]> sigrok.org Git - libsigrok.git/blob - src/hardware/lecroy-xstream/protocol.c
drivers: Use array-based approach in some places.
[libsigrok.git] / src / hardware / lecroy-xstream / protocol.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2017 Sven Schnelle <svens@stackframe.org>
5  *
6  * This program is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <config.h>
21 #include <math.h>
22 #include <stdlib.h>
23 #include "scpi.h"
24 #include "protocol.h"
25
26 struct lecroy_wavedesc_2_x {
27         uint16_t comm_type;
28         uint16_t comm_order; /* 1 - little endian */
29         uint32_t wave_descriptor_length;
30         uint32_t user_text_len;
31         uint32_t res_desc1;
32         uint32_t trigtime_array_length;
33         uint32_t ris_time1_array_length;
34         uint32_t res_array1;
35         uint32_t wave_array1_length;
36         uint32_t wave_array2_length;
37         uint32_t wave_array3_length;
38         uint32_t wave_array4_length;
39         char instrument_name[16];
40         uint32_t instrument_number;
41         char trace_label[16];
42         uint32_t reserved;
43         uint32_t wave_array_count;
44         uint32_t points_per_screen;
45         uint32_t first_valid_point;
46         uint32_t last_valid_point;
47         uint32_t first_point;
48         uint32_t sparsing_factor;
49         uint32_t segment_index;
50         uint32_t subarray_count;
51         uint32_t sweeps_per_acq;
52         uint16_t points_per_pair;
53         uint16_t pair_offset;
54         float vertical_gain;
55         float vertical_offset;
56         float max_value;
57         float min_value;
58         uint16_t nominal_bits;
59         uint16_t nom_subarray_count;
60         float horiz_interval;
61         double horiz_offset;
62         double pixel_offset;
63         char vertunit[48];
64         char horunit[48];
65         uint32_t reserved1;
66         double trigger_time;
67 } __attribute__((packed));
68
69 struct lecroy_wavedesc {
70         char descriptor_name[16];
71         char template_name[16];
72         union {
73                 struct lecroy_wavedesc_2_x version_2_x;
74         };
75 } __attribute__((packed));
76
77 static const char *coupling_options[] = {
78         "A1M", // AC with 1 MOhm termination
79         "D50", // DC with 50 Ohm termination
80         "D1M", // DC with 1 MOhm termination
81         "GND",
82         "OVL",
83 };
84
85 static const char *scope_trigger_slopes[] = {
86         "POS", "NEG",
87 };
88
89 static const char *trigger_sources[] = {
90         "C1", "C2", "C3", "C4", "LINE", "EXT",
91 };
92
93 static const struct sr_rational timebases[] = {
94         /* picoseconds */
95         { 20, 1000000000000 },
96         { 50, 1000000000000 },
97         { 100, 1000000000000 },
98         { 200, 1000000000000 },
99         { 500, 1000000000000 },
100         /* nanoseconds */
101         { 1, 1000000000 },
102         { 2, 1000000000 },
103         { 5, 1000000000 },
104         { 10, 1000000000 },
105         { 20, 1000000000 },
106         { 50, 1000000000 },
107         { 100, 1000000000 },
108         { 200, 1000000000 },
109         { 500, 1000000000 },
110         /* microseconds */
111         { 1, 1000000 },
112         { 2, 1000000 },
113         { 5, 1000000 },
114         { 10, 1000000 },
115         { 20, 1000000 },
116         { 50, 1000000 },
117         { 100, 1000000 },
118         { 200, 1000000 },
119         { 500, 1000000 },
120         /* milliseconds */
121         { 1, 1000 },
122         { 2, 1000 },
123         { 5, 1000 },
124         { 10, 1000 },
125         { 20, 1000 },
126         { 50, 1000 },
127         { 100, 1000 },
128         { 200, 1000 },
129         { 500, 1000 },
130         /* seconds */
131         { 1, 1 },
132         { 2, 1 },
133         { 5, 1 },
134         { 10, 1 },
135         { 20, 1 },
136         { 50, 1 },
137         { 100, 1 },
138         { 200, 1 },
139         { 500, 1 },
140         { 1000, 1 },
141 };
142
143 static const struct sr_rational vdivs[] = {
144         /* millivolts */
145         { 1, 1000 },
146         { 2, 1000 },
147         { 5, 1000 },
148         { 10, 1000 },
149         { 20, 1000 },
150         { 50, 1000 },
151         { 100, 1000 },
152         { 200, 1000 },
153         { 500, 1000 },
154         /* volts */
155         { 1, 1 },
156         { 2, 1 },
157         { 5, 1 },
158         { 10, 1 },
159         { 20, 1 },
160         { 50, 1 },
161 };
162
163 static const char *scope_analog_channel_names[] = {
164         "CH1", "CH2", "CH3", "CH4",
165 };
166
167 static const struct scope_config scope_models[] = {
168         {
169                 .name = { "WP7000", "WP7100", "WP7200", "WP7300" },
170
171                 .analog_channels = 4,
172                 .analog_names = &scope_analog_channel_names,
173
174                 .coupling_options = &coupling_options,
175                 .num_coupling_options = ARRAY_SIZE(coupling_options),
176
177                 .trigger_sources = &trigger_sources,
178                 .num_trigger_sources = ARRAY_SIZE(trigger_sources),
179
180                 .trigger_slopes = &scope_trigger_slopes,
181                 .num_trigger_slopes = ARRAY_SIZE(scope_trigger_slopes),
182
183                 .timebases = timebases,
184                 .num_timebases = ARRAY_SIZE(timebases),
185
186                 .vdivs = vdivs,
187                 .num_vdivs = ARRAY_SIZE(vdivs),
188
189                 .num_xdivs = 10,
190                 .num_ydivs = 8,
191         },
192 };
193
194 static void scope_state_dump(const struct scope_config *config,
195                              struct scope_state *state)
196 {
197         unsigned int i;
198         char *tmp;
199
200         for (i = 0; i < config->analog_channels; i++) {
201                 tmp = sr_voltage_string(config->vdivs[state->analog_channels[i].vdiv].p,
202                                         config->vdivs[state->analog_channels[i].vdiv].q);
203                 sr_info("State of analog channel %d -> %s : %s (coupling) %s (vdiv) %2.2e (offset)",
204                         i + 1, state->analog_channels[i].state ? "On" : "Off",
205                         (*config->coupling_options)[state->analog_channels[i].coupling],
206                         tmp, state->analog_channels[i].vertical_offset);
207         }
208
209         tmp = sr_period_string(config->timebases[state->timebase].p,
210                                 config->timebases[state->timebase].q);
211         sr_info("Current timebase: %s", tmp);
212         g_free(tmp);
213
214         tmp = sr_samplerate_string(state->sample_rate);
215         sr_info("Current samplerate: %s", tmp);
216         g_free(tmp);
217
218         sr_info("Current trigger: %s (source), %s (slope) %.2f (offset)",
219                 (*config->trigger_sources)[state->trigger_source],
220                 (*config->trigger_slopes)[state->trigger_slope],
221                 state->horiz_triggerpos);
222 }
223
224 static int scope_state_get_array_option(const char *resp,
225         const char *(*array)[], unsigned int n, int *result)
226 {
227         unsigned int i;
228
229         for (i = 0; i < n; i++) {
230                 if (!g_strcmp0(resp, (*array)[i])) {
231                         *result = i;
232                         return SR_OK;
233                 }
234         }
235
236         return SR_ERR;
237 }
238
239 /**
240  * This function takes a value of the form "2.000E-03" and returns the index
241  * of an array where a matching pair was found.
242  *
243  * @param value The string to be parsed.
244  * @param array The array of s/f pairs.
245  * @param array_len The number of pairs in the array.
246  * @param result The index at which a matching pair was found.
247  *
248  * @return SR_ERR on any parsing error, SR_OK otherwise.
249  */
250 static int array_float_get(gchar *value, const struct sr_rational *aval,
251                 int array_len, unsigned int *result)
252 {
253         struct sr_rational rval;
254
255         if (sr_parse_rational(value, &rval) != SR_OK)
256                 return SR_ERR;
257
258         for (int i = 0; i < array_len; i++) {
259                 if (sr_rational_eq(&rval, aval + i)) {
260                         *result = i;
261                         return SR_OK;
262                 }
263         }
264
265         return SR_ERR;
266 }
267
268 static int analog_channel_state_get(struct sr_scpi_dev_inst *scpi,
269                                     const struct scope_config *config,
270                                     struct scope_state *state)
271 {
272         unsigned int i, j;
273         char command[MAX_COMMAND_SIZE];
274         char *tmp_str;
275
276         for (i = 0; i < config->analog_channels; i++) {
277                 g_snprintf(command, sizeof(command), "C%d:TRACE?", i + 1);
278
279                 if (sr_scpi_get_bool(scpi, command,
280                                 &state->analog_channels[i].state) != SR_OK)
281                         return SR_ERR;
282
283                 g_snprintf(command, sizeof(command), "C%d:VDIV?", i + 1);
284
285                 if (sr_scpi_get_string(scpi, command, &tmp_str) != SR_OK)
286                         return SR_ERR;
287
288                 if (array_float_get(tmp_str, ARRAY_AND_SIZE(vdivs), &j) != SR_OK) {
289                         g_free(tmp_str);
290                         sr_err("Could not determine array index for vertical div scale.");
291                         return SR_ERR;
292                 }
293
294                 g_free(tmp_str);
295                 state->analog_channels[i].vdiv = j;
296
297                 g_snprintf(command, sizeof(command), "C%d:OFFSET?", i + 1);
298
299                 if (sr_scpi_get_float(scpi, command, &state->analog_channels[i].vertical_offset) != SR_OK)
300                         return SR_ERR;
301
302                 g_snprintf(command, sizeof(command), "C%d:COUPLING?", i + 1);
303
304                 if (sr_scpi_get_string(scpi, command, &tmp_str) != SR_OK)
305                         return SR_ERR;
306
307
308                 if (scope_state_get_array_option(tmp_str, config->coupling_options,
309                                  config->num_coupling_options,
310                                  &state->analog_channels[i].coupling) != SR_OK)
311                         return SR_ERR;
312
313                 g_free(tmp_str);
314         }
315
316         return SR_OK;
317 }
318
319 SR_PRIV int lecroy_xstream_update_sample_rate(const struct sr_dev_inst *sdi)
320 {
321         struct dev_context *devc;
322         struct scope_state *state;
323         const struct scope_config *config;
324         float memsize, timediv;
325
326         devc = sdi->priv;
327         state = devc->model_state;
328         config = devc->model_config;
329
330         if (sr_scpi_get_float(sdi->conn, "MEMORY_SIZE?", &memsize) != SR_OK)
331                 return SR_ERR;
332
333         if (sr_scpi_get_float(sdi->conn, "TIME_DIV?", &timediv) != SR_OK)
334                 return SR_ERR;
335
336         state->sample_rate = 1 / ((timediv * config->num_xdivs) / memsize);
337
338         return SR_OK;
339 }
340
341 SR_PRIV int lecroy_xstream_state_get(struct sr_dev_inst *sdi)
342 {
343         struct dev_context *devc;
344         struct scope_state *state;
345         const struct scope_config *config;
346         unsigned int i;
347         char *tmp_str, *tmp_str2, *tmpp, *p, *key;
348         char command[MAX_COMMAND_SIZE];
349         char *trig_source = NULL;
350
351         devc = sdi->priv;
352         config = devc->model_config;
353         state = devc->model_state;
354
355         sr_info("Fetching scope state");
356
357         if (analog_channel_state_get(sdi->conn, config, state) != SR_OK)
358                 return SR_ERR;
359
360         if (sr_scpi_get_string(sdi->conn, "TIME_DIV?", &tmp_str) != SR_OK)
361                 return SR_ERR;
362
363         if (array_float_get(tmp_str, ARRAY_AND_SIZE(timebases), &i) != SR_OK) {
364                 g_free(tmp_str);
365                 sr_err("Could not determine array index for timbase scale.");
366                 return SR_ERR;
367         }
368         g_free(tmp_str);
369         state->timebase = i;
370
371         if (sr_scpi_get_string(sdi->conn, "TRIG_SELECT?", &tmp_str) != SR_OK)
372                 return SR_ERR;
373
374         key = tmpp = NULL;
375         tmp_str2 = tmp_str;
376         i = 0;
377         while ((p = strtok_r(tmp_str2, ",", &tmpp))) {
378                 tmp_str2 = NULL;
379                 if (i == 0) {
380                         /* trigger type */
381                 } else if (i & 1) {
382                         key = p;
383                         /* key */
384                 } else if (!(i & 1)) {
385                         if (!strcmp(key, "SR"))
386                                 trig_source = p;
387                 }
388                 i++;
389         }
390
391         if (!trig_source || scope_state_get_array_option(trig_source, config->trigger_sources, config->num_trigger_sources, &state->trigger_source) != SR_OK)
392                 return SR_ERR;
393
394         g_snprintf(command, sizeof(command), "%s:TRIG_SLOPE?", trig_source);
395         if (sr_scpi_get_string(sdi->conn, command, &tmp_str) != SR_OK)
396                 return SR_ERR;
397
398         if (scope_state_get_array_option(tmp_str,
399                 config->trigger_slopes, config->num_trigger_slopes, &state->trigger_slope) != SR_OK)
400                 return SR_ERR;
401
402         if (sr_scpi_get_float(sdi->conn, "TRIG_DELAY?", &state->horiz_triggerpos) != SR_OK)
403                 return SR_ERR;
404
405         if (lecroy_xstream_update_sample_rate(sdi) != SR_OK)
406                 return SR_ERR;
407
408         sr_info("Fetching finished.");
409
410         scope_state_dump(config, state);
411
412         return SR_OK;
413 }
414
415 static struct scope_state *scope_state_new(const struct scope_config *config)
416 {
417         struct scope_state *state;
418
419         state = g_malloc0(sizeof(struct scope_state));
420         state->analog_channels = g_malloc0_n(config->analog_channels,
421                         sizeof(struct analog_channel_state));
422         return state;
423 }
424
425 SR_PRIV void lecroy_xstream_state_free(struct scope_state *state)
426 {
427         g_free(state->analog_channels);
428         g_free(state);
429 }
430
431 SR_PRIV int lecroy_xstream_init_device(struct sr_dev_inst *sdi)
432 {
433         char command[MAX_COMMAND_SIZE];
434         int model_index;
435         unsigned int i, j;
436         struct sr_channel *ch;
437         struct dev_context *devc;
438         gboolean channel_enabled;
439
440         devc = sdi->priv;
441         model_index = -1;
442
443         /* Find the exact model. */
444         for (i = 0; i < ARRAY_SIZE(scope_models); i++) {
445                 for (j = 0; scope_models[i].name[j]; j++) {
446                         if (!strcmp(sdi->model, scope_models[i].name[j])) {
447                                 model_index = i;
448                                 break;
449                         }
450                 }
451                 if (model_index != -1)
452                         break;
453         }
454
455         if (model_index == -1) {
456                 sr_dbg("Unsupported LeCroy device.");
457                 return SR_ERR_NA;
458         }
459
460         devc->analog_groups = g_malloc0(sizeof(struct sr_channel_group*) *
461                                 scope_models[model_index].analog_channels);
462
463         /* Add analog channels. */
464         for (i = 0; i < scope_models[model_index].analog_channels; i++) {
465                 g_snprintf(command, sizeof(command), "C%d:TRACE?", i + 1);
466
467                 if (sr_scpi_get_bool(sdi->conn, command, &channel_enabled) != SR_OK)
468                         return SR_ERR;
469
470                 g_snprintf(command, sizeof(command), "C%d:VDIV?", i + 1);
471
472                 ch = sr_channel_new(sdi, i, SR_CHANNEL_ANALOG, channel_enabled,
473                            (*scope_models[model_index].analog_names)[i]);
474
475                 devc->analog_groups[i] = g_malloc0(sizeof(struct sr_channel_group));
476
477                 devc->analog_groups[i]->name = g_strdup(
478                         (char *)(*scope_models[model_index].analog_names)[i]);
479                 devc->analog_groups[i]->channels = g_slist_append(NULL, ch);
480
481                 sdi->channel_groups = g_slist_append(sdi->channel_groups,
482                                                    devc->analog_groups[i]);
483         }
484
485         devc->model_config = &scope_models[model_index];
486         devc->frame_limit = 0;
487
488         if (!(devc->model_state = scope_state_new(devc->model_config)))
489                 return SR_ERR_MALLOC;
490
491         /* Set the desired response mode. */
492         sr_scpi_send(sdi->conn, "COMM_HEADER OFF,WORD,BIN");
493
494         return SR_OK;
495 }
496
497 static int lecroy_waveform_2_x_to_analog(GByteArray *data,
498                                          struct lecroy_wavedesc *desc,
499                                          struct sr_datafeed_analog *analog)
500 {
501         struct sr_analog_encoding *encoding = analog->encoding;
502         struct sr_analog_meaning *meaning = analog->meaning;
503         struct sr_analog_spec *spec = analog->spec;
504         float *data_float;
505         int16_t *waveform_data;
506         unsigned int i, num_samples;
507
508         data_float = g_malloc(desc->version_2_x.wave_array_count * sizeof(float));
509         num_samples = desc->version_2_x.wave_array_count;
510
511         waveform_data = (int16_t *)(data->data +
512                                     + desc->version_2_x.wave_descriptor_length
513                                     + desc->version_2_x.user_text_len);
514
515         for (i = 0; i < num_samples; i++)
516                 data_float[i] = (float)waveform_data[i]
517                         * desc->version_2_x.vertical_gain
518                         + desc->version_2_x.vertical_offset;
519
520         analog->data = data_float;
521         analog->num_samples = num_samples;
522
523         encoding->unitsize = sizeof(float);
524         encoding->is_signed = TRUE;
525         encoding->is_float = TRUE;
526         encoding->is_bigendian = FALSE;
527         encoding->scale.p = 1;
528         encoding->scale.q = 1;
529         encoding->offset.p = 0;
530         encoding->offset.q = 1;
531
532         encoding->digits = 6;
533         encoding->is_digits_decimal = FALSE;
534
535         if (strcmp(desc->version_2_x.vertunit, "A")) {
536                 meaning->mq = SR_MQ_CURRENT;
537                 meaning->unit = SR_UNIT_AMPERE;
538         } else {
539                 /* Default to voltage. */
540                 meaning->mq = SR_MQ_VOLTAGE;
541                 meaning->unit = SR_UNIT_VOLT;
542         }
543
544         meaning->mqflags = 0;
545         spec->spec_digits = 3;
546
547         return SR_OK;
548 }
549
550 static int lecroy_waveform_to_analog(GByteArray *data,
551                                      struct sr_datafeed_analog *analog)
552 {
553         struct lecroy_wavedesc *desc;
554
555         if (data->len < sizeof(struct lecroy_wavedesc))
556                 return SR_ERR;
557
558         desc = (struct lecroy_wavedesc *)data->data;
559
560         if (!strncmp(desc->template_name, "LECROY_2_2", 16) ||
561             !strncmp(desc->template_name, "LECROY_2_3", 16)) {
562                 return lecroy_waveform_2_x_to_analog(data, desc, analog);
563         }
564
565         sr_err("Waveformat template '%.16s' not supported.",
566                desc->template_name);
567
568         return SR_ERR;
569 }
570
571 SR_PRIV int lecroy_xstream_receive_data(int fd, int revents, void *cb_data)
572 {
573         struct sr_channel *ch;
574         struct sr_dev_inst *sdi;
575         struct dev_context *devc;
576         struct sr_datafeed_packet packet;
577         GByteArray *data;
578         struct sr_datafeed_analog analog;
579         struct sr_analog_encoding encoding;
580         struct sr_analog_meaning meaning;
581         struct sr_analog_spec spec;
582         char buf[8];
583
584         (void)fd;
585         (void)revents;
586
587         data = NULL;
588
589         if (!(sdi = cb_data))
590                 return TRUE;
591
592         if (!(devc = sdi->priv))
593                 return TRUE;
594
595         ch = devc->current_channel->data;
596
597         /*
598          * Send "frame begin" packet upon reception of data for the
599          * first enabled channel.
600          */
601         if (devc->current_channel == devc->enabled_channels) {
602                 packet.type = SR_DF_FRAME_BEGIN;
603                 sr_session_send(sdi, &packet);
604         }
605
606         if (ch->type != SR_CHANNEL_ANALOG)
607                 return SR_ERR;
608
609         /* Pass on the received data of the channel(s). */
610         if (sr_scpi_read_data(sdi->conn, buf, 4) != 4) {
611                 sr_err("Reading header failed.");
612                 return TRUE;
613         }
614
615         if (sr_scpi_get_block(sdi->conn, NULL, &data) != SR_OK) {
616                 if (data)
617                         g_byte_array_free(data, TRUE);
618                 return TRUE;
619         }
620
621         analog.encoding = &encoding;
622         analog.meaning = &meaning;
623         analog.spec = &spec;
624
625         if (lecroy_waveform_to_analog(data, &analog) != SR_OK)
626                 return SR_ERR;
627
628         meaning.channels = g_slist_append(NULL, ch);
629         packet.payload = &analog;
630         packet.type = SR_DF_ANALOG;
631         sr_session_send(sdi, &packet);
632
633         g_byte_array_free(data, TRUE);
634         data = NULL;
635
636         g_slist_free(meaning.channels);
637         g_free(analog.data);
638
639         /*
640          * Advance to the next enabled channel. When data for all enabled
641          * channels was received, then flush potentially queued logic data,
642          * and send the "frame end" packet.
643          */
644         if (devc->current_channel->next) {
645                 devc->current_channel = devc->current_channel->next;
646                 lecroy_xstream_request_data(sdi);
647                 return TRUE;
648         }
649
650         packet.type = SR_DF_FRAME_END;
651         sr_session_send(sdi, &packet);
652
653         /*
654          * End of frame was reached. Stop acquisition after the specified
655          * number of frames, or continue reception by starting over at
656          * the first enabled channel.
657          */
658         if (++devc->num_frames == devc->frame_limit) {
659                 sr_dev_acquisition_stop(sdi);
660         } else {
661                 devc->current_channel = devc->enabled_channels;
662                 lecroy_xstream_request_data(sdi);
663         }
664
665         return TRUE;
666 }