]> sigrok.org Git - libsigrok.git/blob - src/hardware/hantek-6xxx/api.c
ad407a2e29825983a70550f00b03615d0a04f187
[libsigrok.git] / src / hardware / hantek-6xxx / api.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2015 Christer Ekholm <christerekholm@gmail.com>
5  *
6  * This program is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <config.h>
21 #include <math.h>
22 #include "protocol.h"
23
24 /* Max time in ms before we want to check on USB events */
25 #define TICK 200
26
27 #define RANGE(ch) (((float)vdivs[devc->voltage[ch]][0] / vdivs[devc->voltage[ch]][1]) * VDIV_MULTIPLIER)
28
29 static const uint32_t scanopts[] = {
30         SR_CONF_CONN,
31 };
32
33 static const uint32_t drvopts[] = {
34         SR_CONF_OSCILLOSCOPE,
35 };
36
37 static const uint32_t devopts[] = {
38         SR_CONF_CONN | SR_CONF_GET,
39         SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
40         SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
41         SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
42         SR_CONF_NUM_VDIV | SR_CONF_GET,
43 };
44
45 static const uint32_t devopts_cg[] = {
46         SR_CONF_VDIV | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
47         SR_CONF_COUPLING | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
48 };
49
50 static const char *channel_names[] = {
51         "CH1", "CH2",
52 };
53
54 static const char *dc_coupling[] = {
55         "DC",
56 };
57
58 static const char *acdc_coupling[] = {
59         "AC", "DC",
60 };
61
62 static const struct hantek_6xxx_profile dev_profiles[] = {
63         {
64                 0x04b4, 0x6022, 0x1d50, 0x608e, 0x0001,
65                 "Hantek", "6022BE", "fx2lafw-hantek-6022be.fw",
66                 dc_coupling, ARRAY_SIZE(dc_coupling), FALSE,
67         },
68         {
69                 0x8102, 0x8102, 0x1d50, 0x608e, 0x0002,
70                 "Sainsmart", "DDS120", "fx2lafw-sainsmart-dds120.fw",
71                 acdc_coupling, ARRAY_SIZE(acdc_coupling), TRUE,
72         },
73         {
74                 0x04b4, 0x602a, 0x1d50, 0x608e, 0x0003,
75                 "Hantek", "6022BL", "fx2lafw-hantek-6022bl.fw",
76                 dc_coupling, ARRAY_SIZE(dc_coupling), FALSE,
77         },
78         ALL_ZERO
79 };
80
81 static const uint64_t samplerates[] = {
82         SAMPLERATE_VALUES
83 };
84
85 static const uint64_t vdivs[][2] = {
86         VDIV_VALUES
87 };
88
89 static int read_channel(const struct sr_dev_inst *sdi, uint32_t amount);
90
91 static struct sr_dev_inst *hantek_6xxx_dev_new(const struct hantek_6xxx_profile *prof)
92 {
93         struct sr_dev_inst *sdi;
94         struct sr_channel *ch;
95         struct sr_channel_group *cg;
96         struct dev_context *devc;
97         unsigned int i;
98
99         sdi = g_malloc0(sizeof(struct sr_dev_inst));
100         sdi->status = SR_ST_INITIALIZING;
101         sdi->vendor = g_strdup(prof->vendor);
102         sdi->model = g_strdup(prof->model);
103
104         for (i = 0; i < ARRAY_SIZE(channel_names); i++) {
105                 ch = sr_channel_new(sdi, i, SR_CHANNEL_ANALOG, TRUE, channel_names[i]);
106                 cg = g_malloc0(sizeof(struct sr_channel_group));
107                 cg->name = g_strdup(channel_names[i]);
108                 cg->channels = g_slist_append(cg->channels, ch);
109                 sdi->channel_groups = g_slist_append(sdi->channel_groups, cg);
110         }
111
112         devc = g_malloc0(sizeof(struct dev_context));
113
114         for (i = 0; i < NUM_CHANNELS; i++) {
115                 devc->ch_enabled[i] = TRUE;
116                 devc->voltage[i] = DEFAULT_VOLTAGE;
117                 devc->coupling[i] = DEFAULT_COUPLING;
118         }
119         devc->coupling_vals = prof->coupling_vals;
120         devc->coupling_tab_size = prof->coupling_tab_size;
121         devc->has_coupling = prof->has_coupling;
122
123         devc->sample_buf = NULL;
124         devc->sample_buf_write = 0;
125         devc->sample_buf_size = 0;
126
127         devc->profile = prof;
128         devc->dev_state = IDLE;
129         devc->samplerate = DEFAULT_SAMPLERATE;
130
131         sdi->priv = devc;
132
133         return sdi;
134 }
135
136 static int configure_channels(const struct sr_dev_inst *sdi)
137 {
138         struct dev_context *devc;
139         const GSList *l;
140         int p;
141         struct sr_channel *ch;
142         devc = sdi->priv;
143
144         g_slist_free(devc->enabled_channels);
145         devc->enabled_channels = NULL;
146         memset(devc->ch_enabled, 0, sizeof(devc->ch_enabled));
147
148         for (l = sdi->channels, p = 0; l; l = l->next, p++) {
149                 ch = l->data;
150                 if (p < NUM_CHANNELS) {
151                         devc->ch_enabled[p] = ch->enabled;
152                         devc->enabled_channels = g_slist_append(devc->enabled_channels, ch);
153                 }
154         }
155
156         return SR_OK;
157 }
158
159 static void clear_helper(void *priv)
160 {
161         struct dev_context *devc;
162
163         devc = priv;
164         g_slist_free(devc->enabled_channels);
165         g_free(devc);
166 }
167
168 static int dev_clear(const struct sr_dev_driver *di)
169 {
170         return std_dev_clear_with_callback(di, clear_helper);
171 }
172
173 static GSList *scan(struct sr_dev_driver *di, GSList *options)
174 {
175         struct drv_context *drvc;
176         struct dev_context *devc;
177         struct sr_dev_inst *sdi;
178         struct sr_usb_dev_inst *usb;
179         struct sr_config *src;
180         const struct hantek_6xxx_profile *prof;
181         GSList *l, *devices, *conn_devices;
182         struct libusb_device_descriptor des;
183         libusb_device **devlist;
184         int i, j;
185         const char *conn;
186         char connection_id[64];
187
188         drvc = di->context;
189
190         devices = 0;
191
192         conn = NULL;
193         for (l = options; l; l = l->next) {
194                 src = l->data;
195                 if (src->key == SR_CONF_CONN) {
196                         conn = g_variant_get_string(src->data, NULL);
197                         break;
198                 }
199         }
200         if (conn)
201                 conn_devices = sr_usb_find(drvc->sr_ctx->libusb_ctx, conn);
202         else
203                 conn_devices = NULL;
204
205         /* Find all Hantek 60xx devices and upload firmware to all of them. */
206         libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist);
207         for (i = 0; devlist[i]; i++) {
208                 if (conn) {
209                         usb = NULL;
210                         for (l = conn_devices; l; l = l->next) {
211                                 usb = l->data;
212                                 if (usb->bus == libusb_get_bus_number(devlist[i])
213                                         && usb->address == libusb_get_device_address(devlist[i]))
214                                         break;
215                         }
216                         if (!l)
217                                 /* This device matched none of the ones that
218                                  * matched the conn specification. */
219                                 continue;
220                 }
221
222                 libusb_get_device_descriptor(devlist[i], &des);
223
224                 usb_get_port_path(devlist[i], connection_id, sizeof(connection_id));
225
226                 prof = NULL;
227                 for (j = 0; dev_profiles[j].orig_vid; j++) {
228                         if (des.idVendor == dev_profiles[j].orig_vid
229                                 && des.idProduct == dev_profiles[j].orig_pid) {
230                                 /* Device matches the pre-firmware profile. */
231                                 prof = &dev_profiles[j];
232                                 sr_dbg("Found a %s %s.", prof->vendor, prof->model);
233                                 sdi = hantek_6xxx_dev_new(prof);
234                                 sdi->connection_id = g_strdup(connection_id);
235                                 devices = g_slist_append(devices, sdi);
236                                 devc = sdi->priv;
237                                 if (ezusb_upload_firmware(drvc->sr_ctx, devlist[i],
238                                                 USB_CONFIGURATION, prof->firmware) == SR_OK)
239                                         /* Remember when the firmware on this device was updated. */
240                                         devc->fw_updated = g_get_monotonic_time();
241                                 else
242                                         sr_err("Firmware upload failed.");
243                                 /* Dummy USB address of 0xff will get overwritten later. */
244                                 sdi->conn = sr_usb_dev_inst_new(
245                                                 libusb_get_bus_number(devlist[i]), 0xff, NULL);
246                                 break;
247                         } else if (des.idVendor == dev_profiles[j].fw_vid
248                                 && des.idProduct == dev_profiles[j].fw_pid
249                                 && des.bcdDevice == dev_profiles[j].fw_prod_ver) {
250                                 /* Device matches the post-firmware profile. */
251                                 prof = &dev_profiles[j];
252                                 sr_dbg("Found a %s %s.", prof->vendor, prof->model);
253                                 sdi = hantek_6xxx_dev_new(prof);
254                                 sdi->connection_id = g_strdup(connection_id);
255                                 sdi->status = SR_ST_INACTIVE;
256                                 devices = g_slist_append(devices, sdi);
257                                 sdi->inst_type = SR_INST_USB;
258                                 sdi->conn = sr_usb_dev_inst_new(
259                                                 libusb_get_bus_number(devlist[i]),
260                                                 libusb_get_device_address(devlist[i]), NULL);
261                                 break;
262                         }
263                 }
264                 if (!prof)
265                         /* Not a supported VID/PID. */
266                         continue;
267         }
268         libusb_free_device_list(devlist, 1);
269
270         return std_scan_complete(di, devices);
271 }
272
273 static int dev_open(struct sr_dev_inst *sdi)
274 {
275         struct dev_context *devc;
276         struct sr_usb_dev_inst *usb;
277         int64_t timediff_us, timediff_ms;
278         int err;
279
280         devc = sdi->priv;
281         usb = sdi->conn;
282
283         /*
284          * If the firmware was recently uploaded, wait up to MAX_RENUM_DELAY_MS
285          * for the FX2 to renumerate.
286          */
287         err = SR_ERR;
288         if (devc->fw_updated > 0) {
289                 sr_info("Waiting for device to reset.");
290                 /* Takes >= 300ms for the FX2 to be gone from the USB bus. */
291                 g_usleep(300 * 1000);
292                 timediff_ms = 0;
293                 while (timediff_ms < MAX_RENUM_DELAY_MS) {
294                         if ((err = hantek_6xxx_open(sdi)) == SR_OK)
295                                 break;
296                         g_usleep(100 * 1000);
297                         timediff_us = g_get_monotonic_time() - devc->fw_updated;
298                         timediff_ms = timediff_us / 1000;
299                         sr_spew("Waited %" PRIi64 " ms.", timediff_ms);
300                 }
301                 if (timediff_ms < MAX_RENUM_DELAY_MS)
302                         sr_info("Device came back after %"PRIu64" ms.", timediff_ms);
303         } else {
304                 err = hantek_6xxx_open(sdi);
305         }
306
307         if (err != SR_OK) {
308                 sr_err("Unable to open device.");
309                 return SR_ERR;
310         }
311
312         err = libusb_claim_interface(usb->devhdl, USB_INTERFACE);
313         if (err != 0) {
314                 sr_err("Unable to claim interface: %s.",
315                         libusb_error_name(err));
316                 return SR_ERR;
317         }
318
319         return SR_OK;
320 }
321
322 static int dev_close(struct sr_dev_inst *sdi)
323 {
324         hantek_6xxx_close(sdi);
325
326         return SR_OK;
327 }
328
329 static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
330                 const struct sr_channel_group *cg)
331 {
332         struct dev_context *devc;
333         struct sr_usb_dev_inst *usb;
334         char str[128];
335         const uint64_t *vdiv;
336         int ch_idx;
337
338         switch (key) {
339         case SR_CONF_NUM_VDIV:
340                 *data = g_variant_new_int32(ARRAY_SIZE(vdivs));
341                 break;
342         }
343
344         if (!sdi)
345                 return SR_ERR_ARG;
346
347         devc = sdi->priv;
348         if (!cg) {
349                 switch (key) {
350                 case SR_CONF_SAMPLERATE:
351                         *data = g_variant_new_uint64(devc->samplerate);
352                         break;
353                 case SR_CONF_LIMIT_MSEC:
354                         *data = g_variant_new_uint64(devc->limit_msec);
355                         break;
356                 case SR_CONF_LIMIT_SAMPLES:
357                         *data = g_variant_new_uint64(devc->limit_samples);
358                         break;
359                 case SR_CONF_CONN:
360                         if (!sdi->conn)
361                                 return SR_ERR_ARG;
362                         usb = sdi->conn;
363                         if (usb->address == 255)
364                                 /* Device still needs to re-enumerate after firmware
365                                  * upload, so we don't know its (future) address. */
366                                 return SR_ERR;
367                         snprintf(str, 128, "%d.%d", usb->bus, usb->address);
368                         *data = g_variant_new_string(str);
369                         break;
370                 default:
371                         return SR_ERR_NA;
372                 }
373         } else {
374                 if (sdi->channel_groups->data == cg)
375                         ch_idx = 0;
376                 else if (sdi->channel_groups->next->data == cg)
377                         ch_idx = 1;
378                 else
379                         return SR_ERR_ARG;
380                 switch (key) {
381                 case SR_CONF_VDIV:
382                         vdiv = vdivs[devc->voltage[ch_idx]];
383                         *data = g_variant_new("(tt)", vdiv[0], vdiv[1]);
384                         break;
385                 case SR_CONF_COUPLING:
386                         *data = g_variant_new_string((devc->coupling[ch_idx] \
387                                         == COUPLING_DC) ? "DC" : "AC");
388                         break;
389                 }
390         }
391
392         return SR_OK;
393 }
394
395 static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi,
396                 const struct sr_channel_group *cg)
397 {
398         struct dev_context *devc;
399         uint64_t p, q;
400         int tmp_int, ch_idx, ret;
401         unsigned int i;
402         const char *tmp_str;
403
404         ret = SR_OK;
405         devc = sdi->priv;
406         if (!cg) {
407                 switch (key) {
408                 case SR_CONF_SAMPLERATE:
409                         devc->samplerate = g_variant_get_uint64(data);
410                         hantek_6xxx_update_samplerate(sdi);
411                         break;
412                 case SR_CONF_LIMIT_MSEC:
413                         devc->limit_msec = g_variant_get_uint64(data);
414                         break;
415                 case SR_CONF_LIMIT_SAMPLES:
416                         devc->limit_samples = g_variant_get_uint64(data);
417                         break;
418                 default:
419                         ret = SR_ERR_NA;
420                         break;
421                 }
422         } else {
423                 if (sdi->channel_groups->data == cg)
424                         ch_idx = 0;
425                 else if (sdi->channel_groups->next->data == cg)
426                         ch_idx = 1;
427                 else
428                         return SR_ERR_ARG;
429                 switch (key) {
430                 case SR_CONF_VDIV:
431                         g_variant_get(data, "(tt)", &p, &q);
432                         tmp_int = -1;
433                         for (i = 0; i < ARRAY_SIZE(vdivs); i++) {
434                                 if (vdivs[i][0] == p && vdivs[i][1] == q) {
435                                         tmp_int = i;
436                                         break;
437                                 }
438                         }
439                         if (tmp_int >= 0) {
440                                 devc->voltage[ch_idx] = tmp_int;
441                                 hantek_6xxx_update_vdiv(sdi);
442                         } else
443                                 ret = SR_ERR_ARG;
444                         break;
445                 case SR_CONF_COUPLING:
446                         tmp_str = g_variant_get_string(data, NULL);
447                         for (i = 0; i < devc->coupling_tab_size; i++) {
448                                 if (!strcmp(tmp_str, devc->coupling_vals[i])) {
449                                         devc->coupling[ch_idx] = i;
450                                         break;
451                                 }
452                         }
453                         if (i == devc->coupling_tab_size)
454                                 ret = SR_ERR_ARG;
455                         break;
456                 default:
457                         ret = SR_ERR_NA;
458                         break;
459                 }
460         }
461
462         return ret;
463 }
464
465 static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
466                 const struct sr_channel_group *cg)
467 {
468         GVariant *tuple, *rational[2];
469         GVariantBuilder gvb;
470         unsigned int i;
471         GVariant *gvar;
472         struct dev_context *devc = NULL;
473
474         if (key == SR_CONF_SCAN_OPTIONS) {
475                 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
476                         scanopts, ARRAY_SIZE(scanopts), sizeof(uint32_t));
477                 return SR_OK;
478         } else if (key == SR_CONF_DEVICE_OPTIONS && !sdi) {
479                 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
480                         drvopts, ARRAY_SIZE(drvopts), sizeof(uint32_t));
481                 return SR_OK;
482         }
483
484         if (sdi)
485                 devc = sdi->priv;
486
487         if (!cg) {
488                 switch (key) {
489                 case SR_CONF_DEVICE_OPTIONS:
490                         *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
491                                 devopts, ARRAY_SIZE(devopts), sizeof(uint32_t));
492                         break;
493                 case SR_CONF_SAMPLERATE:
494                         g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
495                         gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
496                                 samplerates, ARRAY_SIZE(samplerates),
497                                 sizeof(uint64_t));
498                         g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
499                         *data = g_variant_builder_end(&gvb);
500                         break;
501                 default:
502                         return SR_ERR_NA;
503                 }
504         } else {
505                 switch (key) {
506                 case SR_CONF_DEVICE_OPTIONS:
507                         *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
508                                 devopts_cg, ARRAY_SIZE(devopts_cg), sizeof(uint32_t));
509                         break;
510                 case SR_CONF_COUPLING:
511                         if (!devc)
512                                 return SR_ERR_NA;
513                         *data = g_variant_new_strv(devc->coupling_vals, devc->coupling_tab_size);
514                         break;
515                 case SR_CONF_VDIV:
516                         g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY);
517                         for (i = 0; i < ARRAY_SIZE(vdivs); i++) {
518                                 rational[0] = g_variant_new_uint64(vdivs[i][0]);
519                                 rational[1] = g_variant_new_uint64(vdivs[i][1]);
520                                 tuple = g_variant_new_tuple(rational, 2);
521                                 g_variant_builder_add_value(&gvb, tuple);
522                         }
523                         *data = g_variant_builder_end(&gvb);
524                         break;
525                 default:
526                         return SR_ERR_NA;
527                 }
528         }
529
530         return SR_OK;
531 }
532
533 /* Minimise data amount for limit_samples and limit_msec limits. */
534 static uint32_t data_amount(const struct sr_dev_inst *sdi)
535 {
536         struct dev_context *devc = sdi->priv;
537         uint32_t data_left, data_left_2, i;
538         int32_t time_left;
539
540         if (devc->limit_msec) {
541                 time_left = devc->limit_msec - (g_get_monotonic_time() - devc->aq_started) / 1000;
542                 data_left = devc->samplerate * MAX(time_left, 0) * NUM_CHANNELS / 1000;
543         } else if (devc->limit_samples) {
544                 data_left = (devc->limit_samples - devc->samp_received) * NUM_CHANNELS;
545         } else {
546                 data_left = devc->samplerate * NUM_CHANNELS;
547         }
548
549         /* Round up to nearest power of two. */
550         for (i = MIN_PACKET_SIZE; i < data_left; i *= 2)
551                 ;
552         data_left_2 = i;
553
554         sr_spew("data_amount: %u (rounded to power of 2: %u)", data_left, data_left_2);
555
556         return data_left_2;
557 }
558
559 static void send_chunk(struct sr_dev_inst *sdi, unsigned char *buf,
560                 int num_samples)
561 {
562         struct sr_datafeed_packet packet;
563         struct sr_datafeed_analog analog;
564         struct sr_analog_encoding encoding;
565         struct sr_analog_meaning meaning;
566         struct sr_analog_spec spec;
567         struct dev_context *devc = sdi->priv;
568         GSList *channels = devc->enabled_channels;
569
570         const float ch_bit[] = { RANGE(0) / 255, RANGE(1) / 255 };
571         const float ch_center[] = { RANGE(0) / 2, RANGE(1) / 2 };
572
573         sr_analog_init(&analog, &encoding, &meaning, &spec, 0);
574
575         packet.type = SR_DF_ANALOG;
576         packet.payload = &analog;
577
578         analog.num_samples = num_samples;
579         analog.meaning->mq = SR_MQ_VOLTAGE;
580         analog.meaning->unit = SR_UNIT_VOLT;
581         analog.meaning->mqflags = 0;
582
583         analog.data = g_try_malloc(num_samples * sizeof(float));
584         if (!analog.data) {
585                 sr_err("Analog data buffer malloc failed.");
586                 devc->dev_state = STOPPING;
587                 return;
588         }
589
590         for (int ch = 0; ch < 2; ch++) {
591                 if (!devc->ch_enabled[ch])
592                         continue;
593
594                 float vdivlog = log10f(ch_bit[ch]);
595                 int digits = -(int)vdivlog + (vdivlog < 0.0);
596                 analog.encoding->digits = digits;
597                 analog.spec->spec_digits = digits;
598                 analog.meaning->channels = g_slist_append(NULL, channels->data);
599
600                 for (int i = 0; i < num_samples; i++) {
601                         /*
602                          * The device always sends data for both channels. If a channel
603                          * is disabled, it contains a copy of the enabled channel's
604                          * data. However, we only send the requested channels to
605                          * the bus.
606                          *
607                          * Voltage values are encoded as a value 0-255, where the
608                          * value is a point in the range represented by the vdiv
609                          * setting. There are 10 vertical divs, so e.g. 500mV/div
610                          * represents 5V peak-to-peak where 0 = -2.5V and 255 = +2.5V.
611                          */
612                         ((float *)analog.data)[i] = ch_bit[ch] * *(buf + i * 2 + ch) - ch_center[ch];
613                 }
614
615                 sr_session_send(sdi, &packet);
616                 g_slist_free(analog.meaning->channels);
617
618                 channels = channels->next;
619         }
620         g_free(analog.data);
621 }
622
623 static void send_data(struct sr_dev_inst *sdi, struct libusb_transfer *buf[], uint64_t samples)
624 {
625         int i = 0;
626         uint64_t send = 0;
627         uint32_t chunk;
628
629         while (send < samples) {
630                 chunk = MIN(samples - send, (uint64_t)(buf[i]->actual_length / NUM_CHANNELS));
631                 send += chunk;
632                 send_chunk(sdi, buf[i]->buffer, chunk);
633
634                 /*
635                  * Everything in this transfer was either copied to the buffer
636                  * or sent to the session bus.
637                  */
638                 g_free(buf[i]->buffer);
639                 libusb_free_transfer(buf[i]);
640                 i++;
641         }
642 }
643
644 /*
645  * Called by libusb (as triggered by handle_event()) when a transfer comes in.
646  * Only channel data comes in asynchronously, and all transfers for this are
647  * queued up beforehand, so this just needs to chuck the incoming data onto
648  * the libsigrok session bus.
649  */
650 static void LIBUSB_CALL receive_transfer(struct libusb_transfer *transfer)
651 {
652         struct sr_dev_inst *sdi;
653         struct dev_context *devc;
654
655         sdi = transfer->user_data;
656         devc = sdi->priv;
657
658         if (devc->dev_state == FLUSH) {
659                 g_free(transfer->buffer);
660                 libusb_free_transfer(transfer);
661                 devc->dev_state = CAPTURE;
662                 devc->aq_started = g_get_monotonic_time();
663                 read_channel(sdi, data_amount(sdi));
664                 return;
665         }
666
667         if (devc->dev_state != CAPTURE)
668                 return;
669
670         if (!devc->sample_buf) {
671                 devc->sample_buf_size = 10;
672                 devc->sample_buf = g_try_malloc(devc->sample_buf_size * sizeof(transfer));
673                 devc->sample_buf_write = 0;
674         }
675
676         if (devc->sample_buf_write >= devc->sample_buf_size) {
677                 devc->sample_buf_size += 10;
678                 devc->sample_buf = g_try_realloc(devc->sample_buf,
679                                 devc->sample_buf_size * sizeof(transfer));
680                 if (!devc->sample_buf) {
681                         sr_err("Sample buffer malloc failed.");
682                         devc->dev_state = STOPPING;
683                         return;
684                 }
685         }
686
687         devc->sample_buf[devc->sample_buf_write++] = transfer;
688         devc->samp_received += transfer->actual_length / NUM_CHANNELS;
689
690         sr_spew("receive_transfer(): calculated samplerate == %" PRIu64 "ks/s",
691                 (uint64_t)(transfer->actual_length * 1000 /
692                 (g_get_monotonic_time() - devc->read_start_ts + 1) /
693                 NUM_CHANNELS));
694
695         sr_spew("receive_transfer(): status %s received %d bytes.",
696                 libusb_error_name(transfer->status), transfer->actual_length);
697
698         if (transfer->actual_length == 0)
699                 /* Nothing to send to the bus. */
700                 return;
701
702         if (devc->limit_samples && devc->samp_received >= devc->limit_samples) {
703                 sr_info("Requested number of samples reached, stopping. %"
704                         PRIu64 " <= %" PRIu64, devc->limit_samples,
705                         devc->samp_received);
706                 send_data(sdi, devc->sample_buf, devc->limit_samples);
707                 sr_dev_acquisition_stop(sdi);
708         } else if (devc->limit_msec && (g_get_monotonic_time() -
709                         devc->aq_started) / 1000 >= devc->limit_msec) {
710                 sr_info("Requested time limit reached, stopping. %d <= %d",
711                         (uint32_t)devc->limit_msec,
712                         (uint32_t)(g_get_monotonic_time() - devc->aq_started) / 1000);
713                 send_data(sdi, devc->sample_buf, devc->samp_received);
714                 g_free(devc->sample_buf);
715                 devc->sample_buf = NULL;
716                 sr_dev_acquisition_stop(sdi);
717         } else {
718                 read_channel(sdi, data_amount(sdi));
719         }
720 }
721
722 static int read_channel(const struct sr_dev_inst *sdi, uint32_t amount)
723 {
724         int ret;
725         struct dev_context *devc;
726
727         devc = sdi->priv;
728
729         amount = MIN(amount, MAX_PACKET_SIZE);
730         ret = hantek_6xxx_get_channeldata(sdi, receive_transfer, amount);
731         devc->read_start_ts = g_get_monotonic_time();
732         devc->read_data_amount = amount;
733
734         return ret;
735 }
736
737 static int handle_event(int fd, int revents, void *cb_data)
738 {
739         const struct sr_dev_inst *sdi;
740         struct timeval tv;
741         struct sr_dev_driver *di;
742         struct dev_context *devc;
743         struct drv_context *drvc;
744
745         (void)fd;
746         (void)revents;
747
748         sdi = cb_data;
749         di = sdi->driver;
750         drvc = di->context;
751         devc = sdi->priv;
752
753         /* Always handle pending libusb events. */
754         tv.tv_sec = tv.tv_usec = 0;
755         libusb_handle_events_timeout(drvc->sr_ctx->libusb_ctx, &tv);
756
757         if (devc->dev_state == STOPPING) {
758                 /* We've been told to wind up the acquisition. */
759                 sr_dbg("Stopping acquisition.");
760
761                 hantek_6xxx_stop_data_collecting(sdi);
762                 /*
763                  * TODO: Doesn't really cancel pending transfers so they might
764                  * come in after SR_DF_END is sent.
765                  */
766                 usb_source_remove(sdi->session, drvc->sr_ctx);
767
768                 std_session_send_df_end(sdi);
769
770                 devc->dev_state = IDLE;
771
772                 return TRUE;
773         }
774
775         return TRUE;
776 }
777
778 static int dev_acquisition_start(const struct sr_dev_inst *sdi)
779 {
780         struct dev_context *devc;
781         struct sr_dev_driver *di = sdi->driver;
782         struct drv_context *drvc = di->context;
783
784         devc = sdi->priv;
785
786         if (configure_channels(sdi) != SR_OK) {
787                 sr_err("Failed to configure channels.");
788                 return SR_ERR;
789         }
790
791         if (hantek_6xxx_init(sdi) != SR_OK)
792                 return SR_ERR;
793
794         std_session_send_df_header(sdi);
795
796         devc->samp_received = 0;
797         devc->dev_state = FLUSH;
798
799         usb_source_add(sdi->session, drvc->sr_ctx, TICK,
800                        handle_event, (void *)sdi);
801
802         hantek_6xxx_start_data_collecting(sdi);
803
804         read_channel(sdi, FLUSH_PACKET_SIZE);
805
806         return SR_OK;
807 }
808
809 static int dev_acquisition_stop(struct sr_dev_inst *sdi)
810 {
811         struct dev_context *devc;
812
813         devc = sdi->priv;
814         devc->dev_state = STOPPING;
815
816         g_free(devc->sample_buf);
817         devc->sample_buf = NULL;
818
819         return SR_OK;
820 }
821
822 static struct sr_dev_driver hantek_6xxx_driver_info = {
823         .name = "hantek-6xxx",
824         .longname = "Hantek 6xxx",
825         .api_version = 1,
826         .init = std_init,
827         .cleanup = std_cleanup,
828         .scan = scan,
829         .dev_list = std_dev_list,
830         .dev_clear = dev_clear,
831         .config_get = config_get,
832         .config_set = config_set,
833         .config_list = config_list,
834         .dev_open = dev_open,
835         .dev_close = dev_close,
836         .dev_acquisition_start = dev_acquisition_start,
837         .dev_acquisition_stop = dev_acquisition_stop,
838         .context = NULL,
839 };
840 SR_REGISTER_DEV_DRIVER(hantek_6xxx_driver_info);