]> sigrok.org Git - libsigrok.git/blob - src/hardware/hameg-hmo/protocol.c
hameg-hmo: Fix the upper limit for the vertical scale.
[libsigrok.git] / src / hardware / hameg-hmo / protocol.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2013 poljar (Damir Jelić) <poljarinho@gmail.com>
5  * Copyright (C) 2018 Guido Trentalancia <guido@trentalancia.com>
6  *
7  * This program is free software: you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation, either version 3 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20
21 #include <config.h>
22 #include <math.h>
23 #include <stdlib.h>
24 #include "scpi.h"
25 #include "protocol.h"
26
27 SR_PRIV void hmo_queue_logic_data(struct dev_context *devc,
28                                   size_t group, GByteArray *pod_data);
29 SR_PRIV void hmo_send_logic_packet(struct sr_dev_inst *sdi,
30                                    struct dev_context *devc);
31 SR_PRIV void hmo_cleanup_logic_data(struct dev_context *devc);
32
33 static const char *hameg_scpi_dialect[] = {
34         [SCPI_CMD_GET_DIG_DATA]               = ":FORM UINT,8;:POD%d:DATA?",
35         [SCPI_CMD_GET_TIMEBASE]               = ":TIM:SCAL?",
36         [SCPI_CMD_SET_TIMEBASE]               = ":TIM:SCAL %s",
37         [SCPI_CMD_GET_COUPLING]               = ":CHAN%d:COUP?",
38         [SCPI_CMD_SET_COUPLING]               = ":CHAN%d:COUP %s",
39         [SCPI_CMD_GET_SAMPLE_RATE]            = ":ACQ:SRAT?",
40         [SCPI_CMD_GET_ANALOG_DATA]            = ":FORM:BORD %s;" \
41                                                 ":FORM REAL,32;:CHAN%d:DATA?",
42         [SCPI_CMD_GET_VERTICAL_DIV]           = ":CHAN%d:SCAL?",
43         [SCPI_CMD_SET_VERTICAL_DIV]           = ":CHAN%d:SCAL %s",
44         [SCPI_CMD_GET_DIG_POD_STATE]          = ":POD%d:STAT?",
45         [SCPI_CMD_SET_DIG_POD_STATE]          = ":POD%d:STAT %d",
46         [SCPI_CMD_GET_TRIGGER_SLOPE]          = ":TRIG:A:EDGE:SLOP?",
47         [SCPI_CMD_SET_TRIGGER_SLOPE]          = ":TRIG:A:TYPE EDGE;:TRIG:A:EDGE:SLOP %s",
48         [SCPI_CMD_GET_TRIGGER_PATTERN]        = ":TRIG:A:PATT:SOUR?",
49         [SCPI_CMD_SET_TRIGGER_PATTERN]        = ":TRIG:A:TYPE LOGIC;" \
50                                                 ":TRIG:A:PATT:FUNC AND;" \
51                                                 ":TRIG:A:PATT:COND TRUE;" \
52                                                 ":TRIG:A:PATT:MODE OFF;" \
53                                                 ":TRIG:A:PATT:SOUR \"%s\"",
54         [SCPI_CMD_GET_TRIGGER_SOURCE]         = ":TRIG:A:SOUR?",
55         [SCPI_CMD_SET_TRIGGER_SOURCE]         = ":TRIG:A:SOUR %s",
56         [SCPI_CMD_GET_DIG_CHAN_STATE]         = ":LOG%d:STAT?",
57         [SCPI_CMD_SET_DIG_CHAN_STATE]         = ":LOG%d:STAT %d",
58         [SCPI_CMD_GET_VERTICAL_OFFSET]        = ":CHAN%d:POS?",
59         [SCPI_CMD_GET_HORIZ_TRIGGERPOS]       = ":TIM:POS?",
60         [SCPI_CMD_SET_HORIZ_TRIGGERPOS]       = ":TIM:POS %s",
61         [SCPI_CMD_GET_ANALOG_CHAN_STATE]      = ":CHAN%d:STAT?",
62         [SCPI_CMD_SET_ANALOG_CHAN_STATE]      = ":CHAN%d:STAT %d",
63         [SCPI_CMD_GET_PROBE_UNIT]             = ":PROB%d:SET:ATT:UNIT?",
64         [SCPI_CMD_GET_DIG_POD_THRESHOLD]      = ":POD%d:THR?",
65         [SCPI_CMD_SET_DIG_POD_THRESHOLD]      = ":POD%d:THR %s",
66         [SCPI_CMD_GET_DIG_POD_USER_THRESHOLD] = ":POD%d:THR:UDL%d?",
67         [SCPI_CMD_SET_DIG_POD_USER_THRESHOLD] = ":POD%d:THR:UDL%d %s",
68 };
69
70 static const uint32_t devopts[] = {
71         SR_CONF_OSCILLOSCOPE,
72         SR_CONF_LIMIT_SAMPLES | SR_CONF_SET,
73         SR_CONF_LIMIT_FRAMES | SR_CONF_SET,
74         SR_CONF_SAMPLERATE | SR_CONF_GET,
75         SR_CONF_TIMEBASE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
76         SR_CONF_NUM_HDIV | SR_CONF_GET,
77         SR_CONF_HORIZ_TRIGGERPOS | SR_CONF_GET | SR_CONF_SET,
78         SR_CONF_TRIGGER_SOURCE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
79         SR_CONF_TRIGGER_SLOPE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
80         SR_CONF_TRIGGER_PATTERN | SR_CONF_GET | SR_CONF_SET,
81 };
82
83 static const uint32_t devopts_cg_analog[] = {
84         SR_CONF_NUM_VDIV | SR_CONF_GET,
85         SR_CONF_VDIV | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
86         SR_CONF_COUPLING | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
87 };
88
89 static const uint32_t devopts_cg_digital[] = {
90         SR_CONF_LOGIC_THRESHOLD | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
91         SR_CONF_LOGIC_THRESHOLD_CUSTOM | SR_CONF_GET | SR_CONF_SET,
92 };
93
94 static const char *coupling_options[] = {
95         "AC",  // AC with 50 Ohm termination (152x, 202x, 30xx, 1202)
96         "ACL", // AC with 1 MOhm termination
97         "DC",  // DC with 50 Ohm termination
98         "DCL", // DC with 1 MOhm termination
99         "GND",
100 };
101
102 static const char *scope_trigger_slopes[] = {
103         "POS",
104         "NEG",
105         "EITH",
106 };
107
108 /* Predefined logic thresholds. */
109 static const char *logic_threshold[] = {
110         "TTL",
111         "ECL",
112         "CMOS",
113         "USER1",
114         "USER2", // overwritten by logic_threshold_custom, use USER1 for permanent setting
115 };
116
117 /* RTC1002, HMO Compact2 and HMO1002/HMO1202 */
118 static const char *an2_dig8_trigger_sources[] = {
119         "CH1", "CH2",
120         "LINE", "EXT", "PATT", "BUS1", "BUS2",
121         "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
122 };
123
124 /* HMO3xx2 */
125 static const char *an2_dig16_trigger_sources[] = {
126         "CH1", "CH2",
127         "LINE", "EXT", "PATT", "BUS1", "BUS2",
128         "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
129         "D8", "D9", "D10", "D11", "D12", "D13", "D14", "D15",
130 };
131
132 /* HMO Compact4 */
133 static const char *an4_dig8_trigger_sources[] = {
134         "CH1", "CH2", "CH3", "CH4",
135         "LINE", "EXT", "PATT", "BUS1", "BUS2",
136         "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
137 };
138
139 /* HMO3xx4 and HMO2524 */
140 static const char *an4_dig16_trigger_sources[] = {
141         "CH1", "CH2", "CH3", "CH4",
142         "LINE", "EXT", "PATT", "BUS1", "BUS2",
143         "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
144         "D8", "D9", "D10", "D11", "D12", "D13", "D14", "D15",
145 };
146
147 static const uint64_t timebases[][2] = {
148         /* nanoseconds */
149         { 2, 1000000000 },
150         { 5, 1000000000 },
151         { 10, 1000000000 },
152         { 20, 1000000000 },
153         { 50, 1000000000 },
154         { 100, 1000000000 },
155         { 200, 1000000000 },
156         { 500, 1000000000 },
157         /* microseconds */
158         { 1, 1000000 },
159         { 2, 1000000 },
160         { 5, 1000000 },
161         { 10, 1000000 },
162         { 20, 1000000 },
163         { 50, 1000000 },
164         { 100, 1000000 },
165         { 200, 1000000 },
166         { 500, 1000000 },
167         /* milliseconds */
168         { 1, 1000 },
169         { 2, 1000 },
170         { 5, 1000 },
171         { 10, 1000 },
172         { 20, 1000 },
173         { 50, 1000 },
174         { 100, 1000 },
175         { 200, 1000 },
176         { 500, 1000 },
177         /* seconds */
178         { 1, 1 },
179         { 2, 1 },
180         { 5, 1 },
181         { 10, 1 },
182         { 20, 1 },
183         { 50, 1 },
184 };
185
186 static const uint64_t vdivs[][2] = {
187         /* millivolts */
188         { 1, 1000 },
189         { 2, 1000 },
190         { 5, 1000 },
191         { 10, 1000 },
192         { 20, 1000 },
193         { 50, 1000 },
194         { 100, 1000 },
195         { 200, 1000 },
196         { 500, 1000 },
197         /* volts */
198         { 1, 1 },
199         { 2, 1 },
200         { 5, 1 },
201         { 10, 1 },
202 };
203
204 static const char *scope_analog_channel_names[] = {
205         "CH1", "CH2", "CH3", "CH4",
206 };
207
208 static const char *scope_digital_channel_names[] = {
209         "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
210         "D8", "D9", "D10", "D11", "D12", "D13", "D14", "D15",
211 };
212
213 static const struct scope_config scope_models[] = {
214         {
215                 /* RTC1002 and HMO722/1002/1022/1202/1522/2022 support only 8 digital channels. */
216                 .name = {"RTC1002", "HMO722", "HMO1002", "HMO1022", "HMO1202", "HMO1522", "HMO2022", NULL},
217                 .analog_channels = 2,
218                 .digital_channels = 8,
219                 .digital_pods = 1,
220
221                 .analog_names = &scope_analog_channel_names,
222                 .digital_names = &scope_digital_channel_names,
223
224                 .devopts = &devopts,
225                 .num_devopts = ARRAY_SIZE(devopts),
226
227                 .devopts_cg_analog = &devopts_cg_analog,
228                 .num_devopts_cg_analog = ARRAY_SIZE(devopts_cg_analog),
229
230                 .devopts_cg_digital = &devopts_cg_digital,
231                 .num_devopts_cg_digital = ARRAY_SIZE(devopts_cg_digital),
232
233                 .coupling_options = &coupling_options,
234                 .num_coupling_options = ARRAY_SIZE(coupling_options),
235
236                 .logic_threshold = &logic_threshold,
237                 .num_logic_threshold = ARRAY_SIZE(logic_threshold),
238
239                 .trigger_sources = &an2_dig8_trigger_sources,
240                 .num_trigger_sources = ARRAY_SIZE(an2_dig8_trigger_sources),
241
242                 .trigger_slopes = &scope_trigger_slopes,
243                 .num_trigger_slopes = ARRAY_SIZE(scope_trigger_slopes),
244
245                 .timebases = &timebases,
246                 .num_timebases = ARRAY_SIZE(timebases),
247
248                 .vdivs = &vdivs,
249                 .num_vdivs = ARRAY_SIZE(vdivs),
250
251                 .num_xdivs = 12,
252                 .num_ydivs = 8,
253
254                 .scpi_dialect = &hameg_scpi_dialect,
255         },
256         {
257                 /* HMO3032/3042/3052/3522 support 16 digital channels. */
258                 .name = {"HMO3032", "HMO3042", "HMO3052", "HMO3522", NULL},
259                 .analog_channels = 2,
260                 .digital_channels = 16,
261                 .digital_pods = 2,
262
263                 .analog_names = &scope_analog_channel_names,
264                 .digital_names = &scope_digital_channel_names,
265
266                 .devopts = &devopts,
267                 .num_devopts = ARRAY_SIZE(devopts),
268
269                 .devopts_cg_analog = &devopts_cg_analog,
270                 .num_devopts_cg_analog = ARRAY_SIZE(devopts_cg_analog),
271
272                 .devopts_cg_digital = &devopts_cg_digital,
273                 .num_devopts_cg_digital = ARRAY_SIZE(devopts_cg_digital),
274
275                 .coupling_options = &coupling_options,
276                 .num_coupling_options = ARRAY_SIZE(coupling_options),
277
278                 .logic_threshold = &logic_threshold,
279                 .num_logic_threshold = ARRAY_SIZE(logic_threshold),
280
281                 .trigger_sources = &an2_dig16_trigger_sources,
282                 .num_trigger_sources = ARRAY_SIZE(an2_dig16_trigger_sources),
283
284                 .trigger_slopes = &scope_trigger_slopes,
285                 .num_trigger_slopes = ARRAY_SIZE(scope_trigger_slopes),
286
287                 .timebases = &timebases,
288                 .num_timebases = ARRAY_SIZE(timebases),
289
290                 .vdivs = &vdivs,
291                 .num_vdivs = ARRAY_SIZE(vdivs),
292
293                 .num_xdivs = 12,
294                 .num_ydivs = 8,
295
296                 .scpi_dialect = &hameg_scpi_dialect,
297         },
298         {
299                 .name = {"HMO724", "HMO1024", "HMO1524", "HMO2024", NULL},
300                 .analog_channels = 4,
301                 .digital_channels = 8,
302                 .digital_pods = 1,
303
304                 .analog_names = &scope_analog_channel_names,
305                 .digital_names = &scope_digital_channel_names,
306
307                 .devopts = &devopts,
308                 .num_devopts = ARRAY_SIZE(devopts),
309
310                 .devopts_cg_analog = &devopts_cg_analog,
311                 .num_devopts_cg_analog = ARRAY_SIZE(devopts_cg_analog),
312
313                 .devopts_cg_digital = &devopts_cg_digital,
314                 .num_devopts_cg_digital = ARRAY_SIZE(devopts_cg_digital),
315
316                 .coupling_options = &coupling_options,
317                 .num_coupling_options = ARRAY_SIZE(coupling_options),
318
319                 .logic_threshold = &logic_threshold,
320                 .num_logic_threshold = ARRAY_SIZE(logic_threshold),
321
322                 .trigger_sources = &an4_dig8_trigger_sources,
323                 .num_trigger_sources = ARRAY_SIZE(an4_dig8_trigger_sources),
324
325                 .trigger_slopes = &scope_trigger_slopes,
326                 .num_trigger_slopes = ARRAY_SIZE(scope_trigger_slopes),
327
328                 .timebases = &timebases,
329                 .num_timebases = ARRAY_SIZE(timebases),
330
331                 .vdivs = &vdivs,
332                 .num_vdivs = ARRAY_SIZE(vdivs),
333
334                 .num_xdivs = 12,
335                 .num_ydivs = 8,
336
337                 .scpi_dialect = &hameg_scpi_dialect,
338         },
339         {
340                 .name = {"HMO2524", "HMO3034", "HMO3044", "HMO3054", "HMO3524", NULL},
341                 .analog_channels = 4,
342                 .digital_channels = 16,
343                 .digital_pods = 2,
344
345                 .analog_names = &scope_analog_channel_names,
346                 .digital_names = &scope_digital_channel_names,
347
348                 .devopts = &devopts,
349                 .num_devopts = ARRAY_SIZE(devopts),
350
351                 .devopts_cg_analog = &devopts_cg_analog,
352                 .num_devopts_cg_analog = ARRAY_SIZE(devopts_cg_analog),
353
354                 .devopts_cg_digital = &devopts_cg_digital,
355                 .num_devopts_cg_digital = ARRAY_SIZE(devopts_cg_digital),
356
357                 .coupling_options = &coupling_options,
358                 .num_coupling_options = ARRAY_SIZE(coupling_options),
359
360                 .logic_threshold = &logic_threshold,
361                 .num_logic_threshold = ARRAY_SIZE(logic_threshold),
362
363                 .trigger_sources = &an4_dig16_trigger_sources,
364                 .num_trigger_sources = ARRAY_SIZE(an4_dig16_trigger_sources),
365
366                 .trigger_slopes = &scope_trigger_slopes,
367                 .num_trigger_slopes = ARRAY_SIZE(scope_trigger_slopes),
368
369                 .timebases = &timebases,
370                 .num_timebases = ARRAY_SIZE(timebases),
371
372                 .vdivs = &vdivs,
373                 .num_vdivs = ARRAY_SIZE(vdivs),
374
375                 .num_xdivs = 12,
376                 .num_ydivs = 8,
377
378                 .scpi_dialect = &hameg_scpi_dialect,
379         },
380 };
381
382 static void scope_state_dump(const struct scope_config *config,
383                              struct scope_state *state)
384 {
385         unsigned int i;
386         char *tmp;
387
388         for (i = 0; i < config->analog_channels; i++) {
389                 tmp = sr_voltage_string((*config->vdivs)[state->analog_channels[i].vdiv][0],
390                                              (*config->vdivs)[state->analog_channels[i].vdiv][1]);
391                 sr_info("State of analog channel %d -> %s : %s (coupling) %s (vdiv) %2.2e (offset)",
392                         i + 1, state->analog_channels[i].state ? "On" : "Off",
393                         (*config->coupling_options)[state->analog_channels[i].coupling],
394                         tmp, state->analog_channels[i].vertical_offset);
395         }
396
397         for (i = 0; i < config->digital_channels; i++) {
398                 sr_info("State of digital channel %d -> %s", i,
399                         state->digital_channels[i] ? "On" : "Off");
400         }
401
402         for (i = 0; i < config->digital_pods; i++) {
403                 if (strncmp("USER", (*config->logic_threshold)[state->digital_pods[i].threshold], 4))
404                         sr_info("State of digital POD %d -> %s : %s (threshold)", i + 1,
405                                 state->digital_pods[i].state ? "On" : "Off",
406                                 (*config->logic_threshold)[state->digital_pods[i].threshold]);
407                 else // user-defined or custom logic threshold
408                         sr_info("State of digital POD %d -> %s : %E (threshold)", i + 1,
409                                 state->digital_pods[i].state ? "On" : "Off",
410                                 state->digital_pods[i].user_threshold);
411         }
412
413         tmp = sr_period_string((*config->timebases)[state->timebase][0],
414                                (*config->timebases)[state->timebase][1]);
415         sr_info("Current timebase: %s", tmp);
416         g_free(tmp);
417
418         tmp = sr_samplerate_string(state->sample_rate);
419         sr_info("Current samplerate: %s", tmp);
420         g_free(tmp);
421
422         if (!strcmp("PATT", (*config->trigger_sources)[state->trigger_source]))
423                 sr_info("Current trigger: %s (pattern), %.2f (offset)",
424                         state->trigger_pattern,
425                         state->horiz_triggerpos);
426         else // Edge (slope) trigger
427                 sr_info("Current trigger: %s (source), %s (slope) %.2f (offset)",
428                         (*config->trigger_sources)[state->trigger_source],
429                         (*config->trigger_slopes)[state->trigger_slope],
430                         state->horiz_triggerpos);
431 }
432
433 static int scope_state_get_array_option(struct sr_scpi_dev_inst *scpi,
434                 const char *command, const char *(*array)[], unsigned int n, int *result)
435 {
436         char *tmp;
437         int idx;
438
439         if (sr_scpi_get_string(scpi, command, &tmp) != SR_OK)
440                 return SR_ERR;
441
442         if ((idx = std_str_idx_s(tmp, *array, n)) < 0) {
443                 g_free(tmp);
444                 return SR_ERR_ARG;
445         }
446
447         *result = idx;
448
449         g_free(tmp);
450
451         return SR_OK;
452 }
453
454 /**
455  * This function takes a value of the form "2.000E-03" and returns the index
456  * of an array where a matching pair was found.
457  *
458  * @param value The string to be parsed.
459  * @param array The array of s/f pairs.
460  * @param array_len The number of pairs in the array.
461  * @param result The index at which a matching pair was found.
462  *
463  * @return SR_ERR on any parsing error, SR_OK otherwise.
464  */
465 static int array_float_get(gchar *value, const uint64_t array[][2],
466                 int array_len, unsigned int *result)
467 {
468         struct sr_rational rval;
469         struct sr_rational aval;
470
471         if (sr_parse_rational(value, &rval) != SR_OK)
472                 return SR_ERR;
473
474         for (int i = 0; i < array_len; i++) {
475                 sr_rational_set(&aval, array[i][0], array[i][1]);
476                 if (sr_rational_eq(&rval, &aval)) {
477                         *result = i;
478                         return SR_OK;
479                 }
480         }
481
482         return SR_ERR;
483 }
484
485 static struct sr_channel *get_channel_by_index_and_type(GSList *channel_lhead,
486                                                         int index, int type)
487 {
488         while (channel_lhead) {
489                 struct sr_channel *ch = channel_lhead->data;
490                 if (ch->index == index && ch->type == type)
491                         return ch;
492
493                 channel_lhead = channel_lhead->next;
494         }
495
496         return 0;
497 }
498
499 static int analog_channel_state_get(struct sr_dev_inst *sdi,
500                                     const struct scope_config *config,
501                                     struct scope_state *state)
502 {
503         unsigned int i, j;
504         char command[MAX_COMMAND_SIZE];
505         char *tmp_str;
506         struct sr_channel *ch;
507         struct sr_scpi_dev_inst *scpi = sdi->conn;
508
509         for (i = 0; i < config->analog_channels; i++) {
510                 g_snprintf(command, sizeof(command),
511                            (*config->scpi_dialect)[SCPI_CMD_GET_ANALOG_CHAN_STATE],
512                            i + 1);
513
514                 if (sr_scpi_get_bool(scpi, command,
515                                      &state->analog_channels[i].state) != SR_OK)
516                         return SR_ERR;
517
518                 ch = get_channel_by_index_and_type(sdi->channels, i, SR_CHANNEL_ANALOG);
519                 if (ch)
520                         ch->enabled = state->analog_channels[i].state;
521
522                 g_snprintf(command, sizeof(command),
523                            (*config->scpi_dialect)[SCPI_CMD_GET_VERTICAL_DIV],
524                            i + 1);
525
526                 if (sr_scpi_get_string(scpi, command, &tmp_str) != SR_OK)
527                         return SR_ERR;
528
529                 if (array_float_get(tmp_str, ARRAY_AND_SIZE(vdivs), &j) != SR_OK) {
530                         g_free(tmp_str);
531                         sr_err("Could not determine array index for vertical div scale.");
532                         return SR_ERR;
533                 }
534
535                 g_free(tmp_str);
536                 state->analog_channels[i].vdiv = j;
537
538                 g_snprintf(command, sizeof(command),
539                            (*config->scpi_dialect)[SCPI_CMD_GET_VERTICAL_OFFSET],
540                            i + 1);
541
542                 if (sr_scpi_get_float(scpi, command,
543                                      &state->analog_channels[i].vertical_offset) != SR_OK)
544                         return SR_ERR;
545
546                 g_snprintf(command, sizeof(command),
547                            (*config->scpi_dialect)[SCPI_CMD_GET_COUPLING],
548                            i + 1);
549
550                 if (scope_state_get_array_option(scpi, command, config->coupling_options,
551                                          config->num_coupling_options,
552                                          &state->analog_channels[i].coupling) != SR_OK)
553                         return SR_ERR;
554
555                 g_snprintf(command, sizeof(command),
556                            (*config->scpi_dialect)[SCPI_CMD_GET_PROBE_UNIT],
557                            i + 1);
558
559                 if (sr_scpi_get_string(scpi, command, &tmp_str) != SR_OK)
560                         return SR_ERR;
561
562                 if (tmp_str[0] == 'A')
563                         state->analog_channels[i].probe_unit = 'A';
564                 else
565                         state->analog_channels[i].probe_unit = 'V';
566                 g_free(tmp_str);
567         }
568
569         return SR_OK;
570 }
571
572 static int digital_channel_state_get(struct sr_dev_inst *sdi,
573                                      const struct scope_config *config,
574                                      struct scope_state *state)
575 {
576         unsigned int i;
577         int result = SR_ERR;
578         static char *logic_threshold_short[] = {};
579         char command[MAX_COMMAND_SIZE];
580         struct sr_channel *ch;
581         struct sr_scpi_dev_inst *scpi = sdi->conn;
582
583         for (i = 0; i < config->digital_channels; i++) {
584                 g_snprintf(command, sizeof(command),
585                            (*config->scpi_dialect)[SCPI_CMD_GET_DIG_CHAN_STATE],
586                            i);
587
588                 if (sr_scpi_get_bool(scpi, command,
589                                      &state->digital_channels[i]) != SR_OK)
590                         return SR_ERR;
591
592                 ch = get_channel_by_index_and_type(sdi->channels, i, SR_CHANNEL_LOGIC);
593                 if (ch)
594                         ch->enabled = state->digital_channels[i];
595         }
596
597         /* According to the SCPI standard, the response to the command
598          * SCPI_CMD_GET_DIG_POD_THRESHOLD might return "USER" instead of
599          * "USER1".
600          *
601          * This makes more difficult to validate the response when the logic
602          * threshold is set to "USER1" and therefore we need to prevent device
603          * opening failures in such configuration case...
604          */
605         for (i = 0; i < config->num_logic_threshold; i++) {
606                 logic_threshold_short[i] = g_strdup((*config->logic_threshold)[i]);
607                 if (!strcmp("USER1", (*config->logic_threshold)[i]))
608                         g_strlcpy(logic_threshold_short[i],
609                                   (*config->logic_threshold)[i], strlen((*config->logic_threshold)[i]));
610         }
611
612         for (i = 0; i < config->digital_pods; i++) {
613                 g_snprintf(command, sizeof(command),
614                            (*config->scpi_dialect)[SCPI_CMD_GET_DIG_POD_STATE],
615                            i + 1);
616
617                 if (sr_scpi_get_bool(scpi, command,
618                                      &state->digital_pods[i].state) != SR_OK)
619                         goto exit;
620
621                 g_snprintf(command, sizeof(command),
622                            (*config->scpi_dialect)[SCPI_CMD_GET_DIG_POD_THRESHOLD],
623                            i + 1);
624
625                 /* Check for both standard and shortened responses. */
626                 if (scope_state_get_array_option(scpi, command, config->logic_threshold,
627                                                  config->num_logic_threshold,
628                                                  &state->digital_pods[i].threshold) != SR_OK)
629                         if (scope_state_get_array_option(scpi, command, (const char * (*)[]) &logic_threshold_short,
630                                                          config->num_logic_threshold,
631                                                          &state->digital_pods[i].threshold) != SR_OK)
632                                 goto exit;
633
634                 if (!strcmp("USER1", (*config->logic_threshold)[state->digital_pods[i].threshold]))
635                         g_snprintf(command, sizeof(command),
636                                    (*config->scpi_dialect)[SCPI_CMD_GET_DIG_POD_USER_THRESHOLD],
637                                    i + 1, 1); // USER1 logic threshold setting
638
639                 if (!strcmp("USER2", (*config->logic_threshold)[state->digital_pods[i].threshold]))
640                         g_snprintf(command, sizeof(command),
641                                    (*config->scpi_dialect)[SCPI_CMD_GET_DIG_POD_USER_THRESHOLD],
642                                    i + 1, 2); // USER2 for custom logic_threshold setting
643
644                 if (!strcmp("USER1", (*config->logic_threshold)[state->digital_pods[i].threshold]) ||
645                     !strcmp("USER2", (*config->logic_threshold)[state->digital_pods[i].threshold]))
646                         if (sr_scpi_get_float(scpi, command,
647                             &state->digital_pods[i].user_threshold) != SR_OK)
648                                 goto exit;
649         }
650
651         result = SR_OK;
652
653 exit:
654         for (i = 0; i < config->num_logic_threshold; i++)
655                 g_free(logic_threshold_short[i]);
656
657         return result;
658 }
659
660 SR_PRIV int hmo_update_sample_rate(const struct sr_dev_inst *sdi)
661 {
662         struct dev_context *devc;
663         struct scope_state *state;
664         const struct scope_config *config;
665         float tmp_float;
666
667         devc = sdi->priv;
668         config = devc->model_config;
669         state = devc->model_state;
670
671         if (sr_scpi_get_float(sdi->conn,
672                               (*config->scpi_dialect)[SCPI_CMD_GET_SAMPLE_RATE],
673                               &tmp_float) != SR_OK)
674                 return SR_ERR;
675
676         state->sample_rate = tmp_float;
677
678         return SR_OK;
679 }
680
681 SR_PRIV int hmo_scope_state_get(struct sr_dev_inst *sdi)
682 {
683         struct dev_context *devc;
684         struct scope_state *state;
685         const struct scope_config *config;
686         float tmp_float;
687         unsigned int i;
688         char *tmp_str;
689
690         devc = sdi->priv;
691         config = devc->model_config;
692         state = devc->model_state;
693
694         sr_info("Fetching scope state");
695
696         if (analog_channel_state_get(sdi, config, state) != SR_OK)
697                 return SR_ERR;
698
699         if (digital_channel_state_get(sdi, config, state) != SR_OK)
700                 return SR_ERR;
701
702         if (sr_scpi_get_float(sdi->conn,
703                         (*config->scpi_dialect)[SCPI_CMD_GET_TIMEBASE],
704                         &tmp_float) != SR_OK)
705                 return SR_ERR;
706
707         if (sr_scpi_get_string(sdi->conn,
708                         (*config->scpi_dialect)[SCPI_CMD_GET_TIMEBASE],
709                         &tmp_str) != SR_OK)
710                 return SR_ERR;
711
712         if (array_float_get(tmp_str, ARRAY_AND_SIZE(timebases), &i) != SR_OK) {
713                 g_free(tmp_str);
714                 sr_err("Could not determine array index for time base.");
715                 return SR_ERR;
716         }
717         g_free(tmp_str);
718
719         state->timebase = i;
720
721         if (sr_scpi_get_float(sdi->conn,
722                         (*config->scpi_dialect)[SCPI_CMD_GET_HORIZ_TRIGGERPOS],
723                         &tmp_float) != SR_OK)
724                 return SR_ERR;
725         state->horiz_triggerpos = tmp_float /
726                 (((double) (*config->timebases)[state->timebase][0] /
727                   (*config->timebases)[state->timebase][1]) * config->num_xdivs);
728         state->horiz_triggerpos -= 0.5;
729         state->horiz_triggerpos *= -1;
730
731         if (scope_state_get_array_option(sdi->conn,
732                         (*config->scpi_dialect)[SCPI_CMD_GET_TRIGGER_SOURCE],
733                         config->trigger_sources, config->num_trigger_sources,
734                         &state->trigger_source) != SR_OK)
735                 return SR_ERR;
736
737         if (scope_state_get_array_option(sdi->conn,
738                         (*config->scpi_dialect)[SCPI_CMD_GET_TRIGGER_SLOPE],
739                         config->trigger_slopes, config->num_trigger_slopes,
740                         &state->trigger_slope) != SR_OK)
741                 return SR_ERR;
742
743         if (sr_scpi_get_string(sdi->conn,
744                                (*config->scpi_dialect)[SCPI_CMD_GET_TRIGGER_PATTERN],
745                                &state->trigger_pattern) != SR_OK)
746                 return SR_ERR;
747
748         if (hmo_update_sample_rate(sdi) != SR_OK)
749                 return SR_ERR;
750
751         sr_info("Fetching finished.");
752
753         scope_state_dump(config, state);
754
755         return SR_OK;
756 }
757
758 static struct scope_state *scope_state_new(const struct scope_config *config)
759 {
760         struct scope_state *state;
761
762         state = g_malloc0(sizeof(struct scope_state));
763         state->analog_channels = g_malloc0_n(config->analog_channels,
764                         sizeof(struct analog_channel_state));
765         state->digital_channels = g_malloc0_n(
766                         config->digital_channels, sizeof(gboolean));
767         state->digital_pods = g_malloc0_n(config->digital_pods,
768                         sizeof(struct digital_pod_state));
769
770         return state;
771 }
772
773 SR_PRIV void hmo_scope_state_free(struct scope_state *state)
774 {
775         g_free(state->analog_channels);
776         g_free(state->digital_channels);
777         g_free(state->digital_pods);
778         g_free(state);
779 }
780
781 SR_PRIV int hmo_init_device(struct sr_dev_inst *sdi)
782 {
783         int model_index;
784         unsigned int i, j, group;
785         struct sr_channel *ch;
786         struct dev_context *devc;
787         int ret;
788
789         devc = sdi->priv;
790         model_index = -1;
791
792         /* Find the exact model. */
793         for (i = 0; i < ARRAY_SIZE(scope_models); i++) {
794                 for (j = 0; scope_models[i].name[j]; j++) {
795                         if (!strcmp(sdi->model, scope_models[i].name[j])) {
796                                 model_index = i;
797                                 break;
798                         }
799                 }
800                 if (model_index != -1)
801                         break;
802         }
803
804         if (model_index == -1) {
805                 sr_dbg("Unsupported device.");
806                 return SR_ERR_NA;
807         }
808
809         devc->analog_groups = g_malloc0(sizeof(struct sr_channel_group*) *
810                                         scope_models[model_index].analog_channels);
811         devc->digital_groups = g_malloc0(sizeof(struct sr_channel_group*) *
812                                          scope_models[model_index].digital_pods);
813         if (!devc->analog_groups || !devc->digital_groups) {
814                 g_free(devc->analog_groups);
815                 g_free(devc->digital_groups);
816                 return SR_ERR_MALLOC;
817         }
818
819         /* Add analog channels. */
820         for (i = 0; i < scope_models[model_index].analog_channels; i++) {
821                 ch = sr_channel_new(sdi, i, SR_CHANNEL_ANALOG, TRUE,
822                            (*scope_models[model_index].analog_names)[i]);
823
824                 devc->analog_groups[i] = g_malloc0(sizeof(struct sr_channel_group));
825
826                 devc->analog_groups[i]->name = g_strdup(
827                         (char *)(*scope_models[model_index].analog_names)[i]);
828                 devc->analog_groups[i]->channels = g_slist_append(NULL, ch);
829
830                 sdi->channel_groups = g_slist_append(sdi->channel_groups,
831                                                    devc->analog_groups[i]);
832         }
833
834         /* Add digital channel groups. */
835         ret = SR_OK;
836         for (i = 0; i < scope_models[model_index].digital_pods; i++) {
837                 devc->digital_groups[i] = g_malloc0(sizeof(struct sr_channel_group));
838                 if (!devc->digital_groups[i]) {
839                         ret = SR_ERR_MALLOC;
840                         break;
841                 }
842                 devc->digital_groups[i]->name = g_strdup_printf("POD%d", i + 1);
843                 sdi->channel_groups = g_slist_append(sdi->channel_groups,
844                                    devc->digital_groups[i]);
845         }
846         if (ret != SR_OK)
847                 return ret;
848
849         /* Add digital channels. */
850         for (i = 0; i < scope_models[model_index].digital_channels; i++) {
851                 ch = sr_channel_new(sdi, i, SR_CHANNEL_LOGIC, TRUE,
852                            (*scope_models[model_index].digital_names)[i]);
853
854                 group = i / 8;
855                 devc->digital_groups[group]->channels = g_slist_append(
856                         devc->digital_groups[group]->channels, ch);
857         }
858
859         devc->model_config = &scope_models[model_index];
860         devc->samples_limit = 0;
861         devc->frame_limit = 0;
862
863         if (!(devc->model_state = scope_state_new(devc->model_config)))
864                 return SR_ERR_MALLOC;
865
866         return SR_OK;
867 }
868
869 /* Queue data of one channel group, for later submission. */
870 SR_PRIV void hmo_queue_logic_data(struct dev_context *devc,
871                                   size_t group, GByteArray *pod_data)
872 {
873         size_t size;
874         GByteArray *store;
875         uint8_t *logic_data;
876         size_t idx, logic_step;
877
878         /*
879          * Upon first invocation, allocate the array which can hold the
880          * combined logic data for all channels. Assume that each channel
881          * will yield an identical number of samples per receive call.
882          *
883          * As a poor man's safety measure: (Silently) skip processing
884          * for unexpected sample counts, and ignore samples for
885          * unexpected channel groups. Don't bother with complicated
886          * resize logic, considering that many models only support one
887          * pod, and the most capable supported models have two pods of
888          * identical size. We haven't yet seen any "odd" configuration.
889          */
890         if (!devc->logic_data) {
891                 size = pod_data->len * devc->pod_count;
892                 store = g_byte_array_sized_new(size);
893                 memset(store->data, 0, size);
894                 store = g_byte_array_set_size(store, size);
895                 devc->logic_data = store;
896         } else {
897                 store = devc->logic_data;
898                 size = store->len / devc->pod_count;
899                 if (group >= devc->pod_count)
900                         return;
901         }
902
903         /*
904          * Fold the data of the most recently received channel group into
905          * the storage, where data resides for all channels combined.
906          */
907         logic_data = store->data;
908         logic_data += group;
909         logic_step = devc->pod_count;
910         for (idx = 0; idx < pod_data->len; idx++) {
911                 *logic_data = pod_data->data[idx];
912                 logic_data += logic_step;
913         }
914
915         /* Truncate acquisition if a smaller number of samples has been requested. */
916         if (devc->samples_limit > 0 && devc->logic_data->len > devc->samples_limit * devc->pod_count)
917                 devc->logic_data->len = devc->samples_limit * devc->pod_count;
918 }
919
920 /* Submit data for all channels, after the individual groups got collected. */
921 SR_PRIV void hmo_send_logic_packet(struct sr_dev_inst *sdi,
922                                    struct dev_context *devc)
923 {
924         struct sr_datafeed_packet packet;
925         struct sr_datafeed_logic logic;
926
927         if (!devc->logic_data)
928                 return;
929
930         logic.data = devc->logic_data->data;
931         logic.length = devc->logic_data->len;
932         logic.unitsize = devc->pod_count;
933
934         packet.type = SR_DF_LOGIC;
935         packet.payload = &logic;
936
937         sr_session_send(sdi, &packet);
938 }
939
940 /* Undo previous resource allocation. */
941 SR_PRIV void hmo_cleanup_logic_data(struct dev_context *devc)
942 {
943
944         if (devc->logic_data) {
945                 g_byte_array_free(devc->logic_data, TRUE);
946                 devc->logic_data = NULL;
947         }
948         /*
949          * Keep 'pod_count'! It's required when more frames will be
950          * received, and does not harm when kept after acquisition.
951          */
952 }
953
954 SR_PRIV int hmo_receive_data(int fd, int revents, void *cb_data)
955 {
956         struct sr_channel *ch;
957         struct sr_dev_inst *sdi;
958         struct dev_context *devc;
959         struct scope_state *state;
960         struct sr_datafeed_packet packet;
961         GByteArray *data;
962         struct sr_datafeed_analog analog;
963         struct sr_analog_encoding encoding;
964         struct sr_analog_meaning meaning;
965         struct sr_analog_spec spec;
966         struct sr_datafeed_logic logic;
967         size_t group;
968
969         (void)fd;
970         (void)revents;
971
972         data = NULL;
973
974         if (!(sdi = cb_data))
975                 return TRUE;
976
977         if (!(devc = sdi->priv))
978                 return TRUE;
979
980         /* Although this is correct in general, the USBTMC libusb implementation
981          * currently does not generate an event prior to the first read. Often
982          * it is ok to start reading just after the 50ms timeout. See bug #785.
983         if (revents != G_IO_IN)
984                 return TRUE;
985         */
986
987         ch = devc->current_channel->data;
988         state = devc->model_state;
989
990         /*
991          * Send "frame begin" packet upon reception of data for the
992          * first enabled channel.
993          */
994         if (devc->current_channel == devc->enabled_channels) {
995                 packet.type = SR_DF_FRAME_BEGIN;
996                 sr_session_send(sdi, &packet);
997         }
998
999         /*
1000          * Pass on the received data of the channel(s).
1001          */
1002         switch (ch->type) {
1003         case SR_CHANNEL_ANALOG:
1004                 if (sr_scpi_get_block(sdi->conn, NULL, &data) != SR_OK) {
1005                         if (data)
1006                                 g_byte_array_free(data, TRUE);
1007                         return TRUE;
1008                 }
1009
1010                 packet.type = SR_DF_ANALOG;
1011
1012                 analog.data = data->data;
1013                 analog.num_samples = data->len / sizeof(float);
1014                 /* Truncate acquisition if a smaller number of samples has been requested. */
1015                 if (devc->samples_limit > 0 && analog.num_samples > devc->samples_limit)
1016                         analog.num_samples = devc->samples_limit;
1017                 analog.encoding = &encoding;
1018                 analog.meaning = &meaning;
1019                 analog.spec = &spec;
1020
1021                 encoding.unitsize = sizeof(float);
1022                 encoding.is_signed = TRUE;
1023                 encoding.is_float = TRUE;
1024 #ifdef WORDS_BIGENDIAN
1025                 encoding.is_bigendian = TRUE;
1026 #else
1027                 encoding.is_bigendian = FALSE;
1028 #endif
1029                 /* TODO: Use proper 'digits' value for this device (and its modes). */
1030                 encoding.digits = 2;
1031                 encoding.is_digits_decimal = FALSE;
1032                 encoding.scale.p = 1;
1033                 encoding.scale.q = 1;
1034                 encoding.offset.p = 0;
1035                 encoding.offset.q = 1;
1036                 if (state->analog_channels[ch->index].probe_unit == 'V') {
1037                         meaning.mq = SR_MQ_VOLTAGE;
1038                         meaning.unit = SR_UNIT_VOLT;
1039                 } else {
1040                         meaning.mq = SR_MQ_CURRENT;
1041                         meaning.unit = SR_UNIT_AMPERE;
1042                 }
1043                 meaning.mqflags = 0;
1044                 meaning.channels = g_slist_append(NULL, ch);
1045                 /* TODO: Use proper 'digits' value for this device (and its modes). */
1046                 spec.spec_digits = 2;
1047                 packet.payload = &analog;
1048                 sr_session_send(sdi, &packet);
1049                 devc->num_samples = data->len / sizeof(float);
1050                 g_slist_free(meaning.channels);
1051                 g_byte_array_free(data, TRUE);
1052                 data = NULL;
1053                 break;
1054         case SR_CHANNEL_LOGIC:
1055                 if (sr_scpi_get_block(sdi->conn, NULL, &data) != SR_OK) {
1056                         if (data)
1057                                 g_byte_array_free(data, TRUE);
1058                         return TRUE;
1059                 }
1060
1061                 /*
1062                  * If only data from the first pod is involved in the
1063                  * acquisition, then the raw input bytes can get passed
1064                  * forward for performance reasons. When the second pod
1065                  * is involved (either alone, or in combination with the
1066                  * first pod), then the received bytes need to be put
1067                  * into memory in such a layout that all channel groups
1068                  * get combined, and a unitsize larger than a single byte
1069                  * applies. The "queue" logic transparently copes with
1070                  * any such configuration. This works around the lack
1071                  * of support for "meaning" to logic data, which is used
1072                  * above for analog data.
1073                  */
1074                 if (devc->pod_count == 1) {
1075                         packet.type = SR_DF_LOGIC;
1076                         logic.data = data->data;
1077                         logic.length = data->len;
1078                         /* Truncate acquisition if a smaller number of samples has been requested. */
1079                         if (devc->samples_limit > 0 && logic.length > devc->samples_limit)
1080                                 logic.length = devc->samples_limit;
1081                         logic.unitsize = 1;
1082                         packet.payload = &logic;
1083                         sr_session_send(sdi, &packet);
1084                 } else {
1085                         group = ch->index / 8;
1086                         hmo_queue_logic_data(devc, group, data);
1087                 }
1088
1089                 devc->num_samples = data->len / devc->pod_count;
1090                 g_byte_array_free(data, TRUE);
1091                 data = NULL;
1092                 break;
1093         default:
1094                 sr_err("Invalid channel type.");
1095                 break;
1096         }
1097
1098         /*
1099          * Advance to the next enabled channel. When data for all enabled
1100          * channels was received, then flush potentially queued logic data,
1101          * and send the "frame end" packet.
1102          */
1103         if (devc->current_channel->next) {
1104                 devc->current_channel = devc->current_channel->next;
1105                 hmo_request_data(sdi);
1106                 return TRUE;
1107         }
1108         hmo_send_logic_packet(sdi, devc);
1109
1110         /*
1111          * Release the logic data storage after each frame. This copes
1112          * with sample counts that differ in length per frame. -- Is
1113          * this a real constraint when acquiring multiple frames with
1114          * identical device settings?
1115          */
1116         hmo_cleanup_logic_data(devc);
1117
1118         packet.type = SR_DF_FRAME_END;
1119         sr_session_send(sdi, &packet);
1120
1121         /*
1122          * End of frame was reached. Stop acquisition after the specified
1123          * number of frames or after the specified number of samples, or
1124          * continue reception by starting over at the first enabled channel.
1125          */
1126         if (++devc->num_frames >= devc->frame_limit || devc->num_samples >= devc->samples_limit) {
1127                 sr_dev_acquisition_stop(sdi);
1128                 hmo_cleanup_logic_data(devc);
1129         } else {
1130                 devc->current_channel = devc->enabled_channels;
1131                 hmo_request_data(sdi);
1132         }
1133
1134         return TRUE;
1135 }