]> sigrok.org Git - libsigrok.git/blob - src/hardware/asix-sigma/api.c
dcccb4240669dd37b60b0dfea58dc5bbfc838839
[libsigrok.git] / src / hardware / asix-sigma / api.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
5  * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6  * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7  * Copyright (C) 2020 Gerhard Sittig <gerhard.sittig@gmx.net>
8  *
9  * This program is free software: you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation, either version 3 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21  */
22
23 #include <config.h>
24 #include "protocol.h"
25
26 /*
27  * Channels are labelled 1-16, see this vendor's image of the cable:
28  * http://tools.asix.net/img/sigma_sigmacab_pins_720.jpg (TI/TO are
29  * additional trigger in/out signals).
30  */
31 static const char *channel_names[] = {
32         "1", "2", "3", "4", "5", "6", "7", "8",
33         "9", "10", "11", "12", "13", "14", "15", "16",
34 };
35
36 static const uint32_t scanopts[] = {
37         SR_CONF_CONN,
38 };
39
40 static const uint32_t drvopts[] = {
41         SR_CONF_LOGIC_ANALYZER,
42 };
43
44 static const uint32_t devopts[] = {
45         SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
46         SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
47         SR_CONF_CONN | SR_CONF_GET,
48         SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
49         SR_CONF_EXTERNAL_CLOCK | SR_CONF_GET | SR_CONF_SET,
50         SR_CONF_EXTERNAL_CLOCK_SOURCE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
51         SR_CONF_CLOCK_EDGE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
52         SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
53         SR_CONF_CAPTURE_RATIO | SR_CONF_GET | SR_CONF_SET,
54         /* Consider SR_CONF_TRIGGER_PATTERN (SR_T_STRING, GET/SET) support. */
55 };
56
57 static const char *ext_clock_edges[] = {
58         [SIGMA_CLOCK_EDGE_RISING] = "rising",
59         [SIGMA_CLOCK_EDGE_FALLING] = "falling",
60         [SIGMA_CLOCK_EDGE_EITHER] = "either",
61 };
62
63 static const int32_t trigger_matches[] = {
64         SR_TRIGGER_ZERO,
65         SR_TRIGGER_ONE,
66         SR_TRIGGER_RISING,
67         SR_TRIGGER_FALLING,
68 };
69
70 static void clear_helper(struct dev_context *devc)
71 {
72         (void)sigma_force_close(devc);
73 }
74
75 static int dev_clear(const struct sr_dev_driver *di)
76 {
77         return std_dev_clear_with_callback(di,
78                 (std_dev_clear_callback)clear_helper);
79 }
80
81 static gboolean bus_addr_in_devices(int bus, int addr, GSList *devs)
82 {
83         struct sr_usb_dev_inst *usb;
84
85         for (/* EMPTY */; devs; devs = devs->next) {
86                 usb = devs->data;
87                 if (usb->bus == bus && usb->address == addr)
88                         return TRUE;
89         }
90
91         return FALSE;
92 }
93
94 static gboolean known_vid_pid(const struct libusb_device_descriptor *des)
95 {
96         gboolean is_sigma, is_omega;
97
98         if (des->idVendor != USB_VENDOR_ASIX)
99                 return FALSE;
100         is_sigma = des->idProduct == USB_PRODUCT_SIGMA;
101         is_omega = des->idProduct == USB_PRODUCT_OMEGA;
102         if (!is_sigma && !is_omega)
103                 return FALSE;
104         return TRUE;
105 }
106
107 static GSList *scan(struct sr_dev_driver *di, GSList *options)
108 {
109         struct drv_context *drvc;
110         libusb_context *usbctx;
111         const char *conn;
112         GSList *l, *conn_devices;
113         struct sr_config *src;
114         GSList *devices;
115         libusb_device **devlist, *devitem;
116         int bus, addr;
117         struct libusb_device_descriptor des;
118         struct libusb_device_handle *hdl;
119         int ret;
120         char conn_id[20];
121         char serno_txt[16];
122         char *end;
123         long serno_num, serno_pre;
124         enum asix_device_type dev_type;
125         const char *dev_text;
126         struct sr_dev_inst *sdi;
127         struct dev_context *devc;
128         size_t devidx, chidx;
129
130         drvc = di->context;
131         usbctx = drvc->sr_ctx->libusb_ctx;
132
133         /* Find all devices which match an (optional) conn= spec. */
134         conn = NULL;
135         for (l = options; l; l = l->next) {
136                 src = l->data;
137                 switch (src->key) {
138                 case SR_CONF_CONN:
139                         conn = g_variant_get_string(src->data, NULL);
140                         break;
141                 }
142         }
143         conn_devices = NULL;
144         if (conn)
145                 conn_devices = sr_usb_find(usbctx, conn);
146         if (conn && !conn_devices)
147                 return NULL;
148
149         /* Find all ASIX logic analyzers (which match the connection spec). */
150         devices = NULL;
151         libusb_get_device_list(usbctx, &devlist);
152         for (devidx = 0; devlist[devidx]; devidx++) {
153                 devitem = devlist[devidx];
154
155                 /* Check for connection match if a user spec was given. */
156                 bus = libusb_get_bus_number(devitem);
157                 addr = libusb_get_device_address(devitem);
158                 if (conn && !bus_addr_in_devices(bus, addr, conn_devices))
159                         continue;
160                 snprintf(conn_id, sizeof(conn_id), "%d.%d", bus, addr);
161
162                 /*
163                  * Check for known VID:PID pairs. Get the serial number,
164                  * to then derive the device type from it.
165                  */
166                 libusb_get_device_descriptor(devitem, &des);
167                 if (!known_vid_pid(&des))
168                         continue;
169                 if (!des.iSerialNumber) {
170                         sr_warn("Cannot get serial number (index 0).");
171                         continue;
172                 }
173                 ret = libusb_open(devitem, &hdl);
174                 if (ret < 0) {
175                         sr_warn("Cannot open USB device %04x.%04x: %s.",
176                                 des.idVendor, des.idProduct,
177                                 libusb_error_name(ret));
178                         continue;
179                 }
180                 ret = libusb_get_string_descriptor_ascii(hdl,
181                         des.iSerialNumber,
182                         (unsigned char *)serno_txt, sizeof(serno_txt));
183                 if (ret < 0) {
184                         sr_warn("Cannot get serial number (%s).",
185                                 libusb_error_name(ret));
186                         libusb_close(hdl);
187                         continue;
188                 }
189                 libusb_close(hdl);
190
191                 /*
192                  * All ASIX logic analyzers have a serial number, which
193                  * reads as a hex number, and tells the device type.
194                  */
195                 ret = sr_atol_base(serno_txt, &serno_num, &end, 16);
196                 if (ret != SR_OK || !end || *end) {
197                         sr_warn("Cannot interpret serial number %s.", serno_txt);
198                         continue;
199                 }
200                 dev_type = ASIX_TYPE_NONE;
201                 dev_text = NULL;
202                 serno_pre = serno_num >> 16;
203                 switch (serno_pre) {
204                 case 0xa601:
205                         dev_type = ASIX_TYPE_SIGMA;
206                         dev_text = "SIGMA";
207                         sr_info("Found SIGMA, serno %s.", serno_txt);
208                         break;
209                 case 0xa602:
210                         dev_type = ASIX_TYPE_SIGMA;
211                         dev_text = "SIGMA2";
212                         sr_info("Found SIGMA2, serno %s.", serno_txt);
213                         break;
214                 case 0xa603:
215                         dev_type = ASIX_TYPE_OMEGA;
216                         dev_text = "OMEGA";
217                         sr_info("Found OMEGA, serno %s.", serno_txt);
218                         if (!ASIX_WITH_OMEGA) {
219                                 sr_warn("OMEGA support is not implemented yet.");
220                                 continue;
221                         }
222                         break;
223                 default:
224                         sr_warn("Unknown serno %s, skipping.", serno_txt);
225                         continue;
226                 }
227
228                 /* Create a device instance, add it to the result set. */
229
230                 sdi = g_malloc0(sizeof(*sdi));
231                 devices = g_slist_append(devices, sdi);
232                 sdi->status = SR_ST_INITIALIZING;
233                 sdi->vendor = g_strdup("ASIX");
234                 sdi->model = g_strdup(dev_text);
235                 sdi->serial_num = g_strdup(serno_txt);
236                 sdi->connection_id = g_strdup(conn_id);
237                 for (chidx = 0; chidx < ARRAY_SIZE(channel_names); chidx++)
238                         sr_channel_new(sdi, chidx, SR_CHANNEL_LOGIC,
239                                 TRUE, channel_names[chidx]);
240
241                 devc = g_malloc0(sizeof(*devc));
242                 sdi->priv = devc;
243                 devc->id.vid = des.idVendor;
244                 devc->id.pid = des.idProduct;
245                 devc->id.serno = serno_num;
246                 devc->id.prefix = serno_pre;
247                 devc->id.type = dev_type;
248                 sr_sw_limits_init(&devc->limit.config);
249                 devc->capture_ratio = 50;
250                 devc->use_triggers = FALSE;
251
252                 /* Get current hardware configuration (or use defaults). */
253                 (void)sigma_fetch_hw_config(sdi);
254         }
255         libusb_free_device_list(devlist, 1);
256         g_slist_free_full(conn_devices, (GDestroyNotify)sr_usb_dev_inst_free);
257
258         return std_scan_complete(di, devices);
259 }
260
261 static int dev_open(struct sr_dev_inst *sdi)
262 {
263         struct dev_context *devc;
264
265         devc = sdi->priv;
266
267         if (devc->id.type == ASIX_TYPE_OMEGA && !ASIX_WITH_OMEGA) {
268                 sr_err("OMEGA support is not implemented yet.");
269                 return SR_ERR_NA;
270         }
271
272         return sigma_force_open(sdi);
273 }
274
275 static int dev_close(struct sr_dev_inst *sdi)
276 {
277         struct dev_context *devc;
278
279         devc = sdi->priv;
280
281         return sigma_force_close(devc);
282 }
283
284 static int config_get(uint32_t key, GVariant **data,
285         const struct sr_dev_inst *sdi, const struct sr_channel_group *cg)
286 {
287         struct dev_context *devc;
288         const char *clock_text;
289
290         (void)cg;
291
292         if (!sdi)
293                 return SR_ERR;
294         devc = sdi->priv;
295
296         switch (key) {
297         case SR_CONF_CONN:
298                 *data = g_variant_new_string(sdi->connection_id);
299                 break;
300         case SR_CONF_SAMPLERATE:
301                 *data = g_variant_new_uint64(devc->clock.samplerate);
302                 break;
303         case SR_CONF_EXTERNAL_CLOCK:
304                 *data = g_variant_new_boolean(devc->clock.use_ext_clock);
305                 break;
306         case SR_CONF_EXTERNAL_CLOCK_SOURCE:
307                 clock_text = channel_names[devc->clock.clock_pin];
308                 *data = g_variant_new_string(clock_text);
309                 break;
310         case SR_CONF_CLOCK_EDGE:
311                 clock_text = ext_clock_edges[devc->clock.clock_edge];
312                 *data = g_variant_new_string(clock_text);
313                 break;
314         case SR_CONF_LIMIT_MSEC:
315         case SR_CONF_LIMIT_SAMPLES:
316                 return sr_sw_limits_config_get(&devc->limit.config, key, data);
317         case SR_CONF_CAPTURE_RATIO:
318                 *data = g_variant_new_uint64(devc->capture_ratio);
319                 break;
320         default:
321                 return SR_ERR_NA;
322         }
323
324         return SR_OK;
325 }
326
327 static int config_set(uint32_t key, GVariant *data,
328         const struct sr_dev_inst *sdi, const struct sr_channel_group *cg)
329 {
330         struct dev_context *devc;
331         int ret;
332         uint64_t want_rate, have_rate;
333         int idx;
334
335         (void)cg;
336
337         devc = sdi->priv;
338
339         switch (key) {
340         case SR_CONF_SAMPLERATE:
341                 want_rate = g_variant_get_uint64(data);
342                 ret = sigma_normalize_samplerate(want_rate, &have_rate);
343                 if (ret != SR_OK)
344                         return ret;
345                 if (have_rate != want_rate) {
346                         char *text_want, *text_have;
347                         text_want = sr_samplerate_string(want_rate);
348                         text_have = sr_samplerate_string(have_rate);
349                         sr_info("Adjusted samplerate %s to %s.",
350                                 text_want, text_have);
351                         g_free(text_want);
352                         g_free(text_have);
353                 }
354                 devc->clock.samplerate = have_rate;
355                 break;
356         case SR_CONF_EXTERNAL_CLOCK:
357                 devc->clock.use_ext_clock = g_variant_get_boolean(data);
358                 break;
359         case SR_CONF_EXTERNAL_CLOCK_SOURCE:
360                 idx = std_str_idx(data, ARRAY_AND_SIZE(channel_names));
361                 if (idx < 0)
362                         return SR_ERR_ARG;
363                 devc->clock.clock_pin = idx;
364                 break;
365         case SR_CONF_CLOCK_EDGE:
366                 idx = std_str_idx(data, ARRAY_AND_SIZE(ext_clock_edges));
367                 if (idx < 0)
368                         return SR_ERR_ARG;
369                 devc->clock.clock_edge = idx;
370                 break;
371         case SR_CONF_LIMIT_MSEC:
372         case SR_CONF_LIMIT_SAMPLES:
373                 return sr_sw_limits_config_set(&devc->limit.config, key, data);
374         case SR_CONF_CAPTURE_RATIO:
375                 devc->capture_ratio = g_variant_get_uint64(data);
376                 break;
377         default:
378                 return SR_ERR_NA;
379         }
380
381         return SR_OK;
382 }
383
384 static int config_list(uint32_t key, GVariant **data,
385         const struct sr_dev_inst *sdi, const struct sr_channel_group *cg)
386 {
387         switch (key) {
388         case SR_CONF_SCAN_OPTIONS:
389         case SR_CONF_DEVICE_OPTIONS:
390                 if (cg)
391                         return SR_ERR_NA;
392                 return STD_CONFIG_LIST(key, data, sdi, cg,
393                         scanopts, drvopts, devopts);
394         case SR_CONF_SAMPLERATE:
395                 *data = sigma_get_samplerates_list();
396                 break;
397         case SR_CONF_EXTERNAL_CLOCK_SOURCE:
398                 *data = g_variant_new_strv(ARRAY_AND_SIZE(channel_names));
399                 break;
400         case SR_CONF_CLOCK_EDGE:
401                 *data = g_variant_new_strv(ARRAY_AND_SIZE(ext_clock_edges));
402                 break;
403         case SR_CONF_TRIGGER_MATCH:
404                 *data = std_gvar_array_i32(ARRAY_AND_SIZE(trigger_matches));
405                 break;
406         default:
407                 return SR_ERR_NA;
408         }
409
410         return SR_OK;
411 }
412
413 static int dev_acquisition_start(const struct sr_dev_inst *sdi)
414 {
415         struct dev_context *devc;
416         uint16_t pindis_mask;
417         uint8_t async, div;
418         int ret;
419         size_t triggerpin;
420         uint8_t trigsel2;
421         struct triggerinout triggerinout_conf;
422         struct triggerlut lut;
423         uint8_t regval, cmd_bytes[4], *wrptr;
424
425         devc = sdi->priv;
426
427         /* Convert caller's trigger spec to driver's internal format. */
428         ret = sigma_convert_trigger(sdi);
429         if (ret != SR_OK) {
430                 sr_err("Could not configure triggers.");
431                 return ret;
432         }
433
434         /*
435          * Setup the device's samplerate from the value which up to now
436          * just got checked and stored. As a byproduct this can pick and
437          * send firmware to the device, reduce the number of available
438          * logic channels, etc.
439          *
440          * Determine an acquisition timeout from optionally configured
441          * sample count or time limits. Which depends on the samplerate.
442          * Force 50MHz samplerate when external clock is in use.
443          */
444         if (devc->clock.use_ext_clock) {
445                 if (devc->clock.samplerate != SR_MHZ(50))
446                         sr_info("External clock, forcing 50MHz samplerate.");
447                 devc->clock.samplerate = SR_MHZ(50);
448         }
449         ret = sigma_set_samplerate(sdi);
450         if (ret != SR_OK)
451                 return ret;
452         ret = sigma_set_acquire_timeout(devc);
453         if (ret != SR_OK)
454                 return ret;
455
456         /* Enter trigger programming mode. */
457         trigsel2 = TRGSEL2_RESET;
458         ret = sigma_set_register(devc, WRITE_TRIGGER_SELECT2, trigsel2);
459         if (ret != SR_OK)
460                 return ret;
461
462         trigsel2 = 0;
463         if (devc->clock.samplerate >= SR_MHZ(100)) {
464                 /* 100 and 200 MHz mode. */
465                 /* TODO Decipher the 0x81 magic number's purpose. */
466                 ret = sigma_set_register(devc, WRITE_TRIGGER_SELECT2, 0x81);
467                 if (ret != SR_OK)
468                         return ret;
469
470                 /* Find which pin to trigger on from mask. */
471                 for (triggerpin = 0; triggerpin < 8; triggerpin++) {
472                         if (devc->trigger.risingmask & BIT(triggerpin))
473                                 break;
474                         if (devc->trigger.fallingmask & BIT(triggerpin))
475                                 break;
476                 }
477
478                 /* Set trigger pin and light LED on trigger. */
479                 trigsel2 = triggerpin & TRGSEL2_PINS_MASK;
480                 trigsel2 |= TRGSEL2_LEDSEL1;
481
482                 /* Default rising edge. */
483                 /* TODO Documentation disagrees, bit set means _rising_ edge. */
484                 if (devc->trigger.fallingmask)
485                         trigsel2 |= TRGSEL2_PINPOL_RISE;
486
487         } else if (devc->clock.samplerate <= SR_MHZ(50)) {
488                 /* 50MHz firmware modes. */
489
490                 /* Translate application specs to hardware perspective. */
491                 ret = sigma_build_basic_trigger(devc, &lut);
492                 if (ret != SR_OK)
493                         return ret;
494
495                 /* Communicate resulting register values to the device. */
496                 ret = sigma_write_trigger_lut(devc, &lut);
497                 if (ret != SR_OK)
498                         return ret;
499
500                 trigsel2 = TRGSEL2_LEDSEL1 | TRGSEL2_LEDSEL0;
501         }
502
503         /* Setup trigger in and out pins to default values. */
504         memset(&triggerinout_conf, 0, sizeof(triggerinout_conf));
505         triggerinout_conf.trgout_bytrigger = TRUE;
506         triggerinout_conf.trgout_enable = TRUE;
507         /* TODO
508          * Verify the correctness of this implementation. The previous
509          * version used to assign to a C language struct with bit fields
510          * which is highly non-portable and hard to guess the resulting
511          * raw memory layout or wire transfer content. The C struct's
512          * field names did not match the vendor documentation's names.
513          * Which means that I could not verify "on paper" either. Let's
514          * re-visit this code later during research for trigger support.
515          */
516         wrptr = cmd_bytes;
517         regval = 0;
518         if (triggerinout_conf.trgout_bytrigger)
519                 regval |= TRGOPT_TRGOOUTEN;
520         write_u8_inc(&wrptr, regval);
521         regval &= ~TRGOPT_CLEAR_MASK;
522         if (triggerinout_conf.trgout_enable)
523                 regval |= TRGOPT_TRGOEN;
524         write_u8_inc(&wrptr, regval);
525         ret = sigma_write_register(devc, WRITE_TRIGGER_OPTION,
526                 cmd_bytes, wrptr - cmd_bytes);
527         if (ret != SR_OK)
528                 return ret;
529
530         /* Leave trigger programming mode. */
531         ret = sigma_set_register(devc, WRITE_TRIGGER_SELECT2, trigsel2);
532         if (ret != SR_OK)
533                 return ret;
534
535         /*
536          * Samplerate dependent clock and channels configuration. Some
537          * channels by design are not available at higher clock rates.
538          * Register layout differs between firmware variants (depth 1
539          * with LSB channel mask above 50MHz, depth 4 with more details
540          * up to 50MHz).
541          *
542          * Derive a mask where bits are set for unavailable channels.
543          * Either send the single byte, or the full byte sequence.
544          */
545         pindis_mask = ~BITS_MASK(devc->interp.num_channels);
546         if (devc->clock.samplerate > SR_MHZ(50)) {
547                 ret = sigma_set_register(devc, WRITE_CLOCK_SELECT,
548                         pindis_mask & 0xff);
549         } else {
550                 wrptr = cmd_bytes;
551                 /* Select 50MHz base clock, and divider. */
552                 async = 0;
553                 div = SR_MHZ(50) / devc->clock.samplerate - 1;
554                 if (devc->clock.use_ext_clock) {
555                         async = CLKSEL_CLKSEL8;
556                         div = devc->clock.clock_pin + 1;
557                         switch (devc->clock.clock_edge) {
558                         case SIGMA_CLOCK_EDGE_RISING:
559                                 div |= CLKSEL_RISING;
560                                 break;
561                         case SIGMA_CLOCK_EDGE_FALLING:
562                                 div |= CLKSEL_FALLING;
563                                 break;
564                         case SIGMA_CLOCK_EDGE_EITHER:
565                                 div |= CLKSEL_RISING;
566                                 div |= CLKSEL_FALLING;
567                                 break;
568                         }
569                 }
570                 write_u8_inc(&wrptr, async);
571                 write_u8_inc(&wrptr, div);
572                 write_u16be_inc(&wrptr, pindis_mask);
573                 ret = sigma_write_register(devc, WRITE_CLOCK_SELECT,
574                         cmd_bytes, wrptr - cmd_bytes);
575         }
576         if (ret != SR_OK)
577                 return ret;
578
579         /* Setup maximum post trigger time. */
580         ret = sigma_set_register(devc, WRITE_POST_TRIGGER,
581                 (devc->capture_ratio * 255) / 100);
582         if (ret != SR_OK)
583                 return ret;
584
585         /* Start acqusition. */
586         regval = WMR_TRGRES | WMR_SDRAMWRITEEN;
587         if (devc->use_triggers)
588                 regval |= WMR_TRGEN;
589         ret = sigma_set_register(devc, WRITE_MODE, regval);
590         if (ret != SR_OK)
591                 return ret;
592
593         ret = std_session_send_df_header(sdi);
594         if (ret != SR_OK)
595                 return ret;
596
597         /* Add capture source. */
598         ret = sr_session_source_add(sdi->session, -1, 0, 10,
599                 sigma_receive_data, (void *)sdi);
600         if (ret != SR_OK)
601                 return ret;
602
603         devc->state = SIGMA_CAPTURE;
604
605         return SR_OK;
606 }
607
608 static int dev_acquisition_stop(struct sr_dev_inst *sdi)
609 {
610         struct dev_context *devc;
611
612         devc = sdi->priv;
613
614         /*
615          * When acquisition is currently running, keep the receive
616          * routine registered and have it stop the acquisition upon the
617          * next invocation. Else unregister the receive routine here
618          * already. The detour is required to have sample data retrieved
619          * for forced acquisition stops.
620          */
621         if (devc->state == SIGMA_CAPTURE) {
622                 devc->state = SIGMA_STOPPING;
623         } else {
624                 devc->state = SIGMA_IDLE;
625                 (void)sr_session_source_remove(sdi->session, -1);
626         }
627
628         return SR_OK;
629 }
630
631 static struct sr_dev_driver asix_sigma_driver_info = {
632         .name = "asix-sigma",
633         .longname = "ASIX SIGMA/SIGMA2",
634         .api_version = 1,
635         .init = std_init,
636         .cleanup = std_cleanup,
637         .scan = scan,
638         .dev_list = std_dev_list,
639         .dev_clear = dev_clear,
640         .config_get = config_get,
641         .config_set = config_set,
642         .config_list = config_list,
643         .dev_open = dev_open,
644         .dev_close = dev_close,
645         .dev_acquisition_start = dev_acquisition_start,
646         .dev_acquisition_stop = dev_acquisition_stop,
647         .context = NULL,
648 };
649 SR_REGISTER_DEV_DRIVER(asix_sigma_driver_info);