]> sigrok.org Git - libsigrok.git/blob - src/hardware/asix-sigma/api.c
f56bdd45bc2c4589a2bf560d5baa2c01653c5035
[libsigrok.git] / src / hardware / asix-sigma / api.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
5  * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6  * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7  * Copyright (C) 2020 Gerhard Sittig <gerhard.sittig@gmx.net>
8  *
9  * This program is free software: you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation, either version 3 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21  */
22
23 #include <config.h>
24 #include "protocol.h"
25
26 /*
27  * Channels are labelled 1-16, see this vendor's image of the cable:
28  * http://tools.asix.net/img/sigma_sigmacab_pins_720.jpg (TI/TO are
29  * additional trigger in/out signals).
30  */
31 static const char *channel_names[] = {
32         "1", "2", "3", "4", "5", "6", "7", "8",
33         "9", "10", "11", "12", "13", "14", "15", "16",
34 };
35
36 static const uint32_t scanopts[] = {
37         SR_CONF_CONN,
38 };
39
40 static const uint32_t drvopts[] = {
41         SR_CONF_LOGIC_ANALYZER,
42 };
43
44 static const uint32_t devopts[] = {
45         SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
46         SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
47         SR_CONF_CONN | SR_CONF_GET,
48         SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
49         SR_CONF_EXTERNAL_CLOCK | SR_CONF_GET | SR_CONF_SET,
50         SR_CONF_EXTERNAL_CLOCK_SOURCE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
51         SR_CONF_CLOCK_EDGE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
52         SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
53         SR_CONF_CAPTURE_RATIO | SR_CONF_GET | SR_CONF_SET,
54 };
55
56 static const char *ext_clock_edges[] = {
57         [SIGMA_CLOCK_EDGE_RISING] = "rising",
58         [SIGMA_CLOCK_EDGE_FALLING] = "falling",
59         [SIGMA_CLOCK_EDGE_EITHER] = "either",
60 };
61
62 static const int32_t trigger_matches[] = {
63         SR_TRIGGER_ZERO,
64         SR_TRIGGER_ONE,
65         SR_TRIGGER_RISING,
66         SR_TRIGGER_FALLING,
67 };
68
69 static void clear_helper(struct dev_context *devc)
70 {
71         (void)sigma_force_close(devc);
72 }
73
74 static int dev_clear(const struct sr_dev_driver *di)
75 {
76         return std_dev_clear_with_callback(di,
77                 (std_dev_clear_callback)clear_helper);
78 }
79
80 static gboolean bus_addr_in_devices(int bus, int addr, GSList *devs)
81 {
82         struct sr_usb_dev_inst *usb;
83
84         for (/* EMPTY */; devs; devs = devs->next) {
85                 usb = devs->data;
86                 if (usb->bus == bus && usb->address == addr)
87                         return TRUE;
88         }
89
90         return FALSE;
91 }
92
93 static gboolean known_vid_pid(const struct libusb_device_descriptor *des)
94 {
95         gboolean is_sigma, is_omega;
96
97         if (des->idVendor != USB_VENDOR_ASIX)
98                 return FALSE;
99         is_sigma = des->idProduct == USB_PRODUCT_SIGMA;
100         is_omega = des->idProduct == USB_PRODUCT_OMEGA;
101         if (!is_sigma && !is_omega)
102                 return FALSE;
103         return TRUE;
104 }
105
106 static GSList *scan(struct sr_dev_driver *di, GSList *options)
107 {
108         struct drv_context *drvc;
109         libusb_context *usbctx;
110         const char *conn;
111         GSList *l, *conn_devices;
112         struct sr_config *src;
113         GSList *devices;
114         libusb_device **devlist, *devitem;
115         int bus, addr;
116         struct libusb_device_descriptor des;
117         struct libusb_device_handle *hdl;
118         int ret;
119         char conn_id[20];
120         char serno_txt[16];
121         char *end;
122         long serno_num, serno_pre;
123         enum asix_device_type dev_type;
124         const char *dev_text;
125         struct sr_dev_inst *sdi;
126         struct dev_context *devc;
127         size_t devidx, chidx;
128
129         drvc = di->context;
130         usbctx = drvc->sr_ctx->libusb_ctx;
131
132         /* Find all devices which match an (optional) conn= spec. */
133         conn = NULL;
134         for (l = options; l; l = l->next) {
135                 src = l->data;
136                 switch (src->key) {
137                 case SR_CONF_CONN:
138                         conn = g_variant_get_string(src->data, NULL);
139                         break;
140                 }
141         }
142         conn_devices = NULL;
143         if (conn)
144                 conn_devices = sr_usb_find(usbctx, conn);
145         if (conn && !conn_devices)
146                 return NULL;
147
148         /* Find all ASIX logic analyzers (which match the connection spec). */
149         devices = NULL;
150         libusb_get_device_list(usbctx, &devlist);
151         for (devidx = 0; devlist[devidx]; devidx++) {
152                 devitem = devlist[devidx];
153
154                 /* Check for connection match if a user spec was given. */
155                 bus = libusb_get_bus_number(devitem);
156                 addr = libusb_get_device_address(devitem);
157                 if (conn && !bus_addr_in_devices(bus, addr, conn_devices))
158                         continue;
159                 snprintf(conn_id, sizeof(conn_id), "%d.%d", bus, addr);
160
161                 /*
162                  * Check for known VID:PID pairs. Get the serial number,
163                  * to then derive the device type from it.
164                  */
165                 libusb_get_device_descriptor(devitem, &des);
166                 if (!known_vid_pid(&des))
167                         continue;
168                 if (!des.iSerialNumber) {
169                         sr_warn("Cannot get serial number (index 0).");
170                         continue;
171                 }
172                 ret = libusb_open(devitem, &hdl);
173                 if (ret < 0) {
174                         sr_warn("Cannot open USB device %04x.%04x: %s.",
175                                 des.idVendor, des.idProduct,
176                                 libusb_error_name(ret));
177                         continue;
178                 }
179                 ret = libusb_get_string_descriptor_ascii(hdl,
180                         des.iSerialNumber,
181                         (unsigned char *)serno_txt, sizeof(serno_txt));
182                 if (ret < 0) {
183                         sr_warn("Cannot get serial number (%s).",
184                                 libusb_error_name(ret));
185                         libusb_close(hdl);
186                         continue;
187                 }
188                 libusb_close(hdl);
189
190                 /*
191                  * All ASIX logic analyzers have a serial number, which
192                  * reads as a hex number, and tells the device type.
193                  */
194                 ret = sr_atol_base(serno_txt, &serno_num, &end, 16);
195                 if (ret != SR_OK || !end || *end) {
196                         sr_warn("Cannot interpret serial number %s.", serno_txt);
197                         continue;
198                 }
199                 dev_type = ASIX_TYPE_NONE;
200                 dev_text = NULL;
201                 serno_pre = serno_num >> 16;
202                 switch (serno_pre) {
203                 case 0xa601:
204                         dev_type = ASIX_TYPE_SIGMA;
205                         dev_text = "SIGMA";
206                         sr_info("Found SIGMA, serno %s.", serno_txt);
207                         break;
208                 case 0xa602:
209                         dev_type = ASIX_TYPE_SIGMA;
210                         dev_text = "SIGMA2";
211                         sr_info("Found SIGMA2, serno %s.", serno_txt);
212                         break;
213                 case 0xa603:
214                         dev_type = ASIX_TYPE_OMEGA;
215                         dev_text = "OMEGA";
216                         sr_info("Found OMEGA, serno %s.", serno_txt);
217                         if (!ASIX_WITH_OMEGA) {
218                                 sr_warn("OMEGA support is not implemented yet.");
219                                 continue;
220                         }
221                         break;
222                 default:
223                         sr_warn("Unknown serno %s, skipping.", serno_txt);
224                         continue;
225                 }
226
227                 /* Create a device instance, add it to the result set. */
228
229                 sdi = g_malloc0(sizeof(*sdi));
230                 devices = g_slist_append(devices, sdi);
231                 sdi->status = SR_ST_INITIALIZING;
232                 sdi->vendor = g_strdup("ASIX");
233                 sdi->model = g_strdup(dev_text);
234                 sdi->serial_num = g_strdup(serno_txt);
235                 sdi->connection_id = g_strdup(conn_id);
236                 for (chidx = 0; chidx < ARRAY_SIZE(channel_names); chidx++)
237                         sr_channel_new(sdi, chidx, SR_CHANNEL_LOGIC,
238                                 TRUE, channel_names[chidx]);
239
240                 devc = g_malloc0(sizeof(*devc));
241                 sdi->priv = devc;
242                 devc->id.vid = des.idVendor;
243                 devc->id.pid = des.idProduct;
244                 devc->id.serno = serno_num;
245                 devc->id.prefix = serno_pre;
246                 devc->id.type = dev_type;
247                 sr_sw_limits_init(&devc->limit.config);
248                 devc->capture_ratio = 50;
249                 devc->use_triggers = FALSE;
250
251                 /* Get current hardware configuration (or use defaults). */
252                 (void)sigma_fetch_hw_config(sdi);
253         }
254         libusb_free_device_list(devlist, 1);
255         g_slist_free_full(conn_devices, (GDestroyNotify)sr_usb_dev_inst_free);
256
257         return std_scan_complete(di, devices);
258 }
259
260 static int dev_open(struct sr_dev_inst *sdi)
261 {
262         struct dev_context *devc;
263
264         devc = sdi->priv;
265
266         if (devc->id.type == ASIX_TYPE_OMEGA && !ASIX_WITH_OMEGA) {
267                 sr_err("OMEGA support is not implemented yet.");
268                 return SR_ERR_NA;
269         }
270
271         return sigma_force_open(sdi);
272 }
273
274 static int dev_close(struct sr_dev_inst *sdi)
275 {
276         struct dev_context *devc;
277
278         devc = sdi->priv;
279
280         return sigma_force_close(devc);
281 }
282
283 static int config_get(uint32_t key, GVariant **data,
284         const struct sr_dev_inst *sdi, const struct sr_channel_group *cg)
285 {
286         struct dev_context *devc;
287         const char *clock_text;
288
289         (void)cg;
290
291         if (!sdi)
292                 return SR_ERR;
293         devc = sdi->priv;
294
295         switch (key) {
296         case SR_CONF_CONN:
297                 *data = g_variant_new_string(sdi->connection_id);
298                 break;
299         case SR_CONF_SAMPLERATE:
300                 *data = g_variant_new_uint64(devc->clock.samplerate);
301                 break;
302         case SR_CONF_EXTERNAL_CLOCK:
303                 *data = g_variant_new_boolean(devc->clock.use_ext_clock);
304                 break;
305         case SR_CONF_EXTERNAL_CLOCK_SOURCE:
306                 clock_text = channel_names[devc->clock.clock_pin];
307                 *data = g_variant_new_string(clock_text);
308                 break;
309         case SR_CONF_CLOCK_EDGE:
310                 clock_text = ext_clock_edges[devc->clock.clock_edge];
311                 *data = g_variant_new_string(clock_text);
312                 break;
313         case SR_CONF_LIMIT_MSEC:
314         case SR_CONF_LIMIT_SAMPLES:
315                 return sr_sw_limits_config_get(&devc->limit.config, key, data);
316         case SR_CONF_CAPTURE_RATIO:
317                 *data = g_variant_new_uint64(devc->capture_ratio);
318                 break;
319         default:
320                 return SR_ERR_NA;
321         }
322
323         return SR_OK;
324 }
325
326 static int config_set(uint32_t key, GVariant *data,
327         const struct sr_dev_inst *sdi, const struct sr_channel_group *cg)
328 {
329         struct dev_context *devc;
330         int ret;
331         uint64_t want_rate, have_rate;
332         int idx;
333
334         (void)cg;
335
336         devc = sdi->priv;
337
338         switch (key) {
339         case SR_CONF_SAMPLERATE:
340                 want_rate = g_variant_get_uint64(data);
341                 ret = sigma_normalize_samplerate(want_rate, &have_rate);
342                 if (ret != SR_OK)
343                         return ret;
344                 if (have_rate != want_rate) {
345                         char *text_want, *text_have;
346                         text_want = sr_samplerate_string(want_rate);
347                         text_have = sr_samplerate_string(have_rate);
348                         sr_info("Adjusted samplerate %s to %s.",
349                                 text_want, text_have);
350                         g_free(text_want);
351                         g_free(text_have);
352                 }
353                 devc->clock.samplerate = have_rate;
354                 break;
355         case SR_CONF_EXTERNAL_CLOCK:
356                 devc->clock.use_ext_clock = g_variant_get_boolean(data);
357                 break;
358         case SR_CONF_EXTERNAL_CLOCK_SOURCE:
359                 idx = std_str_idx(data, ARRAY_AND_SIZE(channel_names));
360                 if (idx < 0)
361                         return SR_ERR_ARG;
362                 devc->clock.clock_pin = idx;
363                 break;
364         case SR_CONF_CLOCK_EDGE:
365                 idx = std_str_idx(data, ARRAY_AND_SIZE(ext_clock_edges));
366                 if (idx < 0)
367                         return SR_ERR_ARG;
368                 devc->clock.clock_edge = idx;
369                 break;
370         case SR_CONF_LIMIT_MSEC:
371         case SR_CONF_LIMIT_SAMPLES:
372                 return sr_sw_limits_config_set(&devc->limit.config, key, data);
373         case SR_CONF_CAPTURE_RATIO:
374                 devc->capture_ratio = g_variant_get_uint64(data);
375                 break;
376         default:
377                 return SR_ERR_NA;
378         }
379
380         return SR_OK;
381 }
382
383 static int config_list(uint32_t key, GVariant **data,
384         const struct sr_dev_inst *sdi, const struct sr_channel_group *cg)
385 {
386         switch (key) {
387         case SR_CONF_SCAN_OPTIONS:
388         case SR_CONF_DEVICE_OPTIONS:
389                 if (cg)
390                         return SR_ERR_NA;
391                 return STD_CONFIG_LIST(key, data, sdi, cg,
392                         scanopts, drvopts, devopts);
393         case SR_CONF_SAMPLERATE:
394                 *data = sigma_get_samplerates_list();
395                 break;
396         case SR_CONF_EXTERNAL_CLOCK_SOURCE:
397                 *data = g_variant_new_strv(ARRAY_AND_SIZE(channel_names));
398                 break;
399         case SR_CONF_CLOCK_EDGE:
400                 *data = g_variant_new_strv(ARRAY_AND_SIZE(ext_clock_edges));
401                 break;
402         case SR_CONF_TRIGGER_MATCH:
403                 *data = std_gvar_array_i32(ARRAY_AND_SIZE(trigger_matches));
404                 break;
405         default:
406                 return SR_ERR_NA;
407         }
408
409         return SR_OK;
410 }
411
412 static int dev_acquisition_start(const struct sr_dev_inst *sdi)
413 {
414         struct dev_context *devc;
415         uint16_t pindis_mask;
416         uint8_t async, div;
417         int ret;
418         size_t triggerpin;
419         uint8_t trigsel2;
420         struct triggerinout triggerinout_conf;
421         struct triggerlut lut;
422         uint8_t regval, cmd_bytes[4], *wrptr;
423
424         devc = sdi->priv;
425
426         /* Convert caller's trigger spec to driver's internal format. */
427         ret = sigma_convert_trigger(sdi);
428         if (ret != SR_OK) {
429                 sr_err("Could not configure triggers.");
430                 return ret;
431         }
432
433         /*
434          * Setup the device's samplerate from the value which up to now
435          * just got checked and stored. As a byproduct this can pick and
436          * send firmware to the device, reduce the number of available
437          * logic channels, etc.
438          *
439          * Determine an acquisition timeout from optionally configured
440          * sample count or time limits. Which depends on the samplerate.
441          * Force 50MHz samplerate when external clock is in use.
442          */
443         if (devc->clock.use_ext_clock) {
444                 if (devc->clock.samplerate != SR_MHZ(50))
445                         sr_info("External clock, forcing 50MHz samplerate.");
446                 devc->clock.samplerate = SR_MHZ(50);
447         }
448         ret = sigma_set_samplerate(sdi);
449         if (ret != SR_OK)
450                 return ret;
451         ret = sigma_set_acquire_timeout(devc);
452         if (ret != SR_OK)
453                 return ret;
454
455         /* Enter trigger programming mode. */
456         trigsel2 = TRGSEL2_RESET;
457         ret = sigma_set_register(devc, WRITE_TRIGGER_SELECT2, trigsel2);
458         if (ret != SR_OK)
459                 return ret;
460
461         trigsel2 = 0;
462         if (devc->clock.samplerate >= SR_MHZ(100)) {
463                 /* 100 and 200 MHz mode. */
464                 /* TODO Decipher the 0x81 magic number's purpose. */
465                 ret = sigma_set_register(devc, WRITE_TRIGGER_SELECT2, 0x81);
466                 if (ret != SR_OK)
467                         return ret;
468
469                 /* Find which pin to trigger on from mask. */
470                 for (triggerpin = 0; triggerpin < 8; triggerpin++) {
471                         if (devc->trigger.risingmask & BIT(triggerpin))
472                                 break;
473                         if (devc->trigger.fallingmask & BIT(triggerpin))
474                                 break;
475                 }
476
477                 /* Set trigger pin and light LED on trigger. */
478                 trigsel2 = triggerpin & TRGSEL2_PINS_MASK;
479                 trigsel2 |= TRGSEL2_LEDSEL1;
480
481                 /* Default rising edge. */
482                 /* TODO Documentation disagrees, bit set means _rising_ edge. */
483                 if (devc->trigger.fallingmask)
484                         trigsel2 |= TRGSEL2_PINPOL_RISE;
485
486         } else if (devc->clock.samplerate <= SR_MHZ(50)) {
487                 /* 50MHz firmware modes. */
488
489                 /* Translate application specs to hardware perspective. */
490                 ret = sigma_build_basic_trigger(devc, &lut);
491                 if (ret != SR_OK)
492                         return ret;
493
494                 /* Communicate resulting register values to the device. */
495                 ret = sigma_write_trigger_lut(devc, &lut);
496                 if (ret != SR_OK)
497                         return ret;
498
499                 trigsel2 = TRGSEL2_LEDSEL1 | TRGSEL2_LEDSEL0;
500         }
501
502         /* Setup trigger in and out pins to default values. */
503         memset(&triggerinout_conf, 0, sizeof(triggerinout_conf));
504         triggerinout_conf.trgout_bytrigger = TRUE;
505         triggerinout_conf.trgout_enable = TRUE;
506         /* TODO
507          * Verify the correctness of this implementation. The previous
508          * version used to assign to a C language struct with bit fields
509          * which is highly non-portable and hard to guess the resulting
510          * raw memory layout or wire transfer content. The C struct's
511          * field names did not match the vendor documentation's names.
512          * Which means that I could not verify "on paper" either. Let's
513          * re-visit this code later during research for trigger support.
514          */
515         wrptr = cmd_bytes;
516         regval = 0;
517         if (triggerinout_conf.trgout_bytrigger)
518                 regval |= TRGOPT_TRGOOUTEN;
519         write_u8_inc(&wrptr, regval);
520         regval &= ~TRGOPT_CLEAR_MASK;
521         if (triggerinout_conf.trgout_enable)
522                 regval |= TRGOPT_TRGOEN;
523         write_u8_inc(&wrptr, regval);
524         ret = sigma_write_register(devc, WRITE_TRIGGER_OPTION,
525                 cmd_bytes, wrptr - cmd_bytes);
526         if (ret != SR_OK)
527                 return ret;
528
529         /* Leave trigger programming mode. */
530         ret = sigma_set_register(devc, WRITE_TRIGGER_SELECT2, trigsel2);
531         if (ret != SR_OK)
532                 return ret;
533
534         /*
535          * Samplerate dependent clock and channels configuration. Some
536          * channels by design are not available at higher clock rates.
537          * Register layout differs between firmware variants (depth 1
538          * with LSB channel mask above 50MHz, depth 4 with more details
539          * up to 50MHz).
540          *
541          * Derive a mask where bits are set for unavailable channels.
542          * Either send the single byte, or the full byte sequence.
543          */
544         pindis_mask = ~BITS_MASK(devc->interp.num_channels);
545         if (devc->clock.samplerate > SR_MHZ(50)) {
546                 ret = sigma_set_register(devc, WRITE_CLOCK_SELECT,
547                         pindis_mask & 0xff);
548         } else {
549                 wrptr = cmd_bytes;
550                 /* Select 50MHz base clock, and divider. */
551                 async = 0;
552                 div = SR_MHZ(50) / devc->clock.samplerate - 1;
553                 if (devc->clock.use_ext_clock) {
554                         async = CLKSEL_CLKSEL8;
555                         div = devc->clock.clock_pin + 1;
556                         switch (devc->clock.clock_edge) {
557                         case SIGMA_CLOCK_EDGE_RISING:
558                                 div |= CLKSEL_RISING;
559                                 break;
560                         case SIGMA_CLOCK_EDGE_FALLING:
561                                 div |= CLKSEL_FALLING;
562                                 break;
563                         case SIGMA_CLOCK_EDGE_EITHER:
564                                 div |= CLKSEL_RISING;
565                                 div |= CLKSEL_FALLING;
566                                 break;
567                         }
568                 }
569                 write_u8_inc(&wrptr, async);
570                 write_u8_inc(&wrptr, div);
571                 write_u16be_inc(&wrptr, pindis_mask);
572                 ret = sigma_write_register(devc, WRITE_CLOCK_SELECT,
573                         cmd_bytes, wrptr - cmd_bytes);
574         }
575         if (ret != SR_OK)
576                 return ret;
577
578         /* Setup maximum post trigger time. */
579         ret = sigma_set_register(devc, WRITE_POST_TRIGGER,
580                 (devc->capture_ratio * 255) / 100);
581         if (ret != SR_OK)
582                 return ret;
583
584         /* Start acqusition. */
585         regval = WMR_TRGRES | WMR_SDRAMWRITEEN;
586         if (devc->use_triggers)
587                 regval |= WMR_TRGEN;
588         ret = sigma_set_register(devc, WRITE_MODE, regval);
589         if (ret != SR_OK)
590                 return ret;
591
592         ret = std_session_send_df_header(sdi);
593         if (ret != SR_OK)
594                 return ret;
595
596         /* Add capture source. */
597         ret = sr_session_source_add(sdi->session, -1, 0, 10,
598                 sigma_receive_data, (void *)sdi);
599         if (ret != SR_OK)
600                 return ret;
601
602         devc->state = SIGMA_CAPTURE;
603
604         return SR_OK;
605 }
606
607 static int dev_acquisition_stop(struct sr_dev_inst *sdi)
608 {
609         struct dev_context *devc;
610
611         devc = sdi->priv;
612
613         /*
614          * When acquisition is currently running, keep the receive
615          * routine registered and have it stop the acquisition upon the
616          * next invocation. Else unregister the receive routine here
617          * already. The detour is required to have sample data retrieved
618          * for forced acquisition stops.
619          */
620         if (devc->state == SIGMA_CAPTURE) {
621                 devc->state = SIGMA_STOPPING;
622         } else {
623                 devc->state = SIGMA_IDLE;
624                 (void)sr_session_source_remove(sdi->session, -1);
625         }
626
627         return SR_OK;
628 }
629
630 static struct sr_dev_driver asix_sigma_driver_info = {
631         .name = "asix-sigma",
632         .longname = "ASIX SIGMA/SIGMA2",
633         .api_version = 1,
634         .init = std_init,
635         .cleanup = std_cleanup,
636         .scan = scan,
637         .dev_list = std_dev_list,
638         .dev_clear = dev_clear,
639         .config_get = config_get,
640         .config_set = config_set,
641         .config_list = config_list,
642         .dev_open = dev_open,
643         .dev_close = dev_close,
644         .dev_acquisition_start = dev_acquisition_start,
645         .dev_acquisition_stop = dev_acquisition_stop,
646         .context = NULL,
647 };
648 SR_REGISTER_DEV_DRIVER(asix_sigma_driver_info);