]> sigrok.org Git - libsigrok.git/blob - src/hardware/hantek-6xxx/api.c
a6aa68543775bc3644abc62ccde6c2f475f084a3
[libsigrok.git] / src / hardware / hantek-6xxx / api.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2015 Christer Ekholm <christerekholm@gmail.com>
5  *
6  * This program is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <config.h>
21 #include <math.h>
22 #include "protocol.h"
23
24 /* Max time in ms before we want to check on USB events */
25 #define TICK 200
26
27 #define RANGE(ch) (((float)vdivs[devc->voltage[ch]][0] / vdivs[devc->voltage[ch]][1]) * VDIV_MULTIPLIER)
28
29 static const uint32_t scanopts[] = {
30         SR_CONF_CONN,
31 };
32
33 static const uint32_t drvopts[] = {
34         SR_CONF_OSCILLOSCOPE,
35 };
36
37 static const uint32_t devopts[] = {
38         SR_CONF_CONN | SR_CONF_GET,
39         SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
40         SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
41         SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
42         SR_CONF_NUM_VDIV | SR_CONF_GET,
43 };
44
45 static const uint32_t devopts_cg[] = {
46         SR_CONF_VDIV | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
47         SR_CONF_COUPLING | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
48 };
49
50 static const char *channel_names[] = {
51         "CH1", "CH2",
52 };
53
54 static const char *dc_coupling[] = {
55         "DC",
56 };
57
58 static const char *acdc_coupling[] = {
59         "AC", "DC",
60 };
61
62 static const struct hantek_6xxx_profile dev_profiles[] = {
63         {
64                 0x04b4, 0x6022, 0x1d50, 0x608e, 0x0001,
65                 "Hantek", "6022BE", "fx2lafw-hantek-6022be.fw",
66                 dc_coupling, ARRAY_SIZE(dc_coupling), FALSE,
67         },
68         {
69                 0x8102, 0x8102, 0x1d50, 0x608e, 0x0002,
70                 "Sainsmart", "DDS120", "fx2lafw-sainsmart-dds120.fw",
71                 acdc_coupling, ARRAY_SIZE(acdc_coupling), TRUE,
72         },
73         {
74                 0x04b4, 0x602a, 0x1d50, 0x608e, 0x0003,
75                 "Hantek", "6022BL", "fx2lafw-hantek-6022bl.fw",
76                 dc_coupling, ARRAY_SIZE(dc_coupling), FALSE,
77         },
78         ALL_ZERO
79 };
80
81 static const uint64_t samplerates[] = {
82         SAMPLERATE_VALUES
83 };
84
85 static const uint64_t vdivs[][2] = {
86         VDIV_VALUES
87 };
88
89 static int read_channel(const struct sr_dev_inst *sdi, uint32_t amount);
90
91 static int dev_acquisition_stop(struct sr_dev_inst *sdi);
92
93 static struct sr_dev_inst *hantek_6xxx_dev_new(const struct hantek_6xxx_profile *prof)
94 {
95         struct sr_dev_inst *sdi;
96         struct sr_channel *ch;
97         struct sr_channel_group *cg;
98         struct dev_context *devc;
99         unsigned int i;
100
101         sdi = g_malloc0(sizeof(struct sr_dev_inst));
102         sdi->status = SR_ST_INITIALIZING;
103         sdi->vendor = g_strdup(prof->vendor);
104         sdi->model = g_strdup(prof->model);
105
106         for (i = 0; i < ARRAY_SIZE(channel_names); i++) {
107                 ch = sr_channel_new(sdi, i, SR_CHANNEL_ANALOG, TRUE, channel_names[i]);
108                 cg = g_malloc0(sizeof(struct sr_channel_group));
109                 cg->name = g_strdup(channel_names[i]);
110                 cg->channels = g_slist_append(cg->channels, ch);
111                 sdi->channel_groups = g_slist_append(sdi->channel_groups, cg);
112         }
113
114         devc = g_malloc0(sizeof(struct dev_context));
115
116         for (i = 0; i < NUM_CHANNELS; i++) {
117                 devc->ch_enabled[i] = TRUE;
118                 devc->voltage[i] = DEFAULT_VOLTAGE;
119                 devc->coupling[i] = DEFAULT_COUPLING;
120         }
121         devc->coupling_vals = prof->coupling_vals;
122         devc->coupling_tab_size = prof->coupling_tab_size;
123         devc->has_coupling = prof->has_coupling;
124
125         devc->sample_buf = NULL;
126         devc->sample_buf_write = 0;
127         devc->sample_buf_size = 0;
128
129         devc->profile = prof;
130         devc->dev_state = IDLE;
131         devc->samplerate = DEFAULT_SAMPLERATE;
132
133         sdi->priv = devc;
134
135         return sdi;
136 }
137
138 static int configure_channels(const struct sr_dev_inst *sdi)
139 {
140         struct dev_context *devc;
141         const GSList *l;
142         int p;
143         struct sr_channel *ch;
144         devc = sdi->priv;
145
146         g_slist_free(devc->enabled_channels);
147         devc->enabled_channels = NULL;
148         memset(devc->ch_enabled, 0, sizeof(devc->ch_enabled));
149
150         for (l = sdi->channels, p = 0; l; l = l->next, p++) {
151                 ch = l->data;
152                 if (p < NUM_CHANNELS) {
153                         devc->ch_enabled[p] = ch->enabled;
154                         devc->enabled_channels = g_slist_append(devc->enabled_channels, ch);
155                 }
156         }
157
158         return SR_OK;
159 }
160
161 static void clear_dev_context(void *priv)
162 {
163         struct dev_context *devc;
164
165         devc = priv;
166         g_slist_free(devc->enabled_channels);
167         g_free(devc);
168 }
169
170 static int dev_clear(const struct sr_dev_driver *di)
171 {
172         return std_dev_clear(di, clear_dev_context);
173 }
174
175 static GSList *scan(struct sr_dev_driver *di, GSList *options)
176 {
177         struct drv_context *drvc;
178         struct dev_context *devc;
179         struct sr_dev_inst *sdi;
180         struct sr_usb_dev_inst *usb;
181         struct sr_config *src;
182         const struct hantek_6xxx_profile *prof;
183         GSList *l, *devices, *conn_devices;
184         struct libusb_device_descriptor des;
185         libusb_device **devlist;
186         int i, j;
187         const char *conn;
188         char connection_id[64];
189
190         drvc = di->context;
191
192         devices = 0;
193
194         conn = NULL;
195         for (l = options; l; l = l->next) {
196                 src = l->data;
197                 if (src->key == SR_CONF_CONN) {
198                         conn = g_variant_get_string(src->data, NULL);
199                         break;
200                 }
201         }
202         if (conn)
203                 conn_devices = sr_usb_find(drvc->sr_ctx->libusb_ctx, conn);
204         else
205                 conn_devices = NULL;
206
207         /* Find all Hantek 60xx devices and upload firmware to all of them. */
208         libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist);
209         for (i = 0; devlist[i]; i++) {
210                 if (conn) {
211                         usb = NULL;
212                         for (l = conn_devices; l; l = l->next) {
213                                 usb = l->data;
214                                 if (usb->bus == libusb_get_bus_number(devlist[i])
215                                         && usb->address == libusb_get_device_address(devlist[i]))
216                                         break;
217                         }
218                         if (!l)
219                                 /* This device matched none of the ones that
220                                  * matched the conn specification. */
221                                 continue;
222                 }
223
224                 libusb_get_device_descriptor(devlist[i], &des);
225
226                 usb_get_port_path(devlist[i], connection_id, sizeof(connection_id));
227
228                 prof = NULL;
229                 for (j = 0; dev_profiles[j].orig_vid; j++) {
230                         if (des.idVendor == dev_profiles[j].orig_vid
231                                 && des.idProduct == dev_profiles[j].orig_pid) {
232                                 /* Device matches the pre-firmware profile. */
233                                 prof = &dev_profiles[j];
234                                 sr_dbg("Found a %s %s.", prof->vendor, prof->model);
235                                 sdi = hantek_6xxx_dev_new(prof);
236                                 sdi->connection_id = g_strdup(connection_id);
237                                 devices = g_slist_append(devices, sdi);
238                                 devc = sdi->priv;
239                                 if (ezusb_upload_firmware(drvc->sr_ctx, devlist[i],
240                                                 USB_CONFIGURATION, prof->firmware) == SR_OK)
241                                         /* Remember when the firmware on this device was updated. */
242                                         devc->fw_updated = g_get_monotonic_time();
243                                 else
244                                         sr_err("Firmware upload failed.");
245                                 /* Dummy USB address of 0xff will get overwritten later. */
246                                 sdi->conn = sr_usb_dev_inst_new(
247                                                 libusb_get_bus_number(devlist[i]), 0xff, NULL);
248                                 break;
249                         } else if (des.idVendor == dev_profiles[j].fw_vid
250                                 && des.idProduct == dev_profiles[j].fw_pid
251                                 && des.bcdDevice == dev_profiles[j].fw_prod_ver) {
252                                 /* Device matches the post-firmware profile. */
253                                 prof = &dev_profiles[j];
254                                 sr_dbg("Found a %s %s.", prof->vendor, prof->model);
255                                 sdi = hantek_6xxx_dev_new(prof);
256                                 sdi->connection_id = g_strdup(connection_id);
257                                 sdi->status = SR_ST_INACTIVE;
258                                 devices = g_slist_append(devices, sdi);
259                                 sdi->inst_type = SR_INST_USB;
260                                 sdi->conn = sr_usb_dev_inst_new(
261                                                 libusb_get_bus_number(devlist[i]),
262                                                 libusb_get_device_address(devlist[i]), NULL);
263                                 break;
264                         }
265                 }
266                 if (!prof)
267                         /* Not a supported VID/PID. */
268                         continue;
269         }
270         libusb_free_device_list(devlist, 1);
271
272         return std_scan_complete(di, devices);
273 }
274
275 static int dev_open(struct sr_dev_inst *sdi)
276 {
277         struct dev_context *devc;
278         struct sr_usb_dev_inst *usb;
279         int64_t timediff_us, timediff_ms;
280         int err;
281
282         devc = sdi->priv;
283         usb = sdi->conn;
284
285         /*
286          * If the firmware was recently uploaded, wait up to MAX_RENUM_DELAY_MS
287          * for the FX2 to renumerate.
288          */
289         err = SR_ERR;
290         if (devc->fw_updated > 0) {
291                 sr_info("Waiting for device to reset.");
292                 /* Takes >= 300ms for the FX2 to be gone from the USB bus. */
293                 g_usleep(300 * 1000);
294                 timediff_ms = 0;
295                 while (timediff_ms < MAX_RENUM_DELAY_MS) {
296                         if ((err = hantek_6xxx_open(sdi)) == SR_OK)
297                                 break;
298                         g_usleep(100 * 1000);
299                         timediff_us = g_get_monotonic_time() - devc->fw_updated;
300                         timediff_ms = timediff_us / 1000;
301                         sr_spew("Waited %" PRIi64 " ms.", timediff_ms);
302                 }
303                 if (timediff_ms < MAX_RENUM_DELAY_MS)
304                         sr_info("Device came back after %"PRIu64" ms.", timediff_ms);
305         } else {
306                 err = hantek_6xxx_open(sdi);
307         }
308
309         if (err != SR_OK) {
310                 sr_err("Unable to open device.");
311                 return SR_ERR;
312         }
313
314         err = libusb_claim_interface(usb->devhdl, USB_INTERFACE);
315         if (err != 0) {
316                 sr_err("Unable to claim interface: %s.",
317                         libusb_error_name(err));
318                 return SR_ERR;
319         }
320
321         return SR_OK;
322 }
323
324 static int dev_close(struct sr_dev_inst *sdi)
325 {
326         hantek_6xxx_close(sdi);
327
328         return SR_OK;
329 }
330
331 static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
332                 const struct sr_channel_group *cg)
333 {
334         struct dev_context *devc;
335         struct sr_usb_dev_inst *usb;
336         char str[128];
337         const uint64_t *vdiv;
338         int ch_idx;
339
340         switch (key) {
341         case SR_CONF_NUM_VDIV:
342                 *data = g_variant_new_int32(ARRAY_SIZE(vdivs));
343                 break;
344         }
345
346         if (!sdi)
347                 return SR_ERR_ARG;
348
349         devc = sdi->priv;
350         if (!cg) {
351                 switch (key) {
352                 case SR_CONF_SAMPLERATE:
353                         *data = g_variant_new_uint64(devc->samplerate);
354                         break;
355                 case SR_CONF_LIMIT_MSEC:
356                         *data = g_variant_new_uint64(devc->limit_msec);
357                         break;
358                 case SR_CONF_LIMIT_SAMPLES:
359                         *data = g_variant_new_uint64(devc->limit_samples);
360                         break;
361                 case SR_CONF_CONN:
362                         if (!sdi->conn)
363                                 return SR_ERR_ARG;
364                         usb = sdi->conn;
365                         if (usb->address == 255)
366                                 /* Device still needs to re-enumerate after firmware
367                                  * upload, so we don't know its (future) address. */
368                                 return SR_ERR;
369                         snprintf(str, 128, "%d.%d", usb->bus, usb->address);
370                         *data = g_variant_new_string(str);
371                         break;
372                 default:
373                         return SR_ERR_NA;
374                 }
375         } else {
376                 if (sdi->channel_groups->data == cg)
377                         ch_idx = 0;
378                 else if (sdi->channel_groups->next->data == cg)
379                         ch_idx = 1;
380                 else
381                         return SR_ERR_ARG;
382                 switch (key) {
383                 case SR_CONF_VDIV:
384                         vdiv = vdivs[devc->voltage[ch_idx]];
385                         *data = g_variant_new("(tt)", vdiv[0], vdiv[1]);
386                         break;
387                 case SR_CONF_COUPLING:
388                         *data = g_variant_new_string((devc->coupling[ch_idx] \
389                                         == COUPLING_DC) ? "DC" : "AC");
390                         break;
391                 }
392         }
393
394         return SR_OK;
395 }
396
397 static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi,
398                 const struct sr_channel_group *cg)
399 {
400         struct dev_context *devc;
401         uint64_t p, q;
402         int tmp_int, ch_idx, ret;
403         unsigned int i;
404         const char *tmp_str;
405
406         if (sdi->status != SR_ST_ACTIVE)
407                 return SR_ERR_DEV_CLOSED;
408
409         ret = SR_OK;
410         devc = sdi->priv;
411         if (!cg) {
412                 switch (key) {
413                 case SR_CONF_SAMPLERATE:
414                         devc->samplerate = g_variant_get_uint64(data);
415                         hantek_6xxx_update_samplerate(sdi);
416                         break;
417                 case SR_CONF_LIMIT_MSEC:
418                         devc->limit_msec = g_variant_get_uint64(data);
419                         break;
420                 case SR_CONF_LIMIT_SAMPLES:
421                         devc->limit_samples = g_variant_get_uint64(data);
422                         break;
423                 default:
424                         ret = SR_ERR_NA;
425                         break;
426                 }
427         } else {
428                 if (sdi->channel_groups->data == cg)
429                         ch_idx = 0;
430                 else if (sdi->channel_groups->next->data == cg)
431                         ch_idx = 1;
432                 else
433                         return SR_ERR_ARG;
434                 switch (key) {
435                 case SR_CONF_VDIV:
436                         g_variant_get(data, "(tt)", &p, &q);
437                         tmp_int = -1;
438                         for (i = 0; i < ARRAY_SIZE(vdivs); i++) {
439                                 if (vdivs[i][0] == p && vdivs[i][1] == q) {
440                                         tmp_int = i;
441                                         break;
442                                 }
443                         }
444                         if (tmp_int >= 0) {
445                                 devc->voltage[ch_idx] = tmp_int;
446                                 hantek_6xxx_update_vdiv(sdi);
447                         } else
448                                 ret = SR_ERR_ARG;
449                         break;
450                 case SR_CONF_COUPLING:
451                         tmp_str = g_variant_get_string(data, NULL);
452                         for (i = 0; i < devc->coupling_tab_size; i++) {
453                                 if (!strcmp(tmp_str, devc->coupling_vals[i])) {
454                                         devc->coupling[ch_idx] = i;
455                                         break;
456                                 }
457                         }
458                         if (i == devc->coupling_tab_size)
459                                 ret = SR_ERR_ARG;
460                         break;
461                 default:
462                         ret = SR_ERR_NA;
463                         break;
464                 }
465         }
466
467         return ret;
468 }
469
470 static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
471                 const struct sr_channel_group *cg)
472 {
473         GVariant *tuple, *rational[2];
474         GVariantBuilder gvb;
475         unsigned int i;
476         GVariant *gvar;
477         struct dev_context *devc = NULL;
478
479         if (key == SR_CONF_SCAN_OPTIONS) {
480                 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
481                         scanopts, ARRAY_SIZE(scanopts), sizeof(uint32_t));
482                 return SR_OK;
483         } else if (key == SR_CONF_DEVICE_OPTIONS && !sdi) {
484                 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
485                         drvopts, ARRAY_SIZE(drvopts), sizeof(uint32_t));
486                 return SR_OK;
487         }
488
489         if (sdi)
490                 devc = sdi->priv;
491
492         if (!cg) {
493                 switch (key) {
494                 case SR_CONF_DEVICE_OPTIONS:
495                         *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
496                                 devopts, ARRAY_SIZE(devopts), sizeof(uint32_t));
497                         break;
498                 case SR_CONF_SAMPLERATE:
499                         g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
500                         gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
501                                 samplerates, ARRAY_SIZE(samplerates),
502                                 sizeof(uint64_t));
503                         g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
504                         *data = g_variant_builder_end(&gvb);
505                         break;
506                 default:
507                         return SR_ERR_NA;
508                 }
509         } else {
510                 switch (key) {
511                 case SR_CONF_DEVICE_OPTIONS:
512                         *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
513                                 devopts_cg, ARRAY_SIZE(devopts_cg), sizeof(uint32_t));
514                         break;
515                 case SR_CONF_COUPLING:
516                         if (!devc)
517                                 return SR_ERR_NA;
518                         *data = g_variant_new_strv(devc->coupling_vals, devc->coupling_tab_size);
519                         break;
520                 case SR_CONF_VDIV:
521                         g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY);
522                         for (i = 0; i < ARRAY_SIZE(vdivs); i++) {
523                                 rational[0] = g_variant_new_uint64(vdivs[i][0]);
524                                 rational[1] = g_variant_new_uint64(vdivs[i][1]);
525                                 tuple = g_variant_new_tuple(rational, 2);
526                                 g_variant_builder_add_value(&gvb, tuple);
527                         }
528                         *data = g_variant_builder_end(&gvb);
529                         break;
530                 default:
531                         return SR_ERR_NA;
532                 }
533         }
534
535         return SR_OK;
536 }
537
538 /* Minimise data amount for limit_samples and limit_msec limits. */
539 static uint32_t data_amount(const struct sr_dev_inst *sdi)
540 {
541         struct dev_context *devc = sdi->priv;
542         uint32_t data_left, data_left_2, i;
543         int32_t time_left;
544
545         if (devc->limit_msec) {
546                 time_left = devc->limit_msec - (g_get_monotonic_time() - devc->aq_started) / 1000;
547                 data_left = devc->samplerate * MAX(time_left, 0) * NUM_CHANNELS / 1000;
548         } else if (devc->limit_samples) {
549                 data_left = (devc->limit_samples - devc->samp_received) * NUM_CHANNELS;
550         } else {
551                 data_left = devc->samplerate * NUM_CHANNELS;
552         }
553
554         /* Round up to nearest power of two. */
555         for (i = MIN_PACKET_SIZE; i < data_left; i *= 2)
556                 ;
557         data_left_2 = i;
558
559         sr_spew("data_amount: %u (rounded to power of 2: %u)", data_left, data_left_2);
560
561         return data_left_2;
562 }
563
564 static void send_chunk(struct sr_dev_inst *sdi, unsigned char *buf,
565                 int num_samples)
566 {
567         struct sr_datafeed_packet packet;
568         struct sr_datafeed_analog analog;
569         struct sr_analog_encoding encoding;
570         struct sr_analog_meaning meaning;
571         struct sr_analog_spec spec;
572         struct dev_context *devc = sdi->priv;
573         GSList *channels = devc->enabled_channels;
574
575         const float ch_bit[] = { RANGE(0) / 255, RANGE(1) / 255 };
576         const float ch_center[] = { RANGE(0) / 2, RANGE(1) / 2 };
577
578         sr_analog_init(&analog, &encoding, &meaning, &spec, 0);
579
580         packet.type = SR_DF_ANALOG;
581         packet.payload = &analog;
582
583         analog.num_samples = num_samples;
584         analog.meaning->mq = SR_MQ_VOLTAGE;
585         analog.meaning->unit = SR_UNIT_VOLT;
586         analog.meaning->mqflags = 0;
587
588         analog.data = g_try_malloc(num_samples * sizeof(float));
589         if (!analog.data) {
590                 sr_err("Analog data buffer malloc failed.");
591                 devc->dev_state = STOPPING;
592                 return;
593         }
594
595         for (int ch = 0; ch < 2; ch++) {
596                 if (!devc->ch_enabled[ch])
597                         continue;
598
599                 float vdivlog = log10f(ch_bit[ch]);
600                 int digits = -(int)vdivlog + (vdivlog < 0.0);
601                 analog.encoding->digits = digits;
602                 analog.spec->spec_digits = digits;
603                 analog.meaning->channels = g_slist_append(NULL, channels->data);
604
605                 for (int i = 0; i < num_samples; i++) {
606                         /*
607                          * The device always sends data for both channels. If a channel
608                          * is disabled, it contains a copy of the enabled channel's
609                          * data. However, we only send the requested channels to
610                          * the bus.
611                          *
612                          * Voltage values are encoded as a value 0-255, where the
613                          * value is a point in the range represented by the vdiv
614                          * setting. There are 10 vertical divs, so e.g. 500mV/div
615                          * represents 5V peak-to-peak where 0 = -2.5V and 255 = +2.5V.
616                          */
617                         ((float *)analog.data)[i] = ch_bit[ch] * *(buf + i * 2 + ch) - ch_center[ch];
618                 }
619
620                 sr_session_send(sdi, &packet);
621                 g_slist_free(analog.meaning->channels);
622
623                 channels = channels->next;
624         }
625         g_free(analog.data);
626 }
627
628 static void send_data(struct sr_dev_inst *sdi, struct libusb_transfer *buf[], uint64_t samples)
629 {
630         int i = 0;
631         uint64_t send = 0;
632         uint32_t chunk;
633
634         while (send < samples) {
635                 chunk = MIN(samples - send, (uint64_t)(buf[i]->actual_length / NUM_CHANNELS));
636                 send += chunk;
637                 send_chunk(sdi, buf[i]->buffer, chunk);
638
639                 /*
640                  * Everything in this transfer was either copied to the buffer
641                  * or sent to the session bus.
642                  */
643                 g_free(buf[i]->buffer);
644                 libusb_free_transfer(buf[i]);
645                 i++;
646         }
647 }
648
649 /*
650  * Called by libusb (as triggered by handle_event()) when a transfer comes in.
651  * Only channel data comes in asynchronously, and all transfers for this are
652  * queued up beforehand, so this just needs to chuck the incoming data onto
653  * the libsigrok session bus.
654  */
655 static void LIBUSB_CALL receive_transfer(struct libusb_transfer *transfer)
656 {
657         struct sr_dev_inst *sdi;
658         struct dev_context *devc;
659
660         sdi = transfer->user_data;
661         devc = sdi->priv;
662
663         if (devc->dev_state == FLUSH) {
664                 g_free(transfer->buffer);
665                 libusb_free_transfer(transfer);
666                 devc->dev_state = CAPTURE;
667                 devc->aq_started = g_get_monotonic_time();
668                 read_channel(sdi, data_amount(sdi));
669                 return;
670         }
671
672         if (devc->dev_state != CAPTURE)
673                 return;
674
675         if (!devc->sample_buf) {
676                 devc->sample_buf_size = 10;
677                 devc->sample_buf = g_try_malloc(devc->sample_buf_size * sizeof(transfer));
678                 devc->sample_buf_write = 0;
679         }
680
681         if (devc->sample_buf_write >= devc->sample_buf_size) {
682                 devc->sample_buf_size += 10;
683                 devc->sample_buf = g_try_realloc(devc->sample_buf,
684                                 devc->sample_buf_size * sizeof(transfer));
685                 if (!devc->sample_buf) {
686                         sr_err("Sample buffer malloc failed.");
687                         devc->dev_state = STOPPING;
688                         return;
689                 }
690         }
691
692         devc->sample_buf[devc->sample_buf_write++] = transfer;
693         devc->samp_received += transfer->actual_length / NUM_CHANNELS;
694
695         sr_spew("receive_transfer(): calculated samplerate == %" PRIu64 "ks/s",
696                 (uint64_t)(transfer->actual_length * 1000 /
697                 (g_get_monotonic_time() - devc->read_start_ts + 1) /
698                 NUM_CHANNELS));
699
700         sr_spew("receive_transfer(): status %s received %d bytes.",
701                 libusb_error_name(transfer->status), transfer->actual_length);
702
703         if (transfer->actual_length == 0)
704                 /* Nothing to send to the bus. */
705                 return;
706
707         if (devc->limit_samples && devc->samp_received >= devc->limit_samples) {
708                 sr_info("Requested number of samples reached, stopping. %"
709                         PRIu64 " <= %" PRIu64, devc->limit_samples,
710                         devc->samp_received);
711                 send_data(sdi, devc->sample_buf, devc->limit_samples);
712                 sdi->driver->dev_acquisition_stop(sdi);
713         } else if (devc->limit_msec && (g_get_monotonic_time() -
714                         devc->aq_started) / 1000 >= devc->limit_msec) {
715                 sr_info("Requested time limit reached, stopping. %d <= %d",
716                         (uint32_t)devc->limit_msec,
717                         (uint32_t)(g_get_monotonic_time() - devc->aq_started) / 1000);
718                 send_data(sdi, devc->sample_buf, devc->samp_received);
719                 g_free(devc->sample_buf);
720                 devc->sample_buf = NULL;
721                 sdi->driver->dev_acquisition_stop(sdi);
722         } else {
723                 read_channel(sdi, data_amount(sdi));
724         }
725 }
726
727 static int read_channel(const struct sr_dev_inst *sdi, uint32_t amount)
728 {
729         int ret;
730         struct dev_context *devc;
731
732         devc = sdi->priv;
733
734         amount = MIN(amount, MAX_PACKET_SIZE);
735         ret = hantek_6xxx_get_channeldata(sdi, receive_transfer, amount);
736         devc->read_start_ts = g_get_monotonic_time();
737         devc->read_data_amount = amount;
738
739         return ret;
740 }
741
742 static int handle_event(int fd, int revents, void *cb_data)
743 {
744         const struct sr_dev_inst *sdi;
745         struct timeval tv;
746         struct sr_dev_driver *di;
747         struct dev_context *devc;
748         struct drv_context *drvc;
749
750         (void)fd;
751         (void)revents;
752
753         sdi = cb_data;
754         di = sdi->driver;
755         drvc = di->context;
756         devc = sdi->priv;
757
758         /* Always handle pending libusb events. */
759         tv.tv_sec = tv.tv_usec = 0;
760         libusb_handle_events_timeout(drvc->sr_ctx->libusb_ctx, &tv);
761
762         if (devc->dev_state == STOPPING) {
763                 /* We've been told to wind up the acquisition. */
764                 sr_dbg("Stopping acquisition.");
765
766                 hantek_6xxx_stop_data_collecting(sdi);
767                 /*
768                  * TODO: Doesn't really cancel pending transfers so they might
769                  * come in after SR_DF_END is sent.
770                  */
771                 usb_source_remove(sdi->session, drvc->sr_ctx);
772
773                 std_session_send_df_end(sdi);
774
775                 devc->dev_state = IDLE;
776
777                 return TRUE;
778         }
779
780         return TRUE;
781 }
782
783 static int dev_acquisition_start(const struct sr_dev_inst *sdi)
784 {
785         struct dev_context *devc;
786         struct sr_dev_driver *di = sdi->driver;
787         struct drv_context *drvc = di->context;
788
789         if (sdi->status != SR_ST_ACTIVE)
790                 return SR_ERR_DEV_CLOSED;
791
792         devc = sdi->priv;
793
794         if (configure_channels(sdi) != SR_OK) {
795                 sr_err("Failed to configure channels.");
796                 return SR_ERR;
797         }
798
799         if (hantek_6xxx_init(sdi) != SR_OK)
800                 return SR_ERR;
801
802         std_session_send_df_header(sdi);
803
804         devc->samp_received = 0;
805         devc->dev_state = FLUSH;
806
807         usb_source_add(sdi->session, drvc->sr_ctx, TICK,
808                        handle_event, (void *)sdi);
809
810         hantek_6xxx_start_data_collecting(sdi);
811
812         read_channel(sdi, FLUSH_PACKET_SIZE);
813
814         return SR_OK;
815 }
816
817 static int dev_acquisition_stop(struct sr_dev_inst *sdi)
818 {
819         struct dev_context *devc;
820
821         if (sdi->status != SR_ST_ACTIVE)
822                 return SR_ERR;
823
824         devc = sdi->priv;
825         devc->dev_state = STOPPING;
826
827         g_free(devc->sample_buf);
828         devc->sample_buf = NULL;
829
830         return SR_OK;
831 }
832
833 static struct sr_dev_driver hantek_6xxx_driver_info = {
834         .name = "hantek-6xxx",
835         .longname = "Hantek 6xxx",
836         .api_version = 1,
837         .init = std_init,
838         .cleanup = std_cleanup,
839         .scan = scan,
840         .dev_list = std_dev_list,
841         .dev_clear = dev_clear,
842         .config_get = config_get,
843         .config_set = config_set,
844         .config_list = config_list,
845         .dev_open = dev_open,
846         .dev_close = dev_close,
847         .dev_acquisition_start = dev_acquisition_start,
848         .dev_acquisition_stop = dev_acquisition_stop,
849         .context = NULL,
850 };
851 SR_REGISTER_DEV_DRIVER(hantek_6xxx_driver_info);