]> sigrok.org Git - libsigrok.git/blob - src/hardware/asix-sigma/api.c
b8d68e9a0118c433184ab7a68f0c4ae3277bcb5b
[libsigrok.git] / src / hardware / asix-sigma / api.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
5  * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6  * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7  * Copyright (C) 2020 Gerhard Sittig <gerhard.sittig@gmx.net>
8  *
9  * This program is free software: you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation, either version 3 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21  */
22
23 #include <config.h>
24 #include "protocol.h"
25
26 /*
27  * Channels are labelled 1-16, see this vendor's image of the cable:
28  * http://tools.asix.net/img/sigma_sigmacab_pins_720.jpg (TI/TO are
29  * additional trigger in/out signals).
30  */
31 static const char *channel_names[] = {
32         "1", "2", "3", "4", "5", "6", "7", "8",
33         "9", "10", "11", "12", "13", "14", "15", "16",
34 };
35
36 static const uint32_t scanopts[] = {
37         SR_CONF_CONN,
38 };
39
40 static const uint32_t drvopts[] = {
41         SR_CONF_LOGIC_ANALYZER,
42 };
43
44 static const uint32_t devopts[] = {
45         SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
46         SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
47         SR_CONF_CONN | SR_CONF_GET,
48         SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
49         SR_CONF_EXTERNAL_CLOCK | SR_CONF_GET | SR_CONF_SET,
50         SR_CONF_EXTERNAL_CLOCK_SOURCE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
51         SR_CONF_CLOCK_EDGE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
52 #if ASIX_SIGMA_WITH_TRIGGER
53         SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
54         SR_CONF_CAPTURE_RATIO | SR_CONF_GET | SR_CONF_SET,
55 #endif
56 };
57
58 static const char *ext_clock_edges[] = {
59         [SIGMA_CLOCK_EDGE_RISING] = "rising",
60         [SIGMA_CLOCK_EDGE_FALLING] = "falling",
61         [SIGMA_CLOCK_EDGE_EITHER] = "either",
62 };
63
64 #if ASIX_SIGMA_WITH_TRIGGER
65 static const int32_t trigger_matches[] = {
66         SR_TRIGGER_ZERO,
67         SR_TRIGGER_ONE,
68         SR_TRIGGER_RISING,
69         SR_TRIGGER_FALLING,
70 };
71 #endif
72
73 static void clear_helper(struct dev_context *devc)
74 {
75         (void)sigma_force_close(devc);
76 }
77
78 static int dev_clear(const struct sr_dev_driver *di)
79 {
80         return std_dev_clear_with_callback(di,
81                 (std_dev_clear_callback)clear_helper);
82 }
83
84 static gboolean bus_addr_in_devices(int bus, int addr, GSList *devs)
85 {
86         struct sr_usb_dev_inst *usb;
87
88         for (/* EMPTY */; devs; devs = devs->next) {
89                 usb = devs->data;
90                 if (usb->bus == bus && usb->address == addr)
91                         return TRUE;
92         }
93
94         return FALSE;
95 }
96
97 static gboolean known_vid_pid(const struct libusb_device_descriptor *des)
98 {
99         gboolean is_sigma, is_omega;
100
101         if (des->idVendor != USB_VENDOR_ASIX)
102                 return FALSE;
103         is_sigma = des->idProduct == USB_PRODUCT_SIGMA;
104         is_omega = des->idProduct == USB_PRODUCT_OMEGA;
105         if (!is_sigma && !is_omega)
106                 return FALSE;
107         return TRUE;
108 }
109
110 static GSList *scan(struct sr_dev_driver *di, GSList *options)
111 {
112         struct drv_context *drvc;
113         libusb_context *usbctx;
114         const char *conn;
115         GSList *l, *conn_devices;
116         struct sr_config *src;
117         GSList *devices;
118         libusb_device **devlist, *devitem;
119         int bus, addr;
120         struct libusb_device_descriptor des;
121         struct libusb_device_handle *hdl;
122         int ret;
123         char conn_id[20];
124         char serno_txt[16];
125         char *end;
126         long serno_num, serno_pre;
127         enum asix_device_type dev_type;
128         const char *dev_text;
129         struct sr_dev_inst *sdi;
130         struct dev_context *devc;
131         size_t devidx, chidx;
132
133         drvc = di->context;
134         usbctx = drvc->sr_ctx->libusb_ctx;
135
136         /* Find all devices which match an (optional) conn= spec. */
137         conn = NULL;
138         for (l = options; l; l = l->next) {
139                 src = l->data;
140                 switch (src->key) {
141                 case SR_CONF_CONN:
142                         conn = g_variant_get_string(src->data, NULL);
143                         break;
144                 }
145         }
146         conn_devices = NULL;
147         if (conn)
148                 conn_devices = sr_usb_find(usbctx, conn);
149         if (conn && !conn_devices)
150                 return NULL;
151
152         /* Find all ASIX logic analyzers (which match the connection spec). */
153         devices = NULL;
154         libusb_get_device_list(usbctx, &devlist);
155         for (devidx = 0; devlist[devidx]; devidx++) {
156                 devitem = devlist[devidx];
157
158                 /* Check for connection match if a user spec was given. */
159                 bus = libusb_get_bus_number(devitem);
160                 addr = libusb_get_device_address(devitem);
161                 if (conn && !bus_addr_in_devices(bus, addr, conn_devices))
162                         continue;
163                 snprintf(conn_id, sizeof(conn_id), "%d.%d", bus, addr);
164
165                 /*
166                  * Check for known VID:PID pairs. Get the serial number,
167                  * to then derive the device type from it.
168                  */
169                 libusb_get_device_descriptor(devitem, &des);
170                 if (!known_vid_pid(&des))
171                         continue;
172                 if (!des.iSerialNumber) {
173                         sr_warn("Cannot get serial number (index 0).");
174                         continue;
175                 }
176                 ret = libusb_open(devitem, &hdl);
177                 if (ret < 0) {
178                         sr_warn("Cannot open USB device %04x.%04x: %s.",
179                                 des.idVendor, des.idProduct,
180                                 libusb_error_name(ret));
181                         continue;
182                 }
183                 ret = libusb_get_string_descriptor_ascii(hdl,
184                         des.iSerialNumber,
185                         (unsigned char *)serno_txt, sizeof(serno_txt));
186                 if (ret < 0) {
187                         sr_warn("Cannot get serial number (%s).",
188                                 libusb_error_name(ret));
189                         libusb_close(hdl);
190                         continue;
191                 }
192                 libusb_close(hdl);
193
194                 /*
195                  * All ASIX logic analyzers have a serial number, which
196                  * reads as a hex number, and tells the device type.
197                  */
198                 ret = sr_atol_base(serno_txt, &serno_num, &end, 16);
199                 if (ret != SR_OK || !end || *end) {
200                         sr_warn("Cannot interpret serial number %s.", serno_txt);
201                         continue;
202                 }
203                 dev_type = ASIX_TYPE_NONE;
204                 dev_text = NULL;
205                 serno_pre = serno_num >> 16;
206                 switch (serno_pre) {
207                 case 0xa601:
208                         dev_type = ASIX_TYPE_SIGMA;
209                         dev_text = "SIGMA";
210                         sr_info("Found SIGMA, serno %s.", serno_txt);
211                         break;
212                 case 0xa602:
213                         dev_type = ASIX_TYPE_SIGMA;
214                         dev_text = "SIGMA2";
215                         sr_info("Found SIGMA2, serno %s.", serno_txt);
216                         break;
217                 case 0xa603:
218                         dev_type = ASIX_TYPE_OMEGA;
219                         dev_text = "OMEGA";
220                         sr_info("Found OMEGA, serno %s.", serno_txt);
221                         if (!ASIX_WITH_OMEGA) {
222                                 sr_warn("OMEGA support is not implemented yet.");
223                                 continue;
224                         }
225                         break;
226                 default:
227                         sr_warn("Unknown serno %s, skipping.", serno_txt);
228                         continue;
229                 }
230
231                 /* Create a device instance, add it to the result set. */
232
233                 sdi = g_malloc0(sizeof(*sdi));
234                 devices = g_slist_append(devices, sdi);
235                 sdi->status = SR_ST_INITIALIZING;
236                 sdi->vendor = g_strdup("ASIX");
237                 sdi->model = g_strdup(dev_text);
238                 sdi->serial_num = g_strdup(serno_txt);
239                 sdi->connection_id = g_strdup(conn_id);
240                 for (chidx = 0; chidx < ARRAY_SIZE(channel_names); chidx++)
241                         sr_channel_new(sdi, chidx, SR_CHANNEL_LOGIC,
242                                 TRUE, channel_names[chidx]);
243
244                 devc = g_malloc0(sizeof(*devc));
245                 sdi->priv = devc;
246                 devc->id.vid = des.idVendor;
247                 devc->id.pid = des.idProduct;
248                 devc->id.serno = serno_num;
249                 devc->id.prefix = serno_pre;
250                 devc->id.type = dev_type;
251                 sr_sw_limits_init(&devc->limit.config);
252                 devc->capture_ratio = 50;
253                 devc->use_triggers = FALSE;
254
255                 /* Get current hardware configuration (or use defaults). */
256                 (void)sigma_fetch_hw_config(sdi);
257         }
258         libusb_free_device_list(devlist, 1);
259         g_slist_free_full(conn_devices, (GDestroyNotify)sr_usb_dev_inst_free);
260
261         return std_scan_complete(di, devices);
262 }
263
264 static int dev_open(struct sr_dev_inst *sdi)
265 {
266         struct dev_context *devc;
267
268         devc = sdi->priv;
269
270         if (devc->id.type == ASIX_TYPE_OMEGA && !ASIX_WITH_OMEGA) {
271                 sr_err("OMEGA support is not implemented yet.");
272                 return SR_ERR_NA;
273         }
274
275         return sigma_force_open(sdi);
276 }
277
278 static int dev_close(struct sr_dev_inst *sdi)
279 {
280         struct dev_context *devc;
281
282         devc = sdi->priv;
283
284         return sigma_force_close(devc);
285 }
286
287 static int config_get(uint32_t key, GVariant **data,
288         const struct sr_dev_inst *sdi, const struct sr_channel_group *cg)
289 {
290         struct dev_context *devc;
291         const char *clock_text;
292
293         (void)cg;
294
295         if (!sdi)
296                 return SR_ERR;
297         devc = sdi->priv;
298
299         switch (key) {
300         case SR_CONF_CONN:
301                 *data = g_variant_new_string(sdi->connection_id);
302                 break;
303         case SR_CONF_SAMPLERATE:
304                 *data = g_variant_new_uint64(devc->clock.samplerate);
305                 break;
306         case SR_CONF_EXTERNAL_CLOCK:
307                 *data = g_variant_new_boolean(devc->clock.use_ext_clock);
308                 break;
309         case SR_CONF_EXTERNAL_CLOCK_SOURCE:
310                 clock_text = channel_names[devc->clock.clock_pin];
311                 *data = g_variant_new_string(clock_text);
312                 break;
313         case SR_CONF_CLOCK_EDGE:
314                 clock_text = ext_clock_edges[devc->clock.clock_edge];
315                 *data = g_variant_new_string(clock_text);
316                 break;
317         case SR_CONF_LIMIT_MSEC:
318         case SR_CONF_LIMIT_SAMPLES:
319                 return sr_sw_limits_config_get(&devc->limit.config, key, data);
320 #if ASIX_SIGMA_WITH_TRIGGER
321         case SR_CONF_CAPTURE_RATIO:
322                 *data = g_variant_new_uint64(devc->capture_ratio);
323                 break;
324 #endif
325         default:
326                 return SR_ERR_NA;
327         }
328
329         return SR_OK;
330 }
331
332 static int config_set(uint32_t key, GVariant *data,
333         const struct sr_dev_inst *sdi, const struct sr_channel_group *cg)
334 {
335         struct dev_context *devc;
336         int ret;
337         uint64_t want_rate, have_rate;
338         int idx;
339
340         (void)cg;
341
342         devc = sdi->priv;
343
344         switch (key) {
345         case SR_CONF_SAMPLERATE:
346                 want_rate = g_variant_get_uint64(data);
347                 ret = sigma_normalize_samplerate(want_rate, &have_rate);
348                 if (ret != SR_OK)
349                         return ret;
350                 if (have_rate != want_rate) {
351                         char *text_want, *text_have;
352                         text_want = sr_samplerate_string(want_rate);
353                         text_have = sr_samplerate_string(have_rate);
354                         sr_info("Adjusted samplerate %s to %s.",
355                                 text_want, text_have);
356                         g_free(text_want);
357                         g_free(text_have);
358                 }
359                 devc->clock.samplerate = have_rate;
360                 break;
361         case SR_CONF_EXTERNAL_CLOCK:
362                 devc->clock.use_ext_clock = g_variant_get_boolean(data);
363                 break;
364         case SR_CONF_EXTERNAL_CLOCK_SOURCE:
365                 idx = std_str_idx(data, ARRAY_AND_SIZE(channel_names));
366                 if (idx < 0)
367                         return SR_ERR_ARG;
368                 devc->clock.clock_pin = idx;
369                 break;
370         case SR_CONF_CLOCK_EDGE:
371                 idx = std_str_idx(data, ARRAY_AND_SIZE(ext_clock_edges));
372                 if (idx < 0)
373                         return SR_ERR_ARG;
374                 devc->clock.clock_edge = idx;
375                 break;
376         case SR_CONF_LIMIT_MSEC:
377         case SR_CONF_LIMIT_SAMPLES:
378                 return sr_sw_limits_config_set(&devc->limit.config, key, data);
379 #if ASIX_SIGMA_WITH_TRIGGER
380         case SR_CONF_CAPTURE_RATIO:
381                 devc->capture_ratio = g_variant_get_uint64(data);
382                 break;
383 #endif
384         default:
385                 return SR_ERR_NA;
386         }
387
388         return SR_OK;
389 }
390
391 static int config_list(uint32_t key, GVariant **data,
392         const struct sr_dev_inst *sdi, const struct sr_channel_group *cg)
393 {
394         switch (key) {
395         case SR_CONF_SCAN_OPTIONS:
396         case SR_CONF_DEVICE_OPTIONS:
397                 if (cg)
398                         return SR_ERR_NA;
399                 return STD_CONFIG_LIST(key, data, sdi, cg,
400                         scanopts, drvopts, devopts);
401         case SR_CONF_SAMPLERATE:
402                 *data = sigma_get_samplerates_list();
403                 break;
404         case SR_CONF_EXTERNAL_CLOCK_SOURCE:
405                 *data = g_variant_new_strv(ARRAY_AND_SIZE(channel_names));
406                 break;
407         case SR_CONF_CLOCK_EDGE:
408                 *data = g_variant_new_strv(ARRAY_AND_SIZE(ext_clock_edges));
409                 break;
410 #if ASIX_SIGMA_WITH_TRIGGER
411         case SR_CONF_TRIGGER_MATCH:
412                 *data = std_gvar_array_i32(ARRAY_AND_SIZE(trigger_matches));
413                 break;
414 #endif
415         default:
416                 return SR_ERR_NA;
417         }
418
419         return SR_OK;
420 }
421
422 static int dev_acquisition_start(const struct sr_dev_inst *sdi)
423 {
424         struct dev_context *devc;
425         uint16_t pindis_mask;
426         uint8_t async, div;
427         int ret;
428         size_t triggerpin;
429         uint8_t trigsel2;
430         struct triggerinout triggerinout_conf;
431         struct triggerlut lut;
432         uint8_t regval, cmd_bytes[4], *wrptr;
433
434         devc = sdi->priv;
435
436         /*
437          * Setup the device's samplerate from the value which up to now
438          * just got checked and stored. As a byproduct this can pick and
439          * send firmware to the device, reduce the number of available
440          * logic channels, etc.
441          *
442          * Determine an acquisition timeout from optionally configured
443          * sample count or time limits. Which depends on the samplerate.
444          * Force 50MHz samplerate when external clock is in use.
445          */
446         if (devc->clock.use_ext_clock) {
447                 if (devc->clock.samplerate != SR_MHZ(50))
448                         sr_info("External clock, forcing 50MHz samplerate.");
449                 devc->clock.samplerate = SR_MHZ(50);
450         }
451         ret = sigma_set_samplerate(sdi);
452         if (ret != SR_OK)
453                 return ret;
454         ret = sigma_set_acquire_timeout(devc);
455         if (ret != SR_OK)
456                 return ret;
457
458         ret = sigma_convert_trigger(sdi);
459         if (ret != SR_OK) {
460                 sr_err("Could not configure triggers.");
461                 return ret;
462         }
463
464         /* Enter trigger programming mode. */
465         trigsel2 = TRGSEL2_RESET;
466         ret = sigma_set_register(devc, WRITE_TRIGGER_SELECT2, trigsel2);
467         if (ret != SR_OK)
468                 return ret;
469
470         trigsel2 = 0;
471         if (devc->clock.samplerate >= SR_MHZ(100)) {
472                 /* 100 and 200 MHz mode. */
473                 /* TODO Decipher the 0x81 magic number's purpose. */
474                 ret = sigma_set_register(devc, WRITE_TRIGGER_SELECT2, 0x81);
475                 if (ret != SR_OK)
476                         return ret;
477
478                 /* Find which pin to trigger on from mask. */
479                 for (triggerpin = 0; triggerpin < 8; triggerpin++) {
480                         if (devc->trigger.risingmask & BIT(triggerpin))
481                                 break;
482                         if (devc->trigger.fallingmask & BIT(triggerpin))
483                                 break;
484                 }
485
486                 /* Set trigger pin and light LED on trigger. */
487                 trigsel2 = triggerpin & TRGSEL2_PINS_MASK;
488                 trigsel2 |= TRGSEL2_LEDSEL1;
489
490                 /* Default rising edge. */
491                 /* TODO Documentation disagrees, bit set means _rising_ edge. */
492                 if (devc->trigger.fallingmask)
493                         trigsel2 |= TRGSEL2_PINPOL_RISE;
494
495         } else if (devc->clock.samplerate <= SR_MHZ(50)) {
496                 /* 50MHz firmware modes. */
497
498                 /* Translate application specs to hardware perspective. */
499                 ret = sigma_build_basic_trigger(devc, &lut);
500                 if (ret != SR_OK)
501                         return ret;
502
503                 /* Communicate resulting register values to the device. */
504                 ret = sigma_write_trigger_lut(devc, &lut);
505                 if (ret != SR_OK)
506                         return ret;
507
508                 trigsel2 = TRGSEL2_LEDSEL1 | TRGSEL2_LEDSEL0;
509         }
510
511         /* Setup trigger in and out pins to default values. */
512         memset(&triggerinout_conf, 0, sizeof(triggerinout_conf));
513         triggerinout_conf.trgout_bytrigger = TRUE;
514         triggerinout_conf.trgout_enable = TRUE;
515         /* TODO
516          * Verify the correctness of this implementation. The previous
517          * version used to assign to a C language struct with bit fields
518          * which is highly non-portable and hard to guess the resulting
519          * raw memory layout or wire transfer content. The C struct's
520          * field names did not match the vendor documentation's names.
521          * Which means that I could not verify "on paper" either. Let's
522          * re-visit this code later during research for trigger support.
523          */
524         wrptr = cmd_bytes;
525         regval = 0;
526         if (triggerinout_conf.trgout_bytrigger)
527                 regval |= TRGOPT_TRGOOUTEN;
528         write_u8_inc(&wrptr, regval);
529         regval &= ~TRGOPT_CLEAR_MASK;
530         if (triggerinout_conf.trgout_enable)
531                 regval |= TRGOPT_TRGOEN;
532         write_u8_inc(&wrptr, regval);
533         ret = sigma_write_register(devc, WRITE_TRIGGER_OPTION,
534                 cmd_bytes, wrptr - cmd_bytes);
535         if (ret != SR_OK)
536                 return ret;
537
538         /* Leave trigger programming mode. */
539         ret = sigma_set_register(devc, WRITE_TRIGGER_SELECT2, trigsel2);
540         if (ret != SR_OK)
541                 return ret;
542
543         /*
544          * Samplerate dependent clock and channels configuration. Some
545          * channels by design are not available at higher clock rates.
546          * Register layout differs between firmware variants (depth 1
547          * with LSB channel mask above 50MHz, depth 4 with more details
548          * up to 50MHz).
549          *
550          * Derive a mask where bits are set for unavailable channels.
551          * Either send the single byte, or the full byte sequence.
552          */
553         pindis_mask = ~BITS_MASK(devc->num_channels);
554         if (devc->clock.samplerate > SR_MHZ(50)) {
555                 ret = sigma_set_register(devc, WRITE_CLOCK_SELECT,
556                         pindis_mask & 0xff);
557         } else {
558                 wrptr = cmd_bytes;
559                 /* Select 50MHz base clock, and divider. */
560                 async = 0;
561                 div = SR_MHZ(50) / devc->clock.samplerate - 1;
562                 if (devc->clock.use_ext_clock) {
563                         async = CLKSEL_CLKSEL8;
564                         div = devc->clock.clock_pin + 1;
565                         switch (devc->clock.clock_edge) {
566                         case SIGMA_CLOCK_EDGE_RISING:
567                                 div |= CLKSEL_RISING;
568                                 break;
569                         case SIGMA_CLOCK_EDGE_FALLING:
570                                 div |= CLKSEL_FALLING;
571                                 break;
572                         case SIGMA_CLOCK_EDGE_EITHER:
573                                 div |= CLKSEL_RISING;
574                                 div |= CLKSEL_FALLING;
575                                 break;
576                         }
577                 }
578                 write_u8_inc(&wrptr, async);
579                 write_u8_inc(&wrptr, div);
580                 write_u16be_inc(&wrptr, pindis_mask);
581                 ret = sigma_write_register(devc, WRITE_CLOCK_SELECT,
582                         cmd_bytes, wrptr - cmd_bytes);
583         }
584         if (ret != SR_OK)
585                 return ret;
586
587         /* Setup maximum post trigger time. */
588         ret = sigma_set_register(devc, WRITE_POST_TRIGGER,
589                 (devc->capture_ratio * 255) / 100);
590         if (ret != SR_OK)
591                 return ret;
592
593         /* Start acqusition. */
594         regval = WMR_TRGRES | WMR_SDRAMWRITEEN;
595         if (devc->use_triggers && ASIX_SIGMA_WITH_TRIGGER)
596                 regval |= WMR_TRGEN;
597         ret = sigma_set_register(devc, WRITE_MODE, regval);
598         if (ret != SR_OK)
599                 return ret;
600
601         ret = std_session_send_df_header(sdi);
602         if (ret != SR_OK)
603                 return ret;
604
605         /* Add capture source. */
606         ret = sr_session_source_add(sdi->session, -1, 0, 10,
607                 sigma_receive_data, (void *)sdi);
608         if (ret != SR_OK)
609                 return ret;
610
611         devc->state.state = SIGMA_CAPTURE;
612
613         return SR_OK;
614 }
615
616 static int dev_acquisition_stop(struct sr_dev_inst *sdi)
617 {
618         struct dev_context *devc;
619
620         devc = sdi->priv;
621
622         /*
623          * When acquisition is currently running, keep the receive
624          * routine registered and have it stop the acquisition upon the
625          * next invocation. Else unregister the receive routine here
626          * already. The detour is required to have sample data retrieved
627          * for forced acquisition stops.
628          */
629         if (devc->state.state == SIGMA_CAPTURE) {
630                 devc->state.state = SIGMA_STOPPING;
631         } else {
632                 devc->state.state = SIGMA_IDLE;
633                 (void)sr_session_source_remove(sdi->session, -1);
634         }
635
636         return SR_OK;
637 }
638
639 static struct sr_dev_driver asix_sigma_driver_info = {
640         .name = "asix-sigma",
641         .longname = "ASIX SIGMA/SIGMA2",
642         .api_version = 1,
643         .init = std_init,
644         .cleanup = std_cleanup,
645         .scan = scan,
646         .dev_list = std_dev_list,
647         .dev_clear = dev_clear,
648         .config_get = config_get,
649         .config_set = config_set,
650         .config_list = config_list,
651         .dev_open = dev_open,
652         .dev_close = dev_close,
653         .dev_acquisition_start = dev_acquisition_start,
654         .dev_acquisition_stop = dev_acquisition_stop,
655         .context = NULL,
656 };
657 SR_REGISTER_DEV_DRIVER(asix_sigma_driver_info);