SR_OK)
271                 return ret;
272
273         regs[0][1] = (old_reg_10 &= 0x7f);
274         regs[1][1] |= old_reg_10;
275         regs[3][1] |= old_reg_10;
276         regs[4][1] |= old_reg_10;
277
278         for (i = 0; i < 16; i++) {
279                 regs[2][1] = eeprom_data[i];
280                 regs[5][1] = map_eeprom_data(eeprom_data[i]);
281                 if (i)
282                         ret = write_fpga_registers(sdi, &regs[2], 6);
283                 else
284                         ret = write_fpga_registers(sdi, &regs[0], 8);
285                 if (ret != SR_OK)
286                         return ret;
287         }
288
289         if ((ret = write_fpga_register(sdi, 10, old_reg_10)) != SR_OK)
290                 return ret;
291
292         if ((ret = read_fpga_register(sdi, 0, &version)) != SR_OK)
293                 return ret;
294
295         if (version != 0x10 && version != 0x40 && version != 0x41) {
296                 sr_err("Unsupported FPGA version: 0x%02x.", version);
297                 return SR_ERR;
298         }
299
300         return SR_OK;
301 }
302
303 static void make_heartbeat(uint8_t *table, int len)
304 {
305         int i, j;
306
307         memset(table, 0, len);
308         len >>= 3;
309         for (i = 0; i < 2; i++)
310                 for (j = 0; j < len; j++)
311                         *table++ = sin(j * M_PI / len) * 255;
312 }
313
314 static int configure_led(const struct sr_dev_inst *sdi)
315 {
316         uint8_t table[64];
317         int ret;
318
319         make_heartbeat(table, 64);
320         if ((ret = upload_led_table(sdi, table, 0, 64)) != SR_OK)
321                 return ret;
322
323         return set_led_mode(sdi, 1, 6250, 0, 1);
324 }
325
326 static int upload_fpga_bitstream(const struct sr_dev_inst *sdi,
327                                  enum voltage_range vrange)
328 {
329         struct dev_context *devc;
330         int offset, chunksize, ret;
331         const char *filename;
332         uint8_t len, buf[256 * 62], command[64];
333         FILE *fw;
334
335         devc = sdi->priv;
336
337         if (devc->cur_voltage_range == vrange)
338                 return SR_OK;
339
340         if (devc->fpga_variant == FPGA_VARIANT_ORIGINAL) {
341                 switch (vrange) {
342                 case VOLTAGE_RANGE_18_33_V:
343                         filename = FPGA_FIRMWARE_18;
344                         break;
345                 case VOLTAGE_RANGE_5_V:
346                         filename = FPGA_FIRMWARE_33;
347                         break;
348                 default:
349                         sr_err("Unsupported voltage range.");
350                         return SR_ERR;
351                 }
352
353                 sr_info("Uploading FPGA bitstream at %s.", filename);
354                 if ((fw = g_fopen(filename, "rb")) == NULL) {
355                         sr_err("Unable to open bitstream file %s for reading: %s.",
356                                filename, strerror(errno));
357                         return SR_ERR;
358                 }
359
360                 buf[0] = COMMAND_FPGA_UPLOAD_INIT;
361                 if ((ret = do_ep1_command(sdi, buf, 1, NULL, 0)) != SR_OK) {
362                         fclose(fw);
363                         return ret;
364                 }
365
366                 while (1) {
367                         chunksize = fread(buf, 1, sizeof(buf), fw);
368                         if (chunksize == 0)
369                                 break;
370
371                         for (offset = 0; offset < chunksize; offset += 62) {
372                                 len = (offset + 62 > chunksize ?
373                                         chunksize - offset : 62);
374                                 command[0] = COMMAND_FPGA_UPLOAD_SEND_DATA;
375                                 command[1] = len;
376                                 memcpy(command + 2, buf + offset, len);
377                                 ret = do_ep1_command(sdi, command, len + 2, NULL, 0);
378                                 if (ret != SR_OK) {
379                                         fclose(fw);
380                                         return ret;
381                                 }
382                         }
383
384                         sr_info("Uploaded %d bytes.", chunksize);
385                 }
386                 fclose(fw);
387                 sr_info("FPGA bitstream upload done.");
388         }
389
390         if ((ret = prime_fpga(sdi)) != SR_OK)
391                 return ret;
392
393         if ((ret = configure_led(sdi)) != SR_OK)
394                 return ret;
395
396         devc->cur_voltage_range = vrange;
397         return SR_OK;
398 }
399
400 static int abort_acquisition_sync(const struct sr_dev_inst *sdi)
401 {
402         static const uint8_t command[2] = {
403                 COMMAND_ABORT_ACQUISITION_SYNC,
404                 ABORT_ACQUISITION_SYNC_PATTERN,
405         };
406         uint8_t reply, expected_reply;
407         int ret;
408
409         if ((ret = do_ep1_command(sdi, command, 2, &reply, 1)) != SR_OK)
410                 return ret;
411
412         expected_reply = ~command[1];
413         if (reply != expected_reply) {
414                 sr_err("Invalid response for abort acquisition command: "
415                        "0x%02x != 0x%02x.", reply, expected_reply);
416                 return SR_ERR;
417         }
418
419         return SR_OK;
420 }
421
422 SR_PRIV int logic16_setup_acquisition(const struct sr_dev_inst *sdi,
423                              uint64_t samplerate, uint16_t channels)
424 {
425         uint8_t clock_select, reg1, reg10;
426         uint64_t div;
427         int i, ret, nchan = 0;
428         struct dev_context *devc;
429
430         devc = sdi->priv;
431
432         if (samplerate == 0 || samplerate > MAX_SAMPLE_RATE) {
433                 sr_err("Unable to sample at %" PRIu64 "Hz.", samplerate);
434                 return SR_ERR;
435         }
436
437         if (BASE_CLOCK_0_FREQ % samplerate == 0 &&
438             (div = BASE_CLOCK_0_FREQ / samplerate) <= 256) {
439                 clock_select = 0;
440         } else if (BASE_CLOCK_1_FREQ % samplerate == 0 &&
441                    (div = BASE_CLOCK_1_FREQ / samplerate) <= 256) {
442                 clock_select = 1;
443         } else {
444                 sr_err("Unable to sample at %" PRIu64 "Hz.", samplerate);
445                 return SR_ERR;
446         }
447
448         for (i = 0; i < 16; i++)
449                 if (channels & (1U << i))
450                         nchan++;
451
452         if ((nchan >= 13 && samplerate > MAX_13CH_SAMPLE_RATE) ||
453             (nchan >= 10 && samplerate > MAX_10CH_SAMPLE_RATE) ||
454             (nchan >= 8  && samplerate > MAX_8CH_SAMPLE_RATE) ||
455             (nchan >= 7  && samplerate > MAX_7CH_SAMPLE_RATE) ||
456             (nchan >= 4  && samplerate > MAX_4CH_SAMPLE_RATE)) {
457                 sr_err("Unable to sample at %" PRIu64 "Hz "
458                        "with this many channels.", samplerate);
459                 return SR_ERR;
460         }
461
462         ret = upload_fpga_bitstream(sdi, devc->selected_voltage_range);
463         if (ret != SR_OK)
464                 return ret;
465
466         if ((ret = read_fpga_register(sdi, 1, &reg1)) != SR_OK)
467                 return ret;
468
469         /* Ignore FIFO overflow on previous capture */
470         reg1 &= ~0x20;
471
472         if (devc->fpga_variant == FPGA_VARIANT_ORIGINAL && reg1 != 0x08) {
473                 sr_dbg("Invalid state at acquisition setup register 1: 0x%02x != 0x08. "
474                        "Proceeding anyway.", reg1);
475         }
476
477         if ((ret = write_fpga_register(sdi, 1, 0x40)) != SR_OK)
478                 return ret;
479
480         if ((ret = write_fpga_register(sdi, 10, clock_select)) != SR_OK)
481                 return ret;
482
483         if ((ret = write_fpga_register(sdi, 4, (uint8_t)(div - 1))) != SR_OK)
484                 return ret;
485
486         if ((ret = write_fpga_register(sdi, 2, (uint8_t)(channels & 0xff))) != SR_OK)
487                 return ret;
488
489         if ((ret = write_fpga_register(sdi, 3, (uint8_t)(channels >> 8))) != SR_OK)
490                 return ret;
491
492         if ((ret = write_fpga_register(sdi, 1, 0x42)) != SR_OK)
493                 return ret;
494
495         if ((ret = write_fpga_register(sdi, 1, 0x40)) != SR_OK)
496                 return ret;
497
498         if ((ret = read_fpga_register(sdi, 1, &reg1)) != SR_OK)
499                 return ret;
500
501         if (devc->fpga_variant == FPGA_VARIANT_ORIGINAL && reg1 != 0x48) {
502                 sr_dbg("Invalid state at acquisition setup register 1: 0x%02x != 0x48. "
503                        "Proceeding anyway.", reg1);
504         }
505
506         if ((ret = read_fpga_register(sdi, 10, &reg10)) != SR_OK)
507                 return ret;
508
509         if (devc->fpga_variant == FPGA_VARIANT_ORIGINAL && reg10 != clock_select) {
510                 sr_dbg("Invalid state at acquisition setup register 10: 0x%02x != 0x%02x. "
511                        "Proceeding anyway.", reg10, clock_select);
512         }
513
514         return SR_OK;
515 }
516
517 SR_PRIV int logic16_start_acquisition(const struct sr_dev_inst *sdi)
518 {
519         static const uint8_t command[1] = {
520                 COMMAND_START_ACQUISITION,
521         };
522         int ret;
523
524         if ((ret = do_ep1_command(sdi, command, 1, NULL, 0)) != SR_OK)
525                 return ret;
526
527         return write_fpga_register(sdi, 1, 0x41);
528 }
529
530 SR_PRIV int logic16_abort_acquisition(const struct sr_dev_inst *sdi)
531 {
532         static const uint8_t command[1] = {
533                 COMMAND_ABORT_ACQUISITION_ASYNC,
534         };
535         int ret;
536         uint8_t reg1, reg8, reg9;
537         struct dev_context *devc;
538
539         devc = sdi->priv;
540
541         if ((ret = do_ep1_command(sdi, command, 1, NULL, 0)) != SR_OK)
542                 return ret;
543
544         if ((ret = write_fpga_register(sdi, 1, 0x00)) != SR_OK)
545                 return ret;
546
547         if ((ret = read_fpga_register(sdi, 1, &reg1)) != SR_OK)
548                 return ret;
549
550         if (devc->fpga_variant == FPGA_VARIANT_ORIGINAL && (reg1 & ~0x20) != 0x08) {
551                 sr_dbg("Invalid state at acquisition stop: 0x%02x != 0x08.", reg1 & ~0x20);
552                 return SR_ERR;
553         }
554
555         if ((ret = read_fpga_register(sdi, 8, &reg8)) != SR_OK)
556                 return ret;
557
558         if ((ret = read_fpga_register(sdi, 9, &reg9)) != SR_OK)
559                 return ret;
560
561         if (devc->fpga_variant == FPGA_VARIANT_ORIGINAL && reg1 & 0x20) {
562                 sr_warn("FIFO overflow, capture data may be truncated.");
563                 return SR_ERR;
564         }
565
566         return SR_OK;
567 }
568
569 SR_PRIV int logic16_init_device(const struct sr_dev_inst *sdi)
570 {
571         uint8_t version;
572         struct dev_context *devc;
573         int ret;
574
575         devc = sdi->priv;
576
577         devc->cur_voltage_range = VOLTAGE_RANGE_UNKNOWN;
578
579         if ((ret = abort_acquisition_sync(sdi)) != SR_OK)
580                 return ret;
581
582         if ((ret = read_eeprom(sdi, 8, 8, devc->eeprom_data)) != SR_OK)
583                 return ret;
584
585         /* mcupro Saleae16 has firmware pre-stored in FPGA.
586            So, we can query it right away. */
587         if (read_fpga_register(sdi, 0, &version) == SR_OK &&
588             (version == 0x40 || version == 0x41)) {
589                 sr_info("mcupro Saleae16 detected.");
590                 devc->fpga_variant = FPGA_VARIANT_MCUPRO;
591         } else {
592                 sr_info("Original Saleae Logic16 detected.");
593                 devc->fpga_variant = FPGA_VARIANT_ORIGINAL;
594         }
595
596         ret = upload_fpga_bitstream(sdi, devc->selected_voltage_range);
597         if (ret != SR_OK)
598                 return ret;
599
600         return SR_OK;
601 }
602
603 static void finish_acquisition(struct sr_dev_inst *sdi)
604 {
605         struct sr_datafeed_packet packet;
606         struct dev_context *devc;
607
608         devc = sdi->priv;
609
610         /* Terminate session. */
611         packet.type = SR_DF_END;
612         sr_session_send(devc->cb_data, &packet);
613
614         /* Remove fds from polling. */
615         usb_source_remove(sdi->session, devc->ctx);
616
617         devc->num_transfers = 0;
618         g_free(devc->transfers);
619         g_free(devc->convbuffer);
620         if (devc->stl) {
621                 soft_trigger_logic_free(devc->stl);
622                 devc->stl = NULL;
623         }
624 }
625
626 static void free_transfer(struct libusb_transfer *transfer)
627 {
628         struct sr_dev_inst *sdi;
629         struct dev_context *devc;
630         unsigned int i;
631
632         sdi = transfer->user_data;
633         devc = sdi->priv;
634
635         g_free(transfer->buffer);
636         transfer->buffer = NULL;
637         libusb_free_transfer(transfer);
638
639         for (i = 0; i < devc->num_transfers; i++) {
640                 if (devc->transfers[i] == transfer) {
641                         devc->transfers[i] = NULL;
642                         break;
643                 }
644         }
645
646         devc->submitted_transfers--;
647         if (devc->submitted_transfers == 0)
648                 finish_acquisition(sdi);
649 }
650
651 static void resubmit_transfer(struct libusb_transfer *transfer)
652 {
653         int ret;
654
655         if ((ret = libusb_submit_transfer(transfer)) == LIBUSB_SUCCESS)
656                 return;
657
658         free_transfer(transfer);
659         /* TODO: Stop session? */
660
661         sr_err("%s: %s", __func__, libusb_error_name(ret));
662 }
663
664 static size_t convert_sample_data(struct dev_context *devc,
665                 uint8_t *dest, size_t destcnt, const uint8_t *src, size_t srccnt)
666 {
667         uint16_t *channel_data;
668         int i, cur_channel;
669         size_t ret = 0;
670         uint16_t sample, channel_mask;
671
672         srccnt /= 2;
673
674         channel_data = devc->channel_data;
675         cur_channel = devc->cur_channel;
676
677         while (srccnt--) {
678                 sample = src[0] | (src[1] << 8);
679                 src += 2;
680
681                 channel_mask = devc->channel_masks[cur_channel];
682
683                 for (i = 15; i >= 0; --i, sample >>= 1)
684                         if (sample & 1)
685                                 channel_data[i] |= channel_mask;
686
687                 if (++cur_channel == devc->num_channels) {
688                         cur_channel = 0;
689                         if (destcnt < 16 * 2) {
690                                 sr_err("Conversion buffer too small!");
691                                 break;
692                         }
693                         memcpy(dest, channel_data, 16 * 2);
694                         memset(channel_data, 0, 16 * 2);
695                         dest += 16 * 2;
696                         ret += 16;
697                         destcnt -= 16 * 2;
698                 }
699         }
700
701         devc->cur_channel = cur_channel;
702
703         return ret;
704 }
705
706 SR_PRIV void logic16_receive_transfer(struct libusb_transfer *transfer)
707 {
708         gboolean packet_has_error = FALSE;
709         struct sr_datafeed_packet packet;
710         struct sr_datafeed_logic logic;
711         struct sr_dev_inst *sdi;
712         struct dev_context *devc;
713         size_t new_samples, num_samples;
714         int trigger_offset;
715         int pre_trigger_samples;
716
717         sdi = transfer->user_data;
718         devc = sdi->priv;
719
720         /*
721          * If acquisition has already ended, just free any queued up
722          * transfer that come in.
723          */
724         if (devc->sent_samples < 0) {
725                 free_transfer(transfer);
726                 return;
727         }
728
729         sr_info("receive_transfer(): status %d received %d bytes.",
730                 transfer->status, transfer->actual_length);
731
732         switch (transfer->status) {
733         case LIBUSB_TRANSFER_NO_DEVICE:
734                 devc->sent_samples = -2;
735                 free_transfer(transfer);
736                 return;
737         case LIBUSB_TRANSFER_COMPLETED:
738         case LIBUSB_TRANSFER_TIMED_OUT: /* We may have received some data though. */
739                 break;
740         default:
741                 packet_has_error = TRUE;
742                 break;
743         }
744
745         if (transfer->actual_length & 1) {
746                 sr_err("Got an odd number of bytes from the device. "
747                        "This should not happen.");
748                 /* Bail out right away. */
749                 packet_has_error = TRUE;
750                 devc->empty_transfer_count = MAX_EMPTY_TRANSFERS;
751         }
752
753         if (transfer->actual_length == 0 || packet_has_error) {
754                 devc->empty_transfer_count++;
755                 if (devc->empty_transfer_count > MAX_EMPTY_TRANSFERS) {
756                         /*
757                          * The FX2 gave up. End the acquisition, the frontend
758                          * will work out that the samplecount is short.
759                          */
760                         devc->sent_samples = -2;
761                         free_transfer(transfer);
762                 } else {
763                         resubmit_transfer(transfer);
764                 }
765                 return;
766         } else {
767                 devc->empty_transfer_count = 0;
768         }
769
770         new_samples = convert_sample_data(devc, devc->convbuffer,
771                         devc->convbuffer_size, transfer->buffer, transfer->actual_length);
772
773         if (new_samples > 0) {
774                 if (devc->trigger_fired) {
775                         /* Send the incoming transfer to the session bus. */
776                         packet.type = SR_DF_LOGIC;
777                         packet.payload = &logic;
778                         if (devc->limit_samples &&
779                                         new_samples > devc->limit_samples - devc->sent_samples)
780                                 new_samples = devc->limit_samples - devc->sent_samples;
781                         logic.length = new_samples * 2;
782                         logic.unitsize = 2;
783                         logic.data = devc->convbuffer;
784                         sr_session_send(devc->cb_data, &packet);
785                         devc->sent_samples += new_samples;
786                 } else {
787                         trigger_offset = soft_trigger_logic_check(devc->stl,
788                                         devc->convbuffer, new_samples * 2, &pre_trigger_samples);
789                         if (trigger_offset > -1) {
790                                 devc->sent_samples += pre_trigger_samples;
791                                 packet.type = SR_DF_LOGIC;
792                                 packet.payload = &logic;
793                                 num_samples = new_samples - trigger_offset;
794                                 if (devc->limit_samples &&
795                                                 num_samples > devc->limit_samples - devc->sent_samples)
796                                         num_samples = devc->limit_samples - devc->sent_samples;
797                                 logic.length = num_samples * 2;
798                                 logic.unitsize = 2;
799                                 logic.data = devc->convbuffer + trigger_offset * 2;
800                                 sr_session_send(devc->cb_data, &packet);
801                                 devc->sent_samples += num_samples;
802
803                                 devc->trigger_fired = TRUE;
804                         }
805                 }
806
807                 if (devc->limit_samples &&
808                                 (uint64_t)devc->sent_samples >= devc->limit_samples) {
809                         devc->sent_samples = -2;
810                         free_transfer(transfer);
811                         return;
812                 }
813         }
814
815         resubmit_transfer(transfer);
816 }