]> sigrok.org Git - libsigrok.git/blob - src/hardware/baylibre-acme/api.c
Drop some obsolete and unneeded comments.
[libsigrok.git] / src / hardware / baylibre-acme / api.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2015 Bartosz Golaszewski <bgolaszewski@baylibre.com>
5  *
6  * This program is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <config.h>
21 #include "protocol.h"
22 #include <time.h>
23 #include <sys/timerfd.h>
24
25 SR_PRIV struct sr_dev_driver baylibre_acme_driver_info;
26
27 static const uint32_t devopts[] = {
28         SR_CONF_CONTINUOUS | SR_CONF_SET,
29         SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
30         SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
31         SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
32 };
33
34 /*
35  * Currently there are two channel-group/probe options for ACME:
36  *   - SR_CONF_PROBE_FACTOR - allows to modify current shunt resistance
37  *     calibration
38  *   - SR_CONF_POWER_OFF - allows to remotely cut-off/restore power to
39  *     measured devices
40  *
41  * They are not static - we have to check each probe's capabilities in
42  * config_list().
43  */
44 #define MAX_DEVOPTS_CG          2
45 #define HAS_PROBE_FACTOR        (SR_CONF_PROBE_FACTOR | SR_CONF_GET | SR_CONF_SET)
46 #define HAS_POWER_OFF           (SR_CONF_POWER_OFF | SR_CONF_GET | SR_CONF_SET)
47
48 #define MAX_SAMPLE_RATE 500 /* In Hz */
49
50 static const uint64_t samplerates[] = {
51         SR_HZ(1),
52         SR_HZ(MAX_SAMPLE_RATE),
53         SR_HZ(1),
54 };
55
56 static int init(struct sr_dev_driver *di, struct sr_context *sr_ctx)
57 {
58         return std_init(sr_ctx, di, LOG_PREFIX);
59 }
60
61 static GSList *scan(struct sr_dev_driver *di, GSList *options)
62 {
63         struct drv_context *drvc;
64         struct dev_context *devc;
65         struct sr_dev_inst *sdi;
66         GSList *devices;
67         gboolean status;
68         int i;
69
70         (void)options;
71
72         drvc = di->context;
73         devices = NULL;
74
75         devc = g_malloc0(sizeof(struct dev_context));
76         devc->samplerate = SR_HZ(10);
77
78         sdi = g_malloc0(sizeof(struct sr_dev_inst));
79         sdi->status = SR_ST_INACTIVE;
80         sdi->vendor = g_strdup("BayLibre");
81         sdi->model = g_strdup("ACME");
82         sdi->driver = di;
83         sdi->priv = devc;
84
85         status = bl_acme_is_sane();
86         if (!status)
87                 goto err_out;
88
89         /*
90          * Iterate over all ACME connectors and check if any probes
91          * are present.
92          */
93         for (i = 0; i < MAX_PROBES; i++) {
94                 /*
95                  * First check if there's an energy probe on this connector. If
96                  * not, and we're already at the fifth probe - see if we can
97                  * detect a temperature probe.
98                  */
99                 status = bl_acme_detect_probe(bl_acme_get_enrg_addr(i),
100                                               PROBE_NUM(i), ENRG_PROBE_NAME);
101                 if (status) {
102                         /* Energy probe detected. */
103                         status = bl_acme_register_probe(sdi, PROBE_ENRG,
104                                         bl_acme_get_enrg_addr(i), PROBE_NUM(i));
105                         if (!status) {
106                                 sr_err("Error registering power probe %d",
107                                        PROBE_NUM(i));
108                                 continue;
109                         }
110                 } else if (i >= TEMP_PRB_START_INDEX) {
111                         status = bl_acme_detect_probe(bl_acme_get_temp_addr(i),
112                                               PROBE_NUM(i), TEMP_PROBE_NAME);
113                         if (status) {
114                                 /* Temperature probe detected. */
115                                 status = bl_acme_register_probe(sdi,PROBE_TEMP,
116                                         bl_acme_get_temp_addr(i), PROBE_NUM(i));
117                                 if (!status) {
118                                         sr_err("Error registering temp "
119                                                "probe %d", PROBE_NUM(i));
120                                         continue;
121                                 }
122                         }
123                 }
124         }
125
126         /*
127          * Let's assume there's no ACME device present if no probe
128          * has been registered.
129          */
130         if (!sdi->channel_groups)
131                 goto err_out;
132
133         devices = g_slist_append(devices, sdi);
134         drvc->instances = g_slist_append(drvc->instances, sdi);
135
136         return devices;
137
138 err_out:
139         g_free(devc);
140         sr_dev_inst_free(sdi);
141
142         return NULL;
143 }
144
145 static GSList *dev_list(const struct sr_dev_driver *di)
146 {
147         return ((struct drv_context *)(di->context))->instances;
148 }
149
150 static int dev_clear(const struct sr_dev_driver *di)
151 {
152         return std_dev_clear(di, NULL);
153 }
154
155 static int dev_open(struct sr_dev_inst *sdi)
156 {
157         (void)sdi;
158
159         sdi->status = SR_ST_ACTIVE;
160
161         return SR_OK;
162 }
163
164 static int dev_close(struct sr_dev_inst *sdi)
165 {
166         (void)sdi;
167
168         sdi->status = SR_ST_INACTIVE;
169
170         return SR_OK;
171 }
172
173 static int cleanup(const struct sr_dev_driver *di)
174 {
175         dev_clear(di);
176
177         return SR_OK;
178 }
179
180 static int config_get(uint32_t key, GVariant **data,
181                       const struct sr_dev_inst *sdi,
182                       const struct sr_channel_group *cg)
183 {
184         struct dev_context *devc;
185         int ret;
186         uint64_t shunt;
187         gboolean power_off;
188
189         devc = sdi->priv;
190
191         ret = SR_OK;
192         switch (key) {
193         case SR_CONF_LIMIT_SAMPLES:
194                 *data = g_variant_new_uint64(devc->limit_samples);
195                 break;
196         case SR_CONF_LIMIT_MSEC:
197                 *data = g_variant_new_uint64(devc->limit_msec);
198                 break;
199         case SR_CONF_SAMPLERATE:
200                 *data = g_variant_new_uint64(devc->samplerate);
201                 break;
202         case SR_CONF_PROBE_FACTOR:
203                 if (!cg)
204                         return SR_ERR_CHANNEL_GROUP;
205                 ret = bl_acme_get_shunt(cg, &shunt);
206                 if (ret == SR_OK)
207                         *data = g_variant_new_uint64(shunt);
208                 break;
209         case SR_CONF_POWER_OFF:
210                 if (!cg)
211                         return SR_ERR_CHANNEL_GROUP;
212                 ret = bl_acme_read_power_state(cg, &power_off);
213                 if (ret == SR_OK)
214                         *data = g_variant_new_boolean(power_off);
215                 break;
216         default:
217                 return SR_ERR_NA;
218         }
219
220         return ret;
221 }
222
223 static int config_set(uint32_t key, GVariant *data,
224                       const struct sr_dev_inst *sdi,
225                       const struct sr_channel_group *cg)
226 {
227         struct dev_context *devc;
228         uint64_t samplerate;
229         int ret;
230
231         if (sdi->status != SR_ST_ACTIVE)
232                 return SR_ERR_DEV_CLOSED;
233
234         devc = sdi->priv;
235
236         ret = SR_OK;
237         switch (key) {
238         case SR_CONF_LIMIT_SAMPLES:
239                 devc->limit_samples = g_variant_get_uint64(data);
240                 devc->limit_msec = 0;
241                 break;
242         case SR_CONF_LIMIT_MSEC:
243                 devc->limit_msec = g_variant_get_uint64(data) * 1000;
244                 devc->limit_samples = 0;
245                 break;
246         case SR_CONF_SAMPLERATE:
247                 samplerate = g_variant_get_uint64(data);
248                 if (samplerate > MAX_SAMPLE_RATE) {
249                         sr_err("Maximum sample rate is %d", MAX_SAMPLE_RATE);
250                         ret = SR_ERR_SAMPLERATE;
251                         break;
252                 }
253                 devc->samplerate = samplerate;
254                 bl_acme_maybe_set_update_interval(sdi, samplerate);
255                 break;
256         case SR_CONF_PROBE_FACTOR:
257                 if (!cg)
258                         return SR_ERR_CHANNEL_GROUP;
259                 ret = bl_acme_set_shunt(cg, g_variant_get_uint64(data));
260                 break;
261         case SR_CONF_POWER_OFF:
262                 if (!cg)
263                         return SR_ERR_CHANNEL_GROUP;
264                 ret = bl_acme_set_power_off(cg, g_variant_get_boolean(data));
265                 break;
266         default:
267                 ret = SR_ERR_NA;
268         }
269
270         return ret;
271 }
272
273 static int config_list(uint32_t key, GVariant **data,
274                        const struct sr_dev_inst *sdi,
275                        const struct sr_channel_group *cg)
276 {
277         uint32_t devopts_cg[MAX_DEVOPTS_CG];
278         GVariant *gvar;
279         GVariantBuilder gvb;
280         int ret, num_devopts_cg = 0;
281
282         (void)sdi;
283         (void)cg;
284
285         ret = SR_OK;
286         if (!cg) {
287                 switch (key) {
288                 case SR_CONF_DEVICE_OPTIONS:
289                         *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
290                                 devopts, ARRAY_SIZE(devopts), sizeof(uint32_t));
291                         break;
292                 case SR_CONF_SAMPLERATE:
293                         g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
294                         gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
295                                 samplerates, ARRAY_SIZE(samplerates), sizeof(uint64_t));
296                         g_variant_builder_add(&gvb, "{sv}",
297                                               "samplerate-steps", gvar);
298                         *data = g_variant_builder_end(&gvb);
299                         break;
300                 default:
301                         return SR_ERR_NA;
302                 }
303         } else {
304                 switch (key) {
305                 case SR_CONF_DEVICE_OPTIONS:
306                         if (bl_acme_get_probe_type(cg) == PROBE_ENRG)
307                                 devopts_cg[num_devopts_cg++] = HAS_PROBE_FACTOR;
308                         if (bl_acme_probe_has_pws(cg))
309                                 devopts_cg[num_devopts_cg++] = HAS_POWER_OFF;
310
311                         *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
312                                 devopts_cg, num_devopts_cg, sizeof(uint32_t));
313                         break;
314                 default:
315                         return SR_ERR_NA;
316                 }
317         }
318
319         return ret;
320 }
321
322 static void dev_acquisition_close(const struct sr_dev_inst *sdi)
323 {
324         GSList *chl;
325         struct sr_channel *ch;
326
327         for (chl = sdi->channels; chl; chl = chl->next) {
328                 ch = chl->data;
329                 bl_acme_close_channel(ch);
330         }
331 }
332
333 static int dev_acquisition_open(const struct sr_dev_inst *sdi)
334 {
335         GSList *chl;
336         struct sr_channel *ch;
337
338         for (chl = sdi->channels; chl; chl = chl->next) {
339                 ch = chl->data;
340                 if (bl_acme_open_channel(ch)) {
341                         sr_err("Error opening channel %s", ch->name);
342                         dev_acquisition_close(sdi);
343                         return SR_ERR;
344                 }
345         }
346
347         return 0;
348 }
349
350 static int dev_acquisition_start(const struct sr_dev_inst *sdi)
351 {
352         struct dev_context *devc;
353         struct itimerspec tspec = {
354                 .it_interval = { 0, 0 },
355                 .it_value = { 0, 0 }
356         };
357
358         if (sdi->status != SR_ST_ACTIVE)
359                 return SR_ERR_DEV_CLOSED;
360
361         if (dev_acquisition_open(sdi))
362                 return SR_ERR;
363
364         devc = sdi->priv;
365         devc->samples_read = 0;
366         devc->samples_missed = 0;
367         devc->timer_fd = timerfd_create(CLOCK_MONOTONIC, 0);
368         if (devc->timer_fd < 0) {
369                 sr_err("Error creating timer fd");
370                 return SR_ERR;
371         }
372
373         tspec.it_interval.tv_sec = 0;
374         tspec.it_interval.tv_nsec = SR_HZ_TO_NS(devc->samplerate);
375         tspec.it_value = tspec.it_interval;
376
377         if (timerfd_settime(devc->timer_fd, 0, &tspec, NULL)) {
378                 sr_err("Failed to set timer");
379                 close(devc->timer_fd);
380                 return SR_ERR;
381         }
382
383         devc->channel = g_io_channel_unix_new(devc->timer_fd);
384         g_io_channel_set_flags(devc->channel, G_IO_FLAG_NONBLOCK, NULL);
385         g_io_channel_set_encoding(devc->channel, NULL, NULL);
386         g_io_channel_set_buffered(devc->channel, FALSE);
387
388         sr_session_source_add_channel(sdi->session, devc->channel,
389                 G_IO_IN | G_IO_ERR, 1000, bl_acme_receive_data, (void *)sdi);
390
391         std_session_send_df_header(sdi, LOG_PREFIX);
392         devc->start_time = g_get_monotonic_time();
393
394         return SR_OK;
395 }
396
397 static int dev_acquisition_stop(struct sr_dev_inst *sdi)
398 {
399         struct dev_context *devc;
400
401         devc = sdi->priv;
402
403         if (sdi->status != SR_ST_ACTIVE)
404                 return SR_ERR_DEV_CLOSED;
405
406         dev_acquisition_close(sdi);
407         sr_session_source_remove_channel(sdi->session, devc->channel);
408         g_io_channel_shutdown(devc->channel, FALSE, NULL);
409         g_io_channel_unref(devc->channel);
410         devc->channel = NULL;
411
412         std_session_send_df_end(sdi, LOG_PREFIX);
413
414         if (devc->samples_missed > 0)
415                 sr_warn("%" PRIu64 " samples missed", devc->samples_missed);
416
417         return SR_OK;
418 }
419
420 SR_PRIV struct sr_dev_driver baylibre_acme_driver_info = {
421         .name = "baylibre-acme",
422         .longname = "BayLibre ACME (Another Cute Measurement Equipment)",
423         .api_version = 1,
424         .init = init,
425         .cleanup = cleanup,
426         .scan = scan,
427         .dev_list = dev_list,
428         .dev_clear = dev_clear,
429         .config_get = config_get,
430         .config_set = config_set,
431         .config_list = config_list,
432         .dev_open = dev_open,
433         .dev_close = dev_close,
434         .dev_acquisition_start = dev_acquisition_start,
435         .dev_acquisition_stop = dev_acquisition_stop,
436         .context = NULL,
437 };