]> sigrok.org Git - libsigrok.git/blob - src/hardware/baylibre-acme/api.c
std: Factor out some API call dummy implementations.
[libsigrok.git] / src / hardware / baylibre-acme / api.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2015 Bartosz Golaszewski <bgolaszewski@baylibre.com>
5  *
6  * This program is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <config.h>
21 #include "protocol.h"
22 #include <time.h>
23 #include <sys/timerfd.h>
24
25 static const uint32_t devopts[] = {
26         SR_CONF_CONTINUOUS,
27         SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
28         SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
29         SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
30 };
31
32 /*
33  * Currently there are two channel-group/probe options for ACME:
34  *   - SR_CONF_PROBE_FACTOR - allows to modify current shunt resistance
35  *     calibration
36  *   - SR_CONF_POWER_OFF - allows to remotely cut-off/restore power to
37  *     measured devices
38  *
39  * They are not static - we have to check each probe's capabilities in
40  * config_list().
41  */
42 #define MAX_DEVOPTS_CG          2
43 #define HAS_PROBE_FACTOR        (SR_CONF_PROBE_FACTOR | SR_CONF_GET | SR_CONF_SET)
44 #define HAS_POWER_OFF           (SR_CONF_POWER_OFF | SR_CONF_GET | SR_CONF_SET)
45
46 #define MAX_SAMPLE_RATE 500 /* In Hz */
47
48 static const uint64_t samplerates[] = {
49         SR_HZ(1),
50         SR_HZ(MAX_SAMPLE_RATE),
51         SR_HZ(1),
52 };
53
54 static GSList *scan(struct sr_dev_driver *di, GSList *options)
55 {
56         struct dev_context *devc;
57         struct sr_dev_inst *sdi;
58         gboolean status;
59         int i;
60
61         (void)options;
62
63         devc = g_malloc0(sizeof(struct dev_context));
64         devc->samplerate = SR_HZ(10);
65
66         sdi = g_malloc0(sizeof(struct sr_dev_inst));
67         sdi->status = SR_ST_INACTIVE;
68         sdi->vendor = g_strdup("BayLibre");
69         sdi->model = g_strdup("ACME");
70         sdi->priv = devc;
71
72         status = bl_acme_is_sane();
73         if (!status)
74                 goto err_out;
75
76         /*
77          * Iterate over all ACME connectors and check if any probes
78          * are present.
79          */
80         for (i = 0; i < MAX_PROBES; i++) {
81                 /*
82                  * First check if there's an energy probe on this connector. If
83                  * not, and we're already at the fifth probe - see if we can
84                  * detect a temperature probe.
85                  */
86                 status = bl_acme_detect_probe(bl_acme_get_enrg_addr(i),
87                                               PROBE_NUM(i), ENRG_PROBE_NAME);
88                 if (status) {
89                         /* Energy probe detected. */
90                         status = bl_acme_register_probe(sdi, PROBE_ENRG,
91                                         bl_acme_get_enrg_addr(i), PROBE_NUM(i));
92                         if (!status) {
93                                 sr_err("Error registering power probe %d",
94                                        PROBE_NUM(i));
95                                 continue;
96                         }
97                 } else if (i >= TEMP_PRB_START_INDEX) {
98                         status = bl_acme_detect_probe(bl_acme_get_temp_addr(i),
99                                               PROBE_NUM(i), TEMP_PROBE_NAME);
100                         if (status) {
101                                 /* Temperature probe detected. */
102                                 status = bl_acme_register_probe(sdi,PROBE_TEMP,
103                                         bl_acme_get_temp_addr(i), PROBE_NUM(i));
104                                 if (!status) {
105                                         sr_err("Error registering temp "
106                                                "probe %d", PROBE_NUM(i));
107                                         continue;
108                                 }
109                         }
110                 }
111         }
112
113         /*
114          * Let's assume there's no ACME device present if no probe
115          * has been registered.
116          */
117         if (!sdi->channel_groups)
118                 goto err_out;
119
120         return std_scan_complete(di, g_slist_append(NULL, sdi));
121
122 err_out:
123         g_free(devc);
124         sr_dev_inst_free(sdi);
125
126         return NULL;
127 }
128
129 static int config_get(uint32_t key, GVariant **data,
130                       const struct sr_dev_inst *sdi,
131                       const struct sr_channel_group *cg)
132 {
133         struct dev_context *devc;
134         int ret;
135         uint64_t shunt;
136         gboolean power_off;
137
138         devc = sdi->priv;
139
140         ret = SR_OK;
141         switch (key) {
142         case SR_CONF_LIMIT_SAMPLES:
143         case SR_CONF_LIMIT_MSEC:
144                 ret = sr_sw_limits_config_get(&devc->limits, key, data);
145                 break;
146         case SR_CONF_SAMPLERATE:
147                 *data = g_variant_new_uint64(devc->samplerate);
148                 break;
149         case SR_CONF_PROBE_FACTOR:
150                 if (!cg)
151                         return SR_ERR_CHANNEL_GROUP;
152                 ret = bl_acme_get_shunt(cg, &shunt);
153                 if (ret == SR_OK)
154                         *data = g_variant_new_uint64(shunt);
155                 break;
156         case SR_CONF_POWER_OFF:
157                 if (!cg)
158                         return SR_ERR_CHANNEL_GROUP;
159                 ret = bl_acme_read_power_state(cg, &power_off);
160                 if (ret == SR_OK)
161                         *data = g_variant_new_boolean(power_off);
162                 break;
163         default:
164                 return SR_ERR_NA;
165         }
166
167         return ret;
168 }
169
170 static int config_set(uint32_t key, GVariant *data,
171                       const struct sr_dev_inst *sdi,
172                       const struct sr_channel_group *cg)
173 {
174         struct dev_context *devc;
175         uint64_t samplerate;
176         int ret;
177
178         devc = sdi->priv;
179
180         ret = SR_OK;
181         switch (key) {
182         case SR_CONF_LIMIT_SAMPLES:
183         case SR_CONF_LIMIT_MSEC:
184                 ret = sr_sw_limits_config_set(&devc->limits, key, data);
185                 break;
186         case SR_CONF_SAMPLERATE:
187                 samplerate = g_variant_get_uint64(data);
188                 if (samplerate > MAX_SAMPLE_RATE) {
189                         sr_err("Maximum sample rate is %d", MAX_SAMPLE_RATE);
190                         ret = SR_ERR_SAMPLERATE;
191                         break;
192                 }
193                 devc->samplerate = samplerate;
194                 bl_acme_maybe_set_update_interval(sdi, samplerate);
195                 break;
196         case SR_CONF_PROBE_FACTOR:
197                 if (!cg)
198                         return SR_ERR_CHANNEL_GROUP;
199                 ret = bl_acme_set_shunt(cg, g_variant_get_uint64(data));
200                 break;
201         case SR_CONF_POWER_OFF:
202                 if (!cg)
203                         return SR_ERR_CHANNEL_GROUP;
204                 ret = bl_acme_set_power_off(cg, g_variant_get_boolean(data));
205                 break;
206         default:
207                 ret = SR_ERR_NA;
208         }
209
210         return ret;
211 }
212
213 static int config_list(uint32_t key, GVariant **data,
214                        const struct sr_dev_inst *sdi,
215                        const struct sr_channel_group *cg)
216 {
217         uint32_t devopts_cg[MAX_DEVOPTS_CG];
218         GVariant *gvar;
219         GVariantBuilder gvb;
220         int ret, num_devopts_cg = 0;
221
222         (void)sdi;
223         (void)cg;
224
225         ret = SR_OK;
226         if (!cg) {
227                 switch (key) {
228                 case SR_CONF_DEVICE_OPTIONS:
229                         *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
230                                 devopts, ARRAY_SIZE(devopts), sizeof(uint32_t));
231                         break;
232                 case SR_CONF_SAMPLERATE:
233                         g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
234                         gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
235                                 samplerates, ARRAY_SIZE(samplerates), sizeof(uint64_t));
236                         g_variant_builder_add(&gvb, "{sv}",
237                                               "samplerate-steps", gvar);
238                         *data = g_variant_builder_end(&gvb);
239                         break;
240                 default:
241                         return SR_ERR_NA;
242                 }
243         } else {
244                 switch (key) {
245                 case SR_CONF_DEVICE_OPTIONS:
246                         if (bl_acme_get_probe_type(cg) == PROBE_ENRG)
247                                 devopts_cg[num_devopts_cg++] = HAS_PROBE_FACTOR;
248                         if (bl_acme_probe_has_pws(cg))
249                                 devopts_cg[num_devopts_cg++] = HAS_POWER_OFF;
250
251                         *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
252                                 devopts_cg, num_devopts_cg, sizeof(uint32_t));
253                         break;
254                 default:
255                         return SR_ERR_NA;
256                 }
257         }
258
259         return ret;
260 }
261
262 static void dev_acquisition_close(const struct sr_dev_inst *sdi)
263 {
264         GSList *chl;
265         struct sr_channel *ch;
266
267         for (chl = sdi->channels; chl; chl = chl->next) {
268                 ch = chl->data;
269                 bl_acme_close_channel(ch);
270         }
271 }
272
273 static int dev_acquisition_open(const struct sr_dev_inst *sdi)
274 {
275         GSList *chl;
276         struct sr_channel *ch;
277
278         for (chl = sdi->channels; chl; chl = chl->next) {
279                 ch = chl->data;
280                 if (bl_acme_open_channel(ch)) {
281                         sr_err("Error opening channel %s", ch->name);
282                         dev_acquisition_close(sdi);
283                         return SR_ERR;
284                 }
285         }
286
287         return 0;
288 }
289
290 static int dev_acquisition_start(const struct sr_dev_inst *sdi)
291 {
292         struct dev_context *devc;
293         struct itimerspec tspec = {
294                 .it_interval = { 0, 0 },
295                 .it_value = { 0, 0 }
296         };
297
298         if (dev_acquisition_open(sdi))
299                 return SR_ERR;
300
301         devc = sdi->priv;
302         devc->samples_missed = 0;
303         devc->timer_fd = timerfd_create(CLOCK_MONOTONIC, 0);
304         if (devc->timer_fd < 0) {
305                 sr_err("Error creating timer fd");
306                 return SR_ERR;
307         }
308
309         tspec.it_interval.tv_sec = 0;
310         tspec.it_interval.tv_nsec = SR_HZ_TO_NS(devc->samplerate);
311         tspec.it_value = tspec.it_interval;
312
313         if (timerfd_settime(devc->timer_fd, 0, &tspec, NULL)) {
314                 sr_err("Failed to set timer");
315                 close(devc->timer_fd);
316                 return SR_ERR;
317         }
318
319         devc->channel = g_io_channel_unix_new(devc->timer_fd);
320         g_io_channel_set_flags(devc->channel, G_IO_FLAG_NONBLOCK, NULL);
321         g_io_channel_set_encoding(devc->channel, NULL, NULL);
322         g_io_channel_set_buffered(devc->channel, FALSE);
323
324         sr_session_source_add_channel(sdi->session, devc->channel,
325                 G_IO_IN | G_IO_ERR, 1000, bl_acme_receive_data, (void *)sdi);
326
327         std_session_send_df_header(sdi);
328         sr_sw_limits_acquisition_start(&devc->limits);
329
330         return SR_OK;
331 }
332
333 static int dev_acquisition_stop(struct sr_dev_inst *sdi)
334 {
335         struct dev_context *devc;
336
337         devc = sdi->priv;
338
339         dev_acquisition_close(sdi);
340         sr_session_source_remove_channel(sdi->session, devc->channel);
341         g_io_channel_shutdown(devc->channel, FALSE, NULL);
342         g_io_channel_unref(devc->channel);
343         devc->channel = NULL;
344
345         std_session_send_df_end(sdi);
346
347         if (devc->samples_missed > 0)
348                 sr_warn("%" PRIu64 " samples missed", devc->samples_missed);
349
350         return SR_OK;
351 }
352
353 static struct sr_dev_driver baylibre_acme_driver_info = {
354         .name = "baylibre-acme",
355         .longname = "BayLibre ACME (Another Cute Measurement Equipment)",
356         .api_version = 1,
357         .init = std_init,
358         .cleanup = std_cleanup,
359         .scan = scan,
360         .dev_list = std_dev_list,
361         .config_get = config_get,
362         .config_set = config_set,
363         .config_list = config_list,
364         .dev_open = std_dummy_dev_open,
365         .dev_close = std_dummy_dev_close,
366         .dev_acquisition_start = dev_acquisition_start,
367         .dev_acquisition_stop = dev_acquisition_stop,
368         .context = NULL,
369 };
370 SR_REGISTER_DEV_DRIVER(baylibre_acme_driver_info);