]> sigrok.org Git - libsigrok.git/blob - src/hardware/hantek-6xxx/api.c
sr_dev_clear(): Always free sdi->priv (devc).
[libsigrok.git] / src / hardware / hantek-6xxx / api.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2015 Christer Ekholm <christerekholm@gmail.com>
5  *
6  * This program is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <config.h>
21 #include <math.h>
22 #include "protocol.h"
23
24 /* Max time in ms before we want to check on USB events */
25 #define TICK 200
26
27 #define RANGE(ch) (((float)vdivs[devc->voltage[ch]][0] / vdivs[devc->voltage[ch]][1]) * VDIV_MULTIPLIER)
28
29 static const uint32_t scanopts[] = {
30         SR_CONF_CONN,
31 };
32
33 static const uint32_t drvopts[] = {
34         SR_CONF_OSCILLOSCOPE,
35 };
36
37 static const uint32_t devopts[] = {
38         SR_CONF_CONN | SR_CONF_GET,
39         SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
40         SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
41         SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
42         SR_CONF_NUM_VDIV | SR_CONF_GET,
43 };
44
45 static const uint32_t devopts_cg[] = {
46         SR_CONF_VDIV | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
47         SR_CONF_COUPLING | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
48 };
49
50 static const char *channel_names[] = {
51         "CH1", "CH2",
52 };
53
54 static const char *dc_coupling[] = {
55         "DC",
56 };
57
58 static const char *acdc_coupling[] = {
59         "AC", "DC",
60 };
61
62 static const struct hantek_6xxx_profile dev_profiles[] = {
63         {
64                 0x04b4, 0x6022, 0x1d50, 0x608e, 0x0001,
65                 "Hantek", "6022BE", "fx2lafw-hantek-6022be.fw",
66                 dc_coupling, ARRAY_SIZE(dc_coupling), FALSE,
67         },
68         {
69                 0x8102, 0x8102, 0x1d50, 0x608e, 0x0002,
70                 "Sainsmart", "DDS120", "fx2lafw-sainsmart-dds120.fw",
71                 acdc_coupling, ARRAY_SIZE(acdc_coupling), TRUE,
72         },
73         {
74                 0x04b4, 0x602a, 0x1d50, 0x608e, 0x0003,
75                 "Hantek", "6022BL", "fx2lafw-hantek-6022bl.fw",
76                 dc_coupling, ARRAY_SIZE(dc_coupling), FALSE,
77         },
78         ALL_ZERO
79 };
80
81 static const uint64_t samplerates[] = {
82         SAMPLERATE_VALUES
83 };
84
85 static const uint64_t vdivs[][2] = {
86         VDIV_VALUES
87 };
88
89 static int read_channel(const struct sr_dev_inst *sdi, uint32_t amount);
90
91 static struct sr_dev_inst *hantek_6xxx_dev_new(const struct hantek_6xxx_profile *prof)
92 {
93         struct sr_dev_inst *sdi;
94         struct sr_channel *ch;
95         struct sr_channel_group *cg;
96         struct dev_context *devc;
97         unsigned int i;
98
99         sdi = g_malloc0(sizeof(struct sr_dev_inst));
100         sdi->status = SR_ST_INITIALIZING;
101         sdi->vendor = g_strdup(prof->vendor);
102         sdi->model = g_strdup(prof->model);
103
104         for (i = 0; i < ARRAY_SIZE(channel_names); i++) {
105                 ch = sr_channel_new(sdi, i, SR_CHANNEL_ANALOG, TRUE, channel_names[i]);
106                 cg = g_malloc0(sizeof(struct sr_channel_group));
107                 cg->name = g_strdup(channel_names[i]);
108                 cg->channels = g_slist_append(cg->channels, ch);
109                 sdi->channel_groups = g_slist_append(sdi->channel_groups, cg);
110         }
111
112         devc = g_malloc0(sizeof(struct dev_context));
113
114         for (i = 0; i < NUM_CHANNELS; i++) {
115                 devc->ch_enabled[i] = TRUE;
116                 devc->voltage[i] = DEFAULT_VOLTAGE;
117                 devc->coupling[i] = DEFAULT_COUPLING;
118         }
119         devc->coupling_vals = prof->coupling_vals;
120         devc->coupling_tab_size = prof->coupling_tab_size;
121         devc->has_coupling = prof->has_coupling;
122
123         devc->sample_buf = NULL;
124         devc->sample_buf_write = 0;
125         devc->sample_buf_size = 0;
126
127         devc->profile = prof;
128         devc->dev_state = IDLE;
129         devc->samplerate = DEFAULT_SAMPLERATE;
130
131         sdi->priv = devc;
132
133         return sdi;
134 }
135
136 static int configure_channels(const struct sr_dev_inst *sdi)
137 {
138         struct dev_context *devc;
139         const GSList *l;
140         int p;
141         struct sr_channel *ch;
142         devc = sdi->priv;
143
144         g_slist_free(devc->enabled_channels);
145         devc->enabled_channels = NULL;
146         memset(devc->ch_enabled, 0, sizeof(devc->ch_enabled));
147
148         for (l = sdi->channels, p = 0; l; l = l->next, p++) {
149                 ch = l->data;
150                 if (p < NUM_CHANNELS) {
151                         devc->ch_enabled[p] = ch->enabled;
152                         devc->enabled_channels = g_slist_append(devc->enabled_channels, ch);
153                 }
154         }
155
156         return SR_OK;
157 }
158
159 static void clear_helper(void *priv)
160 {
161         struct dev_context *devc;
162
163         devc = priv;
164         g_slist_free(devc->enabled_channels);
165 }
166
167 static int dev_clear(const struct sr_dev_driver *di)
168 {
169         return std_dev_clear_with_callback(di, clear_helper);
170 }
171
172 static GSList *scan(struct sr_dev_driver *di, GSList *options)
173 {
174         struct drv_context *drvc;
175         struct dev_context *devc;
176         struct sr_dev_inst *sdi;
177         struct sr_usb_dev_inst *usb;
178         struct sr_config *src;
179         const struct hantek_6xxx_profile *prof;
180         GSList *l, *devices, *conn_devices;
181         struct libusb_device_descriptor des;
182         libusb_device **devlist;
183         int i, j;
184         const char *conn;
185         char connection_id[64];
186
187         drvc = di->context;
188
189         devices = 0;
190
191         conn = NULL;
192         for (l = options; l; l = l->next) {
193                 src = l->data;
194                 if (src->key == SR_CONF_CONN) {
195                         conn = g_variant_get_string(src->data, NULL);
196                         break;
197                 }
198         }
199         if (conn)
200                 conn_devices = sr_usb_find(drvc->sr_ctx->libusb_ctx, conn);
201         else
202                 conn_devices = NULL;
203
204         /* Find all Hantek 60xx devices and upload firmware to all of them. */
205         libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist);
206         for (i = 0; devlist[i]; i++) {
207                 if (conn) {
208                         usb = NULL;
209                         for (l = conn_devices; l; l = l->next) {
210                                 usb = l->data;
211                                 if (usb->bus == libusb_get_bus_number(devlist[i])
212                                         && usb->address == libusb_get_device_address(devlist[i]))
213                                         break;
214                         }
215                         if (!l)
216                                 /* This device matched none of the ones that
217                                  * matched the conn specification. */
218                                 continue;
219                 }
220
221                 libusb_get_device_descriptor(devlist[i], &des);
222
223                 usb_get_port_path(devlist[i], connection_id, sizeof(connection_id));
224
225                 prof = NULL;
226                 for (j = 0; dev_profiles[j].orig_vid; j++) {
227                         if (des.idVendor == dev_profiles[j].orig_vid
228                                 && des.idProduct == dev_profiles[j].orig_pid) {
229                                 /* Device matches the pre-firmware profile. */
230                                 prof = &dev_profiles[j];
231                                 sr_dbg("Found a %s %s.", prof->vendor, prof->model);
232                                 sdi = hantek_6xxx_dev_new(prof);
233                                 sdi->connection_id = g_strdup(connection_id);
234                                 devices = g_slist_append(devices, sdi);
235                                 devc = sdi->priv;
236                                 if (ezusb_upload_firmware(drvc->sr_ctx, devlist[i],
237                                                 USB_CONFIGURATION, prof->firmware) == SR_OK)
238                                         /* Remember when the firmware on this device was updated. */
239                                         devc->fw_updated = g_get_monotonic_time();
240                                 else
241                                         sr_err("Firmware upload failed.");
242                                 /* Dummy USB address of 0xff will get overwritten later. */
243                                 sdi->conn = sr_usb_dev_inst_new(
244                                                 libusb_get_bus_number(devlist[i]), 0xff, NULL);
245                                 break;
246                         } else if (des.idVendor == dev_profiles[j].fw_vid
247                                 && des.idProduct == dev_profiles[j].fw_pid
248                                 && des.bcdDevice == dev_profiles[j].fw_prod_ver) {
249                                 /* Device matches the post-firmware profile. */
250                                 prof = &dev_profiles[j];
251                                 sr_dbg("Found a %s %s.", prof->vendor, prof->model);
252                                 sdi = hantek_6xxx_dev_new(prof);
253                                 sdi->connection_id = g_strdup(connection_id);
254                                 sdi->status = SR_ST_INACTIVE;
255                                 devices = g_slist_append(devices, sdi);
256                                 sdi->inst_type = SR_INST_USB;
257                                 sdi->conn = sr_usb_dev_inst_new(
258                                                 libusb_get_bus_number(devlist[i]),
259                                                 libusb_get_device_address(devlist[i]), NULL);
260                                 break;
261                         }
262                 }
263                 if (!prof)
264                         /* Not a supported VID/PID. */
265                         continue;
266         }
267         libusb_free_device_list(devlist, 1);
268
269         return std_scan_complete(di, devices);
270 }
271
272 static int dev_open(struct sr_dev_inst *sdi)
273 {
274         struct dev_context *devc;
275         struct sr_usb_dev_inst *usb;
276         int64_t timediff_us, timediff_ms;
277         int err;
278
279         devc = sdi->priv;
280         usb = sdi->conn;
281
282         /*
283          * If the firmware was recently uploaded, wait up to MAX_RENUM_DELAY_MS
284          * for the FX2 to renumerate.
285          */
286         err = SR_ERR;
287         if (devc->fw_updated > 0) {
288                 sr_info("Waiting for device to reset.");
289                 /* Takes >= 300ms for the FX2 to be gone from the USB bus. */
290                 g_usleep(300 * 1000);
291                 timediff_ms = 0;
292                 while (timediff_ms < MAX_RENUM_DELAY_MS) {
293                         if ((err = hantek_6xxx_open(sdi)) == SR_OK)
294                                 break;
295                         g_usleep(100 * 1000);
296                         timediff_us = g_get_monotonic_time() - devc->fw_updated;
297                         timediff_ms = timediff_us / 1000;
298                         sr_spew("Waited %" PRIi64 " ms.", timediff_ms);
299                 }
300                 if (timediff_ms < MAX_RENUM_DELAY_MS)
301                         sr_info("Device came back after %"PRIu64" ms.", timediff_ms);
302         } else {
303                 err = hantek_6xxx_open(sdi);
304         }
305
306         if (err != SR_OK) {
307                 sr_err("Unable to open device.");
308                 return SR_ERR;
309         }
310
311         err = libusb_claim_interface(usb->devhdl, USB_INTERFACE);
312         if (err != 0) {
313                 sr_err("Unable to claim interface: %s.",
314                         libusb_error_name(err));
315                 return SR_ERR;
316         }
317
318         return SR_OK;
319 }
320
321 static int dev_close(struct sr_dev_inst *sdi)
322 {
323         hantek_6xxx_close(sdi);
324
325         return SR_OK;
326 }
327
328 static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
329                 const struct sr_channel_group *cg)
330 {
331         struct dev_context *devc;
332         struct sr_usb_dev_inst *usb;
333         char str[128];
334         const uint64_t *vdiv;
335         int ch_idx;
336
337         switch (key) {
338         case SR_CONF_NUM_VDIV:
339                 *data = g_variant_new_int32(ARRAY_SIZE(vdivs));
340                 break;
341         }
342
343         if (!sdi)
344                 return SR_ERR_ARG;
345
346         devc = sdi->priv;
347         if (!cg) {
348                 switch (key) {
349                 case SR_CONF_SAMPLERATE:
350                         *data = g_variant_new_uint64(devc->samplerate);
351                         break;
352                 case SR_CONF_LIMIT_MSEC:
353                         *data = g_variant_new_uint64(devc->limit_msec);
354                         break;
355                 case SR_CONF_LIMIT_SAMPLES:
356                         *data = g_variant_new_uint64(devc->limit_samples);
357                         break;
358                 case SR_CONF_CONN:
359                         if (!sdi->conn)
360                                 return SR_ERR_ARG;
361                         usb = sdi->conn;
362                         if (usb->address == 255)
363                                 /* Device still needs to re-enumerate after firmware
364                                  * upload, so we don't know its (future) address. */
365                                 return SR_ERR;
366                         snprintf(str, 128, "%d.%d", usb->bus, usb->address);
367                         *data = g_variant_new_string(str);
368                         break;
369                 default:
370                         return SR_ERR_NA;
371                 }
372         } else {
373                 if (sdi->channel_groups->data == cg)
374                         ch_idx = 0;
375                 else if (sdi->channel_groups->next->data == cg)
376                         ch_idx = 1;
377                 else
378                         return SR_ERR_ARG;
379                 switch (key) {
380                 case SR_CONF_VDIV:
381                         vdiv = vdivs[devc->voltage[ch_idx]];
382                         *data = g_variant_new("(tt)", vdiv[0], vdiv[1]);
383                         break;
384                 case SR_CONF_COUPLING:
385                         *data = g_variant_new_string((devc->coupling[ch_idx] \
386                                         == COUPLING_DC) ? "DC" : "AC");
387                         break;
388                 }
389         }
390
391         return SR_OK;
392 }
393
394 static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi,
395                 const struct sr_channel_group *cg)
396 {
397         struct dev_context *devc;
398         uint64_t p, q;
399         int tmp_int, ch_idx, ret;
400         unsigned int i;
401         const char *tmp_str;
402
403         ret = SR_OK;
404         devc = sdi->priv;
405         if (!cg) {
406                 switch (key) {
407                 case SR_CONF_SAMPLERATE:
408                         devc->samplerate = g_variant_get_uint64(data);
409                         hantek_6xxx_update_samplerate(sdi);
410                         break;
411                 case SR_CONF_LIMIT_MSEC:
412                         devc->limit_msec = g_variant_get_uint64(data);
413                         break;
414                 case SR_CONF_LIMIT_SAMPLES:
415                         devc->limit_samples = g_variant_get_uint64(data);
416                         break;
417                 default:
418                         ret = SR_ERR_NA;
419                         break;
420                 }
421         } else {
422                 if (sdi->channel_groups->data == cg)
423                         ch_idx = 0;
424                 else if (sdi->channel_groups->next->data == cg)
425                         ch_idx = 1;
426                 else
427                         return SR_ERR_ARG;
428                 switch (key) {
429                 case SR_CONF_VDIV:
430                         g_variant_get(data, "(tt)", &p, &q);
431                         tmp_int = -1;
432                         for (i = 0; i < ARRAY_SIZE(vdivs); i++) {
433                                 if (vdivs[i][0] == p && vdivs[i][1] == q) {
434                                         tmp_int = i;
435                                         break;
436                                 }
437                         }
438                         if (tmp_int >= 0) {
439                                 devc->voltage[ch_idx] = tmp_int;
440                                 hantek_6xxx_update_vdiv(sdi);
441                         } else
442                                 ret = SR_ERR_ARG;
443                         break;
444                 case SR_CONF_COUPLING:
445                         tmp_str = g_variant_get_string(data, NULL);
446                         for (i = 0; i < devc->coupling_tab_size; i++) {
447                                 if (!strcmp(tmp_str, devc->coupling_vals[i])) {
448                                         devc->coupling[ch_idx] = i;
449                                         break;
450                                 }
451                         }
452                         if (i == devc->coupling_tab_size)
453                                 ret = SR_ERR_ARG;
454                         break;
455                 default:
456                         ret = SR_ERR_NA;
457                         break;
458                 }
459         }
460
461         return ret;
462 }
463
464 static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
465                 const struct sr_channel_group *cg)
466 {
467         GVariant *tuple, *rational[2];
468         GVariantBuilder gvb;
469         unsigned int i;
470         GVariant *gvar;
471         struct dev_context *devc = NULL;
472
473         if (key == SR_CONF_SCAN_OPTIONS) {
474                 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
475                         scanopts, ARRAY_SIZE(scanopts), sizeof(uint32_t));
476                 return SR_OK;
477         } else if (key == SR_CONF_DEVICE_OPTIONS && !sdi) {
478                 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
479                         drvopts, ARRAY_SIZE(drvopts), sizeof(uint32_t));
480                 return SR_OK;
481         }
482
483         if (sdi)
484                 devc = sdi->priv;
485
486         if (!cg) {
487                 switch (key) {
488                 case SR_CONF_DEVICE_OPTIONS:
489                         *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
490                                 devopts, ARRAY_SIZE(devopts), sizeof(uint32_t));
491                         break;
492                 case SR_CONF_SAMPLERATE:
493                         g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
494                         gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
495                                 samplerates, ARRAY_SIZE(samplerates),
496                                 sizeof(uint64_t));
497                         g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
498                         *data = g_variant_builder_end(&gvb);
499                         break;
500                 default:
501                         return SR_ERR_NA;
502                 }
503         } else {
504                 switch (key) {
505                 case SR_CONF_DEVICE_OPTIONS:
506                         *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
507                                 devopts_cg, ARRAY_SIZE(devopts_cg), sizeof(uint32_t));
508                         break;
509                 case SR_CONF_COUPLING:
510                         if (!devc)
511                                 return SR_ERR_NA;
512                         *data = g_variant_new_strv(devc->coupling_vals, devc->coupling_tab_size);
513                         break;
514                 case SR_CONF_VDIV:
515                         g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY);
516                         for (i = 0; i < ARRAY_SIZE(vdivs); i++) {
517                                 rational[0] = g_variant_new_uint64(vdivs[i][0]);
518                                 rational[1] = g_variant_new_uint64(vdivs[i][1]);
519                                 tuple = g_variant_new_tuple(rational, 2);
520                                 g_variant_builder_add_value(&gvb, tuple);
521                         }
522                         *data = g_variant_builder_end(&gvb);
523                         break;
524                 default:
525                         return SR_ERR_NA;
526                 }
527         }
528
529         return SR_OK;
530 }
531
532 /* Minimise data amount for limit_samples and limit_msec limits. */
533 static uint32_t data_amount(const struct sr_dev_inst *sdi)
534 {
535         struct dev_context *devc = sdi->priv;
536         uint32_t data_left, data_left_2, i;
537         int32_t time_left;
538
539         if (devc->limit_msec) {
540                 time_left = devc->limit_msec - (g_get_monotonic_time() - devc->aq_started) / 1000;
541                 data_left = devc->samplerate * MAX(time_left, 0) * NUM_CHANNELS / 1000;
542         } else if (devc->limit_samples) {
543                 data_left = (devc->limit_samples - devc->samp_received) * NUM_CHANNELS;
544         } else {
545                 data_left = devc->samplerate * NUM_CHANNELS;
546         }
547
548         /* Round up to nearest power of two. */
549         for (i = MIN_PACKET_SIZE; i < data_left; i *= 2)
550                 ;
551         data_left_2 = i;
552
553         sr_spew("data_amount: %u (rounded to power of 2: %u)", data_left, data_left_2);
554
555         return data_left_2;
556 }
557
558 static void send_chunk(struct sr_dev_inst *sdi, unsigned char *buf,
559                 int num_samples)
560 {
561         struct sr_datafeed_packet packet;
562         struct sr_datafeed_analog analog;
563         struct sr_analog_encoding encoding;
564         struct sr_analog_meaning meaning;
565         struct sr_analog_spec spec;
566         struct dev_context *devc = sdi->priv;
567         GSList *channels = devc->enabled_channels;
568
569         const float ch_bit[] = { RANGE(0) / 255, RANGE(1) / 255 };
570         const float ch_center[] = { RANGE(0) / 2, RANGE(1) / 2 };
571
572         sr_analog_init(&analog, &encoding, &meaning, &spec, 0);
573
574         packet.type = SR_DF_ANALOG;
575         packet.payload = &analog;
576
577         analog.num_samples = num_samples;
578         analog.meaning->mq = SR_MQ_VOLTAGE;
579         analog.meaning->unit = SR_UNIT_VOLT;
580         analog.meaning->mqflags = 0;
581
582         analog.data = g_try_malloc(num_samples * sizeof(float));
583         if (!analog.data) {
584                 sr_err("Analog data buffer malloc failed.");
585                 devc->dev_state = STOPPING;
586                 return;
587         }
588
589         for (int ch = 0; ch < 2; ch++) {
590                 if (!devc->ch_enabled[ch])
591                         continue;
592
593                 float vdivlog = log10f(ch_bit[ch]);
594                 int digits = -(int)vdivlog + (vdivlog < 0.0);
595                 analog.encoding->digits = digits;
596                 analog.spec->spec_digits = digits;
597                 analog.meaning->channels = g_slist_append(NULL, channels->data);
598
599                 for (int i = 0; i < num_samples; i++) {
600                         /*
601                          * The device always sends data for both channels. If a channel
602                          * is disabled, it contains a copy of the enabled channel's
603                          * data. However, we only send the requested channels to
604                          * the bus.
605                          *
606                          * Voltage values are encoded as a value 0-255, where the
607                          * value is a point in the range represented by the vdiv
608                          * setting. There are 10 vertical divs, so e.g. 500mV/div
609                          * represents 5V peak-to-peak where 0 = -2.5V and 255 = +2.5V.
610                          */
611                         ((float *)analog.data)[i] = ch_bit[ch] * *(buf + i * 2 + ch) - ch_center[ch];
612                 }
613
614                 sr_session_send(sdi, &packet);
615                 g_slist_free(analog.meaning->channels);
616
617                 channels = channels->next;
618         }
619         g_free(analog.data);
620 }
621
622 static void send_data(struct sr_dev_inst *sdi, struct libusb_transfer *buf[], uint64_t samples)
623 {
624         int i = 0;
625         uint64_t send = 0;
626         uint32_t chunk;
627
628         while (send < samples) {
629                 chunk = MIN(samples - send, (uint64_t)(buf[i]->actual_length / NUM_CHANNELS));
630                 send += chunk;
631                 send_chunk(sdi, buf[i]->buffer, chunk);
632
633                 /*
634                  * Everything in this transfer was either copied to the buffer
635                  * or sent to the session bus.
636                  */
637                 g_free(buf[i]->buffer);
638                 libusb_free_transfer(buf[i]);
639                 i++;
640         }
641 }
642
643 /*
644  * Called by libusb (as triggered by handle_event()) when a transfer comes in.
645  * Only channel data comes in asynchronously, and all transfers for this are
646  * queued up beforehand, so this just needs to chuck the incoming data onto
647  * the libsigrok session bus.
648  */
649 static void LIBUSB_CALL receive_transfer(struct libusb_transfer *transfer)
650 {
651         struct sr_dev_inst *sdi;
652         struct dev_context *devc;
653
654         sdi = transfer->user_data;
655         devc = sdi->priv;
656
657         if (devc->dev_state == FLUSH) {
658                 g_free(transfer->buffer);
659                 libusb_free_transfer(transfer);
660                 devc->dev_state = CAPTURE;
661                 devc->aq_started = g_get_monotonic_time();
662                 read_channel(sdi, data_amount(sdi));
663                 return;
664         }
665
666         if (devc->dev_state != CAPTURE)
667                 return;
668
669         if (!devc->sample_buf) {
670                 devc->sample_buf_size = 10;
671                 devc->sample_buf = g_try_malloc(devc->sample_buf_size * sizeof(transfer));
672                 devc->sample_buf_write = 0;
673         }
674
675         if (devc->sample_buf_write >= devc->sample_buf_size) {
676                 devc->sample_buf_size += 10;
677                 devc->sample_buf = g_try_realloc(devc->sample_buf,
678                                 devc->sample_buf_size * sizeof(transfer));
679                 if (!devc->sample_buf) {
680                         sr_err("Sample buffer malloc failed.");
681                         devc->dev_state = STOPPING;
682                         return;
683                 }
684         }
685
686         devc->sample_buf[devc->sample_buf_write++] = transfer;
687         devc->samp_received += transfer->actual_length / NUM_CHANNELS;
688
689         sr_spew("receive_transfer(): calculated samplerate == %" PRIu64 "ks/s",
690                 (uint64_t)(transfer->actual_length * 1000 /
691                 (g_get_monotonic_time() - devc->read_start_ts + 1) /
692                 NUM_CHANNELS));
693
694         sr_spew("receive_transfer(): status %s received %d bytes.",
695                 libusb_error_name(transfer->status), transfer->actual_length);
696
697         if (transfer->actual_length == 0)
698                 /* Nothing to send to the bus. */
699                 return;
700
701         if (devc->limit_samples && devc->samp_received >= devc->limit_samples) {
702                 sr_info("Requested number of samples reached, stopping. %"
703                         PRIu64 " <= %" PRIu64, devc->limit_samples,
704                         devc->samp_received);
705                 send_data(sdi, devc->sample_buf, devc->limit_samples);
706                 sr_dev_acquisition_stop(sdi);
707         } else if (devc->limit_msec && (g_get_monotonic_time() -
708                         devc->aq_started) / 1000 >= devc->limit_msec) {
709                 sr_info("Requested time limit reached, stopping. %d <= %d",
710                         (uint32_t)devc->limit_msec,
711                         (uint32_t)(g_get_monotonic_time() - devc->aq_started) / 1000);
712                 send_data(sdi, devc->sample_buf, devc->samp_received);
713                 g_free(devc->sample_buf);
714                 devc->sample_buf = NULL;
715                 sr_dev_acquisition_stop(sdi);
716         } else {
717                 read_channel(sdi, data_amount(sdi));
718         }
719 }
720
721 static int read_channel(const struct sr_dev_inst *sdi, uint32_t amount)
722 {
723         int ret;
724         struct dev_context *devc;
725
726         devc = sdi->priv;
727
728         amount = MIN(amount, MAX_PACKET_SIZE);
729         ret = hantek_6xxx_get_channeldata(sdi, receive_transfer, amount);
730         devc->read_start_ts = g_get_monotonic_time();
731         devc->read_data_amount = amount;
732
733         return ret;
734 }
735
736 static int handle_event(int fd, int revents, void *cb_data)
737 {
738         const struct sr_dev_inst *sdi;
739         struct timeval tv;
740         struct sr_dev_driver *di;
741         struct dev_context *devc;
742         struct drv_context *drvc;
743
744         (void)fd;
745         (void)revents;
746
747         sdi = cb_data;
748         di = sdi->driver;
749         drvc = di->context;
750         devc = sdi->priv;
751
752         /* Always handle pending libusb events. */
753         tv.tv_sec = tv.tv_usec = 0;
754         libusb_handle_events_timeout(drvc->sr_ctx->libusb_ctx, &tv);
755
756         if (devc->dev_state == STOPPING) {
757                 /* We've been told to wind up the acquisition. */
758                 sr_dbg("Stopping acquisition.");
759
760                 hantek_6xxx_stop_data_collecting(sdi);
761                 /*
762                  * TODO: Doesn't really cancel pending transfers so they might
763                  * come in after SR_DF_END is sent.
764                  */
765                 usb_source_remove(sdi->session, drvc->sr_ctx);
766
767                 std_session_send_df_end(sdi);
768
769                 devc->dev_state = IDLE;
770
771                 return TRUE;
772         }
773
774         return TRUE;
775 }
776
777 static int dev_acquisition_start(const struct sr_dev_inst *sdi)
778 {
779         struct dev_context *devc;
780         struct sr_dev_driver *di = sdi->driver;
781         struct drv_context *drvc = di->context;
782
783         devc = sdi->priv;
784
785         if (configure_channels(sdi) != SR_OK) {
786                 sr_err("Failed to configure channels.");
787                 return SR_ERR;
788         }
789
790         if (hantek_6xxx_init(sdi) != SR_OK)
791                 return SR_ERR;
792
793         std_session_send_df_header(sdi);
794
795         devc->samp_received = 0;
796         devc->dev_state = FLUSH;
797
798         usb_source_add(sdi->session, drvc->sr_ctx, TICK,
799                        handle_event, (void *)sdi);
800
801         hantek_6xxx_start_data_collecting(sdi);
802
803         read_channel(sdi, FLUSH_PACKET_SIZE);
804
805         return SR_OK;
806 }
807
808 static int dev_acquisition_stop(struct sr_dev_inst *sdi)
809 {
810         struct dev_context *devc;
811
812         devc = sdi->priv;
813         devc->dev_state = STOPPING;
814
815         g_free(devc->sample_buf);
816         devc->sample_buf = NULL;
817
818         return SR_OK;
819 }
820
821 static struct sr_dev_driver hantek_6xxx_driver_info = {
822         .name = "hantek-6xxx",
823         .longname = "Hantek 6xxx",
824         .api_version = 1,
825         .init = std_init,
826         .cleanup = std_cleanup,
827         .scan = scan,
828         .dev_list = std_dev_list,
829         .dev_clear = dev_clear,
830         .config_get = config_get,
831         .config_set = config_set,
832         .config_list = config_list,
833         .dev_open = dev_open,
834         .dev_close = dev_close,
835         .dev_acquisition_start = dev_acquisition_start,
836         .dev_acquisition_stop = dev_acquisition_stop,
837         .context = NULL,
838 };
839 SR_REGISTER_DEV_DRIVER(hantek_6xxx_driver_info);