]> sigrok.org Git - libsigrok.git/blob - src/hardware/saleae-logic16/protocol.c
saleae-logic16: Support new bitstream version 1.3 with renumbered registers
[libsigrok.git] / src / hardware / saleae-logic16 / protocol.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2013 Marcus Comstedt <marcus@mc.pp.se>
5  * Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
6  * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
7  *
8  * This program is free software: you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 3 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21
22 #include <stdint.h>
23 #include <string.h>
24 #include <glib.h>
25 #include <glib/gstdio.h>
26 #include <stdio.h>
27 #include <errno.h>
28 #include <math.h>
29 #include "libsigrok.h"
30 #include "libsigrok-internal.h"
31 #include "protocol.h"
32
33 #define FPGA_FIRMWARE_18        FIRMWARE_DIR"/saleae-logic16-fpga-18.bitstream"
34 #define FPGA_FIRMWARE_33        FIRMWARE_DIR"/saleae-logic16-fpga-33.bitstream"
35
36 #define MAX_SAMPLE_RATE         SR_MHZ(100)
37 #define MAX_4CH_SAMPLE_RATE     SR_MHZ(50)
38 #define MAX_7CH_SAMPLE_RATE     SR_MHZ(40)
39 #define MAX_8CH_SAMPLE_RATE     SR_MHZ(32)
40 #define MAX_10CH_SAMPLE_RATE    SR_MHZ(25)
41 #define MAX_13CH_SAMPLE_RATE    SR_MHZ(16)
42
43 #define BASE_CLOCK_0_FREQ       SR_MHZ(100)
44 #define BASE_CLOCK_1_FREQ       SR_MHZ(160)
45
46 #define COMMAND_START_ACQUISITION       1
47 #define COMMAND_ABORT_ACQUISITION_ASYNC 2
48 #define COMMAND_WRITE_EEPROM            6
49 #define COMMAND_READ_EEPROM             7
50 #define COMMAND_WRITE_LED_TABLE         0x7a
51 #define COMMAND_SET_LED_MODE            0x7b
52 #define COMMAND_RETURN_TO_BOOTLOADER    0x7c
53 #define COMMAND_ABORT_ACQUISITION_SYNC  0x7d
54 #define COMMAND_FPGA_UPLOAD_INIT        0x7e
55 #define COMMAND_FPGA_UPLOAD_SEND_DATA   0x7f
56 #define COMMAND_FPGA_WRITE_REGISTER     0x80
57 #define COMMAND_FPGA_READ_REGISTER      0x81
58 #define COMMAND_GET_REVID               0x82
59
60 #define WRITE_EEPROM_COOKIE1            0x42
61 #define WRITE_EEPROM_COOKIE2            0x55
62 #define READ_EEPROM_COOKIE1             0x33
63 #define READ_EEPROM_COOKIE2             0x81
64 #define ABORT_ACQUISITION_SYNC_PATTERN  0x55
65
66 #define MAX_EMPTY_TRANSFERS             64
67
68 /* Register mappings for old and new bitstream versions */
69
70 enum fpga_register_id {
71         FPGA_REGISTER_VERSION,
72         FPGA_REGISTER_STATUS_CONTROL,
73         FPGA_REGISTER_CHANNEL_SELECT_LOW,
74         FPGA_REGISTER_CHANNEL_SELECT_HIGH,
75         FPGA_REGISTER_SAMPLE_RATE_DIVISOR,
76         FPGA_REGISTER_LED_BRIGHTNESS,
77         FPGA_REGISTER_PRIMER_DATA1,
78         FPGA_REGISTER_PRIMER_CONTROL,
79         FPGA_REGISTER_MODE,
80         FPGA_REGISTER_PRIMER_DATA2,
81         FPGA_REGISTER_MAX = FPGA_REGISTER_PRIMER_DATA2
82 };
83
84 enum fpga_status_control_bit {
85         FPGA_STATUS_CONTROL_BIT_RUNNING,
86         FPGA_STATUS_CONTROL_BIT_UPDATE,
87         FPGA_STATUS_CONTROL_BIT_UNKNOWN1,
88         FPGA_STATUS_CONTROL_BIT_OVERFLOW,
89         FPGA_STATUS_CONTROL_BIT_UNKNOWN2,
90         FPGA_STATUS_CONTROL_BIT_MAX = FPGA_STATUS_CONTROL_BIT_UNKNOWN2
91 };
92
93 enum fpga_mode_bit {
94         FPGA_MODE_BIT_CLOCK,
95         FPGA_MODE_BIT_UNKNOWN1,
96         FPGA_MODE_BIT_UNKNOWN2,
97         FPGA_MODE_BIT_MAX = FPGA_MODE_BIT_UNKNOWN2
98 };
99
100 static const uint8_t fpga_register_map_old[FPGA_REGISTER_MAX + 1] = {
101         [FPGA_REGISTER_VERSION]                 = 0,
102         [FPGA_REGISTER_STATUS_CONTROL]          = 1,
103         [FPGA_REGISTER_CHANNEL_SELECT_LOW]      = 2,
104         [FPGA_REGISTER_CHANNEL_SELECT_HIGH]     = 3,
105         [FPGA_REGISTER_SAMPLE_RATE_DIVISOR]     = 4,
106         [FPGA_REGISTER_LED_BRIGHTNESS]          = 5,
107         [FPGA_REGISTER_PRIMER_DATA1]            = 6,
108         [FPGA_REGISTER_PRIMER_CONTROL]          = 7,
109         [FPGA_REGISTER_MODE]                    = 10,
110         [FPGA_REGISTER_PRIMER_DATA2]            = 12,
111 };
112
113 static const uint8_t fpga_register_map_new[FPGA_REGISTER_MAX + 1] = {
114         [FPGA_REGISTER_VERSION]                 = 7,
115         [FPGA_REGISTER_STATUS_CONTROL]          = 15,
116         [FPGA_REGISTER_CHANNEL_SELECT_LOW]      = 1,
117         [FPGA_REGISTER_CHANNEL_SELECT_HIGH]     = 6,
118         [FPGA_REGISTER_SAMPLE_RATE_DIVISOR]     = 11,
119         [FPGA_REGISTER_LED_BRIGHTNESS]          = 5,
120         [FPGA_REGISTER_PRIMER_DATA1]            = 14,
121         [FPGA_REGISTER_PRIMER_CONTROL]          = 2,
122         [FPGA_REGISTER_MODE]                    = 4,
123         [FPGA_REGISTER_PRIMER_DATA2]            = 3,
124 };
125
126 static const uint8_t fpga_status_control_bit_map_old[FPGA_STATUS_CONTROL_BIT_MAX + 1] = {
127         [FPGA_STATUS_CONTROL_BIT_RUNNING]       = 0x01,
128         [FPGA_STATUS_CONTROL_BIT_UPDATE]        = 0x02,
129         [FPGA_STATUS_CONTROL_BIT_UNKNOWN1]      = 0x08,
130         [FPGA_STATUS_CONTROL_BIT_OVERFLOW]      = 0x20,
131         [FPGA_STATUS_CONTROL_BIT_UNKNOWN2]      = 0x40,
132 };
133
134 static const uint8_t fpga_status_control_bit_map_new[FPGA_STATUS_CONTROL_BIT_MAX + 1] = {
135         [FPGA_STATUS_CONTROL_BIT_RUNNING]       = 0x20,
136         [FPGA_STATUS_CONTROL_BIT_UPDATE]        = 0x08,
137         [FPGA_STATUS_CONTROL_BIT_UNKNOWN1]      = 0x10,
138         [FPGA_STATUS_CONTROL_BIT_OVERFLOW]      = 0x01,
139         [FPGA_STATUS_CONTROL_BIT_UNKNOWN2]      = 0x04,
140 };
141
142 static const uint8_t fpga_mode_bit_map_old[FPGA_MODE_BIT_MAX + 1] = {
143         [FPGA_MODE_BIT_CLOCK]           = 0x01,
144         [FPGA_MODE_BIT_UNKNOWN1]        = 0x40,
145         [FPGA_MODE_BIT_UNKNOWN2]        = 0x80,
146 };
147
148 static const uint8_t fpga_mode_bit_map_new[FPGA_MODE_BIT_MAX + 1] = {
149         [FPGA_MODE_BIT_CLOCK]           = 0x04,
150         [FPGA_MODE_BIT_UNKNOWN1]        = 0x80,
151         [FPGA_MODE_BIT_UNKNOWN2]        = 0x01,
152 };
153
154 #define FPGA_REG(x) \
155         (devc->fpga_register_map[FPGA_REGISTER_ ## x])
156
157 #define FPGA_STATUS_CONTROL(x) \
158         (devc->fpga_status_control_bit_map[FPGA_STATUS_CONTROL_BIT_ ## x])
159
160 #define FPGA_MODE(x) \
161         (devc->fpga_mode_bit_map[FPGA_MODE_BIT_ ## x])
162
163 static void encrypt(uint8_t *dest, const uint8_t *src, uint8_t cnt)
164 {
165         uint8_t state1 = 0x9b, state2 = 0x54;
166         uint8_t t, v;
167         int i;
168
169         for (i = 0; i < cnt; i++) {
170                 v = src[i];
171                 t = (((v ^ state2 ^ 0x2b) - 0x05) ^ 0x35) - 0x39;
172                 t = (((t ^ state1 ^ 0x5a) - 0xb0) ^ 0x38) - 0x45;
173                 dest[i] = state2 = t;
174                 state1 = v;
175         }
176 }
177
178 static void decrypt(uint8_t *dest, const uint8_t *src, uint8_t cnt)
179 {
180         uint8_t state1 = 0x9b, state2 = 0x54;
181         uint8_t t, v;
182         int i;
183
184         for (i = 0; i < cnt; i++) {
185                 v = src[i];
186                 t = (((v + 0x45) ^ 0x38) + 0xb0) ^ 0x5a ^ state1;
187                 t = (((t + 0x39) ^ 0x35) + 0x05) ^ 0x2b ^ state2;
188                 dest[i] = state1 = t;
189                 state2 = v;
190         }
191 }
192
193 static int do_ep1_command(const struct sr_dev_inst *sdi,
194                           const uint8_t *command, uint8_t cmd_len,
195                           uint8_t *reply, uint8_t reply_len)
196 {
197         uint8_t buf[64];
198         struct sr_usb_dev_inst *usb;
199         int ret, xfer;
200
201         usb = sdi->conn;
202
203         if (cmd_len < 1 || cmd_len > 64 || reply_len > 64 ||
204             !command || (reply_len > 0 && !reply))
205                 return SR_ERR_ARG;
206
207         encrypt(buf, command, cmd_len);
208
209         ret = libusb_bulk_transfer(usb->devhdl, 1, buf, cmd_len, &xfer, 1000);
210         if (ret != 0) {
211                 sr_dbg("Failed to send EP1 command 0x%02x: %s.",
212                        command[0], libusb_error_name(ret));
213                 return SR_ERR;
214         }
215         if (xfer != cmd_len) {
216                 sr_dbg("Failed to send EP1 command 0x%02x: incorrect length "
217                        "%d != %d.", xfer, cmd_len);
218                 return SR_ERR;
219         }
220
221         if (reply_len == 0)
222                 return SR_OK;
223
224         ret = libusb_bulk_transfer(usb->devhdl, 0x80 | 1, buf, reply_len,
225                                    &xfer, 1000);
226         if (ret != 0) {
227                 sr_dbg("Failed to receive reply to EP1 command 0x%02x: %s.",
228                        command[0], libusb_error_name(ret));
229                 return SR_ERR;
230         }
231         if (xfer != reply_len) {
232                 sr_dbg("Failed to receive reply to EP1 command 0x%02x: "
233                        "incorrect length %d != %d.", xfer, reply_len);
234                 return SR_ERR;
235         }
236
237         decrypt(reply, buf, reply_len);
238
239         return SR_OK;
240 }
241
242 static int read_eeprom(const struct sr_dev_inst *sdi,
243                        uint8_t address, uint8_t length, uint8_t *buf)
244 {
245         uint8_t command[5] = {
246                 COMMAND_READ_EEPROM,
247                 READ_EEPROM_COOKIE1,
248                 READ_EEPROM_COOKIE2,
249                 address,
250                 length,
251         };
252
253         return do_ep1_command(sdi, command, 5, buf, length);
254 }
255
256 static int upload_led_table(const struct sr_dev_inst *sdi,
257                             const uint8_t *table, uint8_t offset, uint8_t cnt)
258 {
259         uint8_t chunk, command[64];
260         int ret;
261
262         if (cnt < 1 || cnt + offset > 64 || !table)
263                 return SR_ERR_ARG;
264
265         while (cnt > 0) {
266                 chunk = (cnt > 32 ? 32 : cnt);
267
268                 command[0] = COMMAND_WRITE_LED_TABLE;
269                 command[1] = offset;
270                 command[2] = chunk;
271                 memcpy(command + 3, table, chunk);
272
273                 ret = do_ep1_command(sdi, command, 3 + chunk, NULL, 0);
274                 if (ret != SR_OK)
275                         return ret;
276
277                 table += chunk;
278                 offset += chunk;
279                 cnt -= chunk;
280         }
281
282         return SR_OK;
283 }
284
285 static int set_led_mode(const struct sr_dev_inst *sdi,
286                         uint8_t animate, uint16_t t2reload, uint8_t div,
287                         uint8_t repeat)
288 {
289         uint8_t command[6] = {
290                 COMMAND_SET_LED_MODE,
291                 animate,
292                 t2reload & 0xff,
293                 t2reload >> 8,
294                 div,
295                 repeat,
296         };
297
298         return do_ep1_command(sdi, command, 6, NULL, 0);
299 }
300
301 static int read_fpga_register(const struct sr_dev_inst *sdi,
302                               uint8_t address, uint8_t *value)
303 {
304         uint8_t command[3] = {
305                 COMMAND_FPGA_READ_REGISTER,
306                 1,
307                 address,
308         };
309
310         return do_ep1_command(sdi, command, 3, value, 1);
311 }
312
313 static int write_fpga_registers(const struct sr_dev_inst *sdi,
314                                 uint8_t (*regs)[2], uint8_t cnt)
315 {
316         uint8_t command[64];
317         int i;
318
319         if (cnt < 1 || cnt > 31)
320                 return SR_ERR_ARG;
321
322         command[0] = COMMAND_FPGA_WRITE_REGISTER;
323         command[1] = cnt;
324         for (i = 0; i < cnt; i++) {
325                 command[2 + 2 * i] = regs[i][0];
326                 command[3 + 2 * i] = regs[i][1];
327         }
328
329         return do_ep1_command(sdi, command, 2 * (cnt + 1), NULL, 0);
330 }
331
332 static int write_fpga_register(const struct sr_dev_inst *sdi,
333                                uint8_t address, uint8_t value)
334 {
335         uint8_t regs[2] = { address, value };
336
337         return write_fpga_registers(sdi, &regs, 1);
338 }
339
340 static uint8_t map_eeprom_data(uint8_t v)
341 {
342         return (((v ^ 0x80) + 0x44) ^ 0xd5) + 0x69;
343 }
344
345 static int setup_register_mapping(const struct sr_dev_inst *sdi)
346 {
347         struct dev_context *devc;
348         int ret;
349
350         devc = sdi->priv;
351
352         if (devc->fpga_variant != FPGA_VARIANT_MCUPRO) {
353                 uint8_t reg0, reg7;
354
355                 /*
356                  * Check for newer bitstream version by polling the
357                  * version register at the old and new location.
358                  */
359
360                 if ((ret = read_fpga_register(sdi, 0 /* No mapping */, &reg0)) != SR_OK)
361                         return ret;
362
363                 if ((ret = read_fpga_register(sdi, 7 /* No mapping */, &reg7)) != SR_OK)
364                         return ret;
365
366                 if (reg0 == 0 && reg7 > 0x10)
367                         devc->fpga_variant = FPGA_VARIANT_ORIGINAL_NEW_BITSTREAM;
368                 else
369                         devc->fpga_variant = FPGA_VARIANT_ORIGINAL;
370         }
371
372         if (devc->fpga_variant == FPGA_VARIANT_ORIGINAL_NEW_BITSTREAM) {
373                 devc->fpga_register_map = fpga_register_map_new;
374                 devc->fpga_status_control_bit_map = fpga_status_control_bit_map_new;
375                 devc->fpga_mode_bit_map = fpga_mode_bit_map_new;
376         } else {
377                 devc->fpga_register_map = fpga_register_map_old;
378                 devc->fpga_status_control_bit_map = fpga_status_control_bit_map_old;
379                 devc->fpga_mode_bit_map = fpga_mode_bit_map_old;
380         }
381
382         return SR_OK;
383 }
384
385 static int prime_fpga(const struct sr_dev_inst *sdi)
386 {
387         struct dev_context *devc = sdi->priv;
388         uint8_t eeprom_data[16];
389         uint8_t old_mode_reg, version;
390         uint8_t regs[8][2] = {
391                 {FPGA_REG(MODE), 0x00},
392                 {FPGA_REG(MODE), FPGA_MODE(UNKNOWN1)},
393                 {FPGA_REG(PRIMER_DATA2), 0},
394                 {FPGA_REG(MODE), FPGA_MODE(UNKNOWN1) | FPGA_MODE(UNKNOWN2)},
395                 {FPGA_REG(MODE), FPGA_MODE(UNKNOWN1)},
396                 {FPGA_REG(PRIMER_DATA1), 0},
397                 {FPGA_REG(PRIMER_CONTROL), 1},
398                 {FPGA_REG(PRIMER_CONTROL), 0}
399         };
400         int i, ret;
401
402         if ((ret = read_eeprom(sdi, 16, 16, eeprom_data)) != SR_OK)
403                 return ret;
404
405         if ((ret = read_fpga_register(sdi, FPGA_REG(MODE), &old_mode_reg)) != SR_OK)
406                 return ret;
407
408         regs[0][1] = (old_mode_reg &= ~FPGA_MODE(UNKNOWN2));
409         regs[1][1] |= old_mode_reg;
410         regs[3][1] |= old_mode_reg;
411         regs[4][1] |= old_mode_reg;
412
413         for (i = 0; i < 16; i++) {
414                 regs[2][1] = eeprom_data[i];
415                 regs[5][1] = map_eeprom_data(eeprom_data[i]);
416                 if (i)
417                         ret = write_fpga_registers(sdi, &regs[2], 6);
418                 else
419                         ret = write_fpga_registers(sdi, &regs[0], 8);
420                 if (ret != SR_OK)
421                         return ret;
422         }
423
424         if ((ret = write_fpga_register(sdi, FPGA_REG(MODE), old_mode_reg)) != SR_OK)
425                 return ret;
426
427         if ((ret = read_fpga_register(sdi, FPGA_REG(VERSION), &version)) != SR_OK)
428                 return ret;
429
430         if (version != 0x10 && version != 0x13 && version != 0x40 && version != 0x41) {
431                 sr_err("Unsupported FPGA version: 0x%02x.", version);
432                 return SR_ERR;
433         }
434
435         return SR_OK;
436 }
437
438 static void make_heartbeat(uint8_t *table, int len)
439 {
440         int i, j;
441
442         memset(table, 0, len);
443         len >>= 3;
444         for (i = 0; i < 2; i++)
445                 for (j = 0; j < len; j++)
446                         *table++ = sin(j * G_PI / len) * 255;
447 }
448
449 static int configure_led(const struct sr_dev_inst *sdi)
450 {
451         uint8_t table[64];
452         int ret;
453
454         make_heartbeat(table, 64);
455         if ((ret = upload_led_table(sdi, table, 0, 64)) != SR_OK)
456                 return ret;
457
458         return set_led_mode(sdi, 1, 6250, 0, 1);
459 }
460
461 static int upload_fpga_bitstream(const struct sr_dev_inst *sdi,
462                                  enum voltage_range vrange)
463 {
464         struct dev_context *devc;
465         int offset, chunksize, ret;
466         const char *filename;
467         uint8_t len, buf[256 * 62], command[64];
468         FILE *fw;
469
470         devc = sdi->priv;
471
472         if (devc->cur_voltage_range == vrange)
473                 return SR_OK;
474
475         if (devc->fpga_variant != FPGA_VARIANT_MCUPRO) {
476                 switch (vrange) {
477                 case VOLTAGE_RANGE_18_33_V:
478                         filename = FPGA_FIRMWARE_18;
479                         break;
480                 case VOLTAGE_RANGE_5_V:
481                         filename = FPGA_FIRMWARE_33;
482                         break;
483                 default:
484                         sr_err("Unsupported voltage range.");
485                         return SR_ERR;
486                 }
487
488                 sr_info("Uploading FPGA bitstream at %s.", filename);
489                 if (!(fw = g_fopen(filename, "rb"))) {
490                         sr_err("Unable to open bitstream file %s for reading: %s.",
491                                filename, strerror(errno));
492                         return SR_ERR;
493                 }
494
495                 buf[0] = COMMAND_FPGA_UPLOAD_INIT;
496                 if ((ret = do_ep1_command(sdi, buf, 1, NULL, 0)) != SR_OK) {
497                         fclose(fw);
498                         return ret;
499                 }
500
501                 while (1) {
502                         chunksize = fread(buf, 1, sizeof(buf), fw);
503                         if (chunksize == 0)
504                                 break;
505
506                         for (offset = 0; offset < chunksize; offset += 62) {
507                                 len = (offset + 62 > chunksize ?
508                                         chunksize - offset : 62);
509                                 command[0] = COMMAND_FPGA_UPLOAD_SEND_DATA;
510                                 command[1] = len;
511                                 memcpy(command + 2, buf + offset, len);
512                                 ret = do_ep1_command(sdi, command, len + 2, NULL, 0);
513                                 if (ret != SR_OK) {
514                                         fclose(fw);
515                                         return ret;
516                                 }
517                         }
518
519                         sr_info("Uploaded %d bytes.", chunksize);
520                 }
521                 fclose(fw);
522                 sr_info("FPGA bitstream upload done.");
523         }
524
525         /* This needs to be called before accessing any FPGA registers. */
526         if ((ret = setup_register_mapping(sdi)) != SR_OK)
527                 return ret;
528
529         if ((ret = prime_fpga(sdi)) != SR_OK)
530                 return ret;
531
532         if ((ret = configure_led(sdi)) != SR_OK)
533                 return ret;
534
535         devc->cur_voltage_range = vrange;
536         return SR_OK;
537 }
538
539 static int abort_acquisition_sync(const struct sr_dev_inst *sdi)
540 {
541         static const uint8_t command[2] = {
542                 COMMAND_ABORT_ACQUISITION_SYNC,
543                 ABORT_ACQUISITION_SYNC_PATTERN,
544         };
545         uint8_t reply, expected_reply;
546         int ret;
547
548         if ((ret = do_ep1_command(sdi, command, 2, &reply, 1)) != SR_OK)
549                 return ret;
550
551         expected_reply = ~command[1];
552         if (reply != expected_reply) {
553                 sr_err("Invalid response for abort acquisition command: "
554                        "0x%02x != 0x%02x.", reply, expected_reply);
555                 return SR_ERR;
556         }
557
558         return SR_OK;
559 }
560
561 SR_PRIV int logic16_setup_acquisition(const struct sr_dev_inst *sdi,
562                              uint64_t samplerate, uint16_t channels)
563 {
564         uint8_t clock_select, sta_con_reg, mode_reg;
565         uint64_t div;
566         int i, ret, nchan = 0;
567         struct dev_context *devc;
568
569         devc = sdi->priv;
570
571         if (samplerate == 0 || samplerate > MAX_SAMPLE_RATE) {
572                 sr_err("Unable to sample at %" PRIu64 "Hz.", samplerate);
573                 return SR_ERR;
574         }
575
576         if (BASE_CLOCK_0_FREQ % samplerate == 0 &&
577             (div = BASE_CLOCK_0_FREQ / samplerate) <= 256) {
578                 clock_select = 0;
579         } else if (BASE_CLOCK_1_FREQ % samplerate == 0 &&
580                    (div = BASE_CLOCK_1_FREQ / samplerate) <= 256) {
581                 clock_select = 1;
582         } else {
583                 sr_err("Unable to sample at %" PRIu64 "Hz.", samplerate);
584                 return SR_ERR;
585         }
586
587         for (i = 0; i < 16; i++)
588                 if (channels & (1U << i))
589                         nchan++;
590
591         if ((nchan >= 13 && samplerate > MAX_13CH_SAMPLE_RATE) ||
592             (nchan >= 10 && samplerate > MAX_10CH_SAMPLE_RATE) ||
593             (nchan >= 8  && samplerate > MAX_8CH_SAMPLE_RATE) ||
594             (nchan >= 7  && samplerate > MAX_7CH_SAMPLE_RATE) ||
595             (nchan >= 4  && samplerate > MAX_4CH_SAMPLE_RATE)) {
596                 sr_err("Unable to sample at %" PRIu64 "Hz "
597                        "with this many channels.", samplerate);
598                 return SR_ERR;
599         }
600
601         ret = upload_fpga_bitstream(sdi, devc->selected_voltage_range);
602         if (ret != SR_OK)
603                 return ret;
604
605         if ((ret = read_fpga_register(sdi, FPGA_REG(STATUS_CONTROL), &sta_con_reg)) != SR_OK)
606                 return ret;
607
608         /* Ignore FIFO overflow on previous capture */
609         sta_con_reg &= ~FPGA_STATUS_CONTROL(OVERFLOW);
610
611         if (devc->fpga_variant != FPGA_VARIANT_MCUPRO && sta_con_reg != FPGA_STATUS_CONTROL(UNKNOWN1)) {
612                 sr_dbg("Invalid state at acquisition setup register 1: 0x%02x != 0x%02x. "
613                        "Proceeding anyway.", sta_con_reg, FPGA_STATUS_CONTROL(UNKNOWN1));
614         }
615
616         if ((ret = write_fpga_register(sdi, FPGA_REG(STATUS_CONTROL), FPGA_STATUS_CONTROL(UNKNOWN2))) != SR_OK)
617                 return ret;
618
619         if ((ret = write_fpga_register(sdi, FPGA_REG(MODE), (clock_select? FPGA_MODE(CLOCK) : 0))) != SR_OK)
620                 return ret;
621
622         if ((ret = write_fpga_register(sdi, FPGA_REG(SAMPLE_RATE_DIVISOR), (uint8_t)(div - 1))) != SR_OK)
623                 return ret;
624
625         if ((ret = write_fpga_register(sdi, FPGA_REG(CHANNEL_SELECT_LOW), (uint8_t)(channels & 0xff))) != SR_OK)
626                 return ret;
627
628         if ((ret = write_fpga_register(sdi, FPGA_REG(CHANNEL_SELECT_HIGH), (uint8_t)(channels >> 8))) != SR_OK)
629                 return ret;
630
631         if ((ret = write_fpga_register(sdi, FPGA_REG(STATUS_CONTROL), FPGA_STATUS_CONTROL(UNKNOWN2) | FPGA_STATUS_CONTROL(UPDATE))) != SR_OK)
632                 return ret;
633
634         if ((ret = write_fpga_register(sdi, FPGA_REG(STATUS_CONTROL), FPGA_STATUS_CONTROL(UNKNOWN2))) != SR_OK)
635                 return ret;
636
637         if ((ret = read_fpga_register(sdi, FPGA_REG(STATUS_CONTROL), &sta_con_reg)) != SR_OK)
638                 return ret;
639
640         if (devc->fpga_variant != FPGA_VARIANT_MCUPRO && sta_con_reg != (FPGA_STATUS_CONTROL(UNKNOWN2) | FPGA_STATUS_CONTROL(UNKNOWN1))) {
641                 sr_dbg("Invalid state at acquisition setup register 1: 0x%02x != 0x%02x. "
642                        "Proceeding anyway.", sta_con_reg, FPGA_STATUS_CONTROL(UNKNOWN2) | FPGA_STATUS_CONTROL(UNKNOWN1));
643         }
644
645         if ((ret = read_fpga_register(sdi, FPGA_REG(MODE), &mode_reg)) != SR_OK)
646                 return ret;
647
648         if (devc->fpga_variant != FPGA_VARIANT_MCUPRO && mode_reg != (clock_select? FPGA_MODE(CLOCK) : 0)) {
649                 sr_dbg("Invalid state at acquisition setup register 10: 0x%02x != 0x%02x. "
650                        "Proceeding anyway.", mode_reg, (clock_select? FPGA_MODE(CLOCK) : 0));
651         }
652
653         return SR_OK;
654 }
655
656 SR_PRIV int logic16_start_acquisition(const struct sr_dev_inst *sdi)
657 {
658         static const uint8_t command[1] = {
659                 COMMAND_START_ACQUISITION,
660         };
661         int ret;
662         struct dev_context *devc;
663
664         devc = sdi->priv;
665
666         if ((ret = do_ep1_command(sdi, command, 1, NULL, 0)) != SR_OK)
667                 return ret;
668
669         return write_fpga_register(sdi, FPGA_REG(STATUS_CONTROL), FPGA_STATUS_CONTROL(UNKNOWN2) | FPGA_STATUS_CONTROL(RUNNING));
670 }
671
672 SR_PRIV int logic16_abort_acquisition(const struct sr_dev_inst *sdi)
673 {
674         static const uint8_t command[1] = {
675                 COMMAND_ABORT_ACQUISITION_ASYNC,
676         };
677         int ret;
678         uint8_t sta_con_reg;
679         struct dev_context *devc;
680
681         devc = sdi->priv;
682
683         if ((ret = do_ep1_command(sdi, command, 1, NULL, 0)) != SR_OK)
684                 return ret;
685
686         if ((ret = write_fpga_register(sdi, FPGA_REG(STATUS_CONTROL), 0x00)) != SR_OK)
687                 return ret;
688
689         if ((ret = read_fpga_register(sdi, FPGA_REG(STATUS_CONTROL), &sta_con_reg)) != SR_OK)
690                 return ret;
691
692         if (devc->fpga_variant != FPGA_VARIANT_MCUPRO && (sta_con_reg & ~FPGA_STATUS_CONTROL(OVERFLOW)) != FPGA_STATUS_CONTROL(UNKNOWN1)) {
693                 sr_dbg("Invalid state at acquisition stop: 0x%02x != 0x%02x.", sta_con_reg & ~0x20, FPGA_STATUS_CONTROL(UNKNOWN1));
694                 return SR_ERR;
695         }
696
697
698         if (devc->fpga_variant == FPGA_VARIANT_ORIGINAL) {
699                 uint8_t reg8, reg9;
700
701                 if ((ret = read_fpga_register(sdi, 8, &reg8)) != SR_OK)
702                         return ret;
703
704                 if ((ret = read_fpga_register(sdi, 9, &reg9)) != SR_OK)
705                         return ret;
706         }
707
708         if (devc->fpga_variant != FPGA_VARIANT_MCUPRO && sta_con_reg & FPGA_STATUS_CONTROL(OVERFLOW)) {
709                 sr_warn("FIFO overflow, capture data may be truncated.");
710                 return SR_ERR;
711         }
712
713         return SR_OK;
714 }
715
716 SR_PRIV int logic16_init_device(const struct sr_dev_inst *sdi)
717 {
718         uint8_t version;
719         struct dev_context *devc;
720         int ret;
721
722         devc = sdi->priv;
723
724         devc->cur_voltage_range = VOLTAGE_RANGE_UNKNOWN;
725
726         if ((ret = abort_acquisition_sync(sdi)) != SR_OK)
727                 return ret;
728
729         if ((ret = read_eeprom(sdi, 8, 8, devc->eeprom_data)) != SR_OK)
730                 return ret;
731
732         /* mcupro Saleae16 has firmware pre-stored in FPGA.
733            So, we can query it right away. */
734         if (read_fpga_register(sdi, 0 /* No mapping */, &version) == SR_OK &&
735             (version == 0x40 || version == 0x41)) {
736                 sr_info("mcupro Saleae16 detected.");
737                 devc->fpga_variant = FPGA_VARIANT_MCUPRO;
738         } else {
739                 sr_info("Original Saleae Logic16 detected.");
740                 devc->fpga_variant = FPGA_VARIANT_ORIGINAL;
741         }
742
743         ret = upload_fpga_bitstream(sdi, devc->selected_voltage_range);
744         if (ret != SR_OK)
745                 return ret;
746
747         return SR_OK;
748 }
749
750 static void finish_acquisition(struct sr_dev_inst *sdi)
751 {
752         struct sr_datafeed_packet packet;
753         struct dev_context *devc;
754
755         devc = sdi->priv;
756
757         /* Terminate session. */
758         packet.type = SR_DF_END;
759         sr_session_send(devc->cb_data, &packet);
760
761         /* Remove fds from polling. */
762         usb_source_remove(sdi->session, devc->ctx);
763
764         devc->num_transfers = 0;
765         g_free(devc->transfers);
766         g_free(devc->convbuffer);
767         if (devc->stl) {
768                 soft_trigger_logic_free(devc->stl);
769                 devc->stl = NULL;
770         }
771 }
772
773 static void free_transfer(struct libusb_transfer *transfer)
774 {
775         struct sr_dev_inst *sdi;
776         struct dev_context *devc;
777         unsigned int i;
778
779         sdi = transfer->user_data;
780         devc = sdi->priv;
781
782         g_free(transfer->buffer);
783         transfer->buffer = NULL;
784         libusb_free_transfer(transfer);
785
786         for (i = 0; i < devc->num_transfers; i++) {
787                 if (devc->transfers[i] == transfer) {
788                         devc->transfers[i] = NULL;
789                         break;
790                 }
791         }
792
793         devc->submitted_transfers--;
794         if (devc->submitted_transfers == 0)
795                 finish_acquisition(sdi);
796 }
797
798 static void resubmit_transfer(struct libusb_transfer *transfer)
799 {
800         int ret;
801
802         if ((ret = libusb_submit_transfer(transfer)) == LIBUSB_SUCCESS)
803                 return;
804
805         free_transfer(transfer);
806         /* TODO: Stop session? */
807
808         sr_err("%s: %s", __func__, libusb_error_name(ret));
809 }
810
811 static size_t convert_sample_data(struct dev_context *devc,
812                 uint8_t *dest, size_t destcnt, const uint8_t *src, size_t srccnt)
813 {
814         uint16_t *channel_data;
815         int i, cur_channel;
816         size_t ret = 0;
817         uint16_t sample, channel_mask;
818
819         srccnt /= 2;
820
821         channel_data = devc->channel_data;
822         cur_channel = devc->cur_channel;
823
824         while (srccnt--) {
825                 sample = src[0] | (src[1] << 8);
826                 src += 2;
827
828                 channel_mask = devc->channel_masks[cur_channel];
829
830                 for (i = 15; i >= 0; --i, sample >>= 1)
831                         if (sample & 1)
832                                 channel_data[i] |= channel_mask;
833
834                 if (++cur_channel == devc->num_channels) {
835                         cur_channel = 0;
836                         if (destcnt < 16 * 2) {
837                                 sr_err("Conversion buffer too small!");
838                                 break;
839                         }
840                         memcpy(dest, channel_data, 16 * 2);
841                         memset(channel_data, 0, 16 * 2);
842                         dest += 16 * 2;
843                         ret += 16;
844                         destcnt -= 16 * 2;
845                 }
846         }
847
848         devc->cur_channel = cur_channel;
849
850         return ret;
851 }
852
853 SR_PRIV void LIBUSB_CALL logic16_receive_transfer(struct libusb_transfer *transfer)
854 {
855         gboolean packet_has_error = FALSE;
856         struct sr_datafeed_packet packet;
857         struct sr_datafeed_logic logic;
858         struct sr_dev_inst *sdi;
859         struct dev_context *devc;
860         size_t new_samples, num_samples;
861         int trigger_offset;
862         int pre_trigger_samples;
863
864         sdi = transfer->user_data;
865         devc = sdi->priv;
866
867         /*
868          * If acquisition has already ended, just free any queued up
869          * transfer that come in.
870          */
871         if (devc->sent_samples < 0) {
872                 free_transfer(transfer);
873                 return;
874         }
875
876         sr_info("receive_transfer(): status %s received %d bytes.",
877                 libusb_error_name(transfer->status), transfer->actual_length);
878
879         switch (transfer->status) {
880         case LIBUSB_TRANSFER_NO_DEVICE:
881                 devc->sent_samples = -2;
882                 free_transfer(transfer);
883                 return;
884         case LIBUSB_TRANSFER_COMPLETED:
885         case LIBUSB_TRANSFER_TIMED_OUT: /* We may have received some data though. */
886                 break;
887         default:
888                 packet_has_error = TRUE;
889                 break;
890         }
891
892         if (transfer->actual_length & 1) {
893                 sr_err("Got an odd number of bytes from the device. "
894                        "This should not happen.");
895                 /* Bail out right away. */
896                 packet_has_error = TRUE;
897                 devc->empty_transfer_count = MAX_EMPTY_TRANSFERS;
898         }
899
900         if (transfer->actual_length == 0 || packet_has_error) {
901                 devc->empty_transfer_count++;
902                 if (devc->empty_transfer_count > MAX_EMPTY_TRANSFERS) {
903                         /*
904                          * The FX2 gave up. End the acquisition, the frontend
905                          * will work out that the samplecount is short.
906                          */
907                         devc->sent_samples = -2;
908                         free_transfer(transfer);
909                 } else {
910                         resubmit_transfer(transfer);
911                 }
912                 return;
913         } else {
914                 devc->empty_transfer_count = 0;
915         }
916
917         new_samples = convert_sample_data(devc, devc->convbuffer,
918                         devc->convbuffer_size, transfer->buffer, transfer->actual_length);
919
920         if (new_samples > 0) {
921                 if (devc->trigger_fired) {
922                         /* Send the incoming transfer to the session bus. */
923                         packet.type = SR_DF_LOGIC;
924                         packet.payload = &logic;
925                         if (devc->limit_samples &&
926                                         new_samples > devc->limit_samples - devc->sent_samples)
927                                 new_samples = devc->limit_samples - devc->sent_samples;
928                         logic.length = new_samples * 2;
929                         logic.unitsize = 2;
930                         logic.data = devc->convbuffer;
931                         sr_session_send(devc->cb_data, &packet);
932                         devc->sent_samples += new_samples;
933                 } else {
934                         trigger_offset = soft_trigger_logic_check(devc->stl,
935                                         devc->convbuffer, new_samples * 2, &pre_trigger_samples);
936                         if (trigger_offset > -1) {
937                                 devc->sent_samples += pre_trigger_samples;
938                                 packet.type = SR_DF_LOGIC;
939                                 packet.payload = &logic;
940                                 num_samples = new_samples - trigger_offset;
941                                 if (devc->limit_samples &&
942                                                 num_samples > devc->limit_samples - devc->sent_samples)
943                                         num_samples = devc->limit_samples - devc->sent_samples;
944                                 logic.length = num_samples * 2;
945                                 logic.unitsize = 2;
946                                 logic.data = devc->convbuffer + trigger_offset * 2;
947                                 sr_session_send(devc->cb_data, &packet);
948                                 devc->sent_samples += num_samples;
949
950                                 devc->trigger_fired = TRUE;
951                         }
952                 }
953
954                 if (devc->limit_samples &&
955                                 (uint64_t)devc->sent_samples >= devc->limit_samples) {
956                         devc->sent_samples = -2;
957                         free_transfer(transfer);
958                         return;
959                 }
960         }
961
962         resubmit_transfer(transfer);
963 }