]> sigrok.org Git - libsigrok.git/blob - src/hardware/asix-sigma/api.c
asix-sigma: rework time/count limits support, accept more samplerates
[libsigrok.git] / src / hardware / asix-sigma / api.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
5  * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6  * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7  *
8  * This program is free software: you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 3 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21
22 #include <config.h>
23 #include "protocol.h"
24
25 /*
26  * Channel numbers seem to go from 1-16, according to this image:
27  * http://tools.asix.net/img/sigma_sigmacab_pins_720.jpg
28  * (the cable has two additional GND pins, and a TI and TO pin)
29  */
30 static const char *channel_names[] = {
31         "1", "2", "3", "4", "5", "6", "7", "8",
32         "9", "10", "11", "12", "13", "14", "15", "16",
33 };
34
35 static const uint32_t scanopts[] = {
36         SR_CONF_CONN,
37 };
38
39 static const uint32_t drvopts[] = {
40         SR_CONF_LOGIC_ANALYZER,
41 };
42
43 static const uint32_t devopts[] = {
44         SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
45         SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
46         SR_CONF_CONN | SR_CONF_GET,
47         SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
48 #if ASIX_SIGMA_WITH_TRIGGER
49         SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
50         SR_CONF_CAPTURE_RATIO | SR_CONF_GET | SR_CONF_SET,
51 #endif
52 };
53
54 #if ASIX_SIGMA_WITH_TRIGGER
55 static const int32_t trigger_matches[] = {
56         SR_TRIGGER_ZERO,
57         SR_TRIGGER_ONE,
58         SR_TRIGGER_RISING,
59         SR_TRIGGER_FALLING,
60 };
61 #endif
62
63 static void clear_helper(struct dev_context *devc)
64 {
65         ftdi_deinit(&devc->ftdic);
66 }
67
68 static int dev_clear(const struct sr_dev_driver *di)
69 {
70         return std_dev_clear_with_callback(di, (std_dev_clear_callback)clear_helper);
71 }
72
73 static gboolean bus_addr_in_devices(int bus, int addr, GSList *devs)
74 {
75         struct sr_usb_dev_inst *usb;
76
77         for (/* EMPTY */; devs; devs = devs->next) {
78                 usb = devs->data;
79                 if (usb->bus == bus && usb->address == addr)
80                         return TRUE;
81         }
82
83         return FALSE;
84 }
85
86 static gboolean known_vid_pid(const struct libusb_device_descriptor *des)
87 {
88         if (des->idVendor != USB_VENDOR_ASIX)
89                 return FALSE;
90         if (des->idProduct != USB_PRODUCT_SIGMA && des->idProduct != USB_PRODUCT_OMEGA)
91                 return FALSE;
92         return TRUE;
93 }
94
95 static GSList *scan(struct sr_dev_driver *di, GSList *options)
96 {
97         struct drv_context *drvc;
98         libusb_context *usbctx;
99         const char *conn;
100         GSList *l, *conn_devices;
101         struct sr_config *src;
102         GSList *devices;
103         libusb_device **devlist, *devitem;
104         int bus, addr;
105         struct libusb_device_descriptor des;
106         struct libusb_device_handle *hdl;
107         int ret;
108         char conn_id[20];
109         char serno_txt[16];
110         char *end;
111         long serno_num, serno_pre;
112         enum asix_device_type dev_type;
113         const char *dev_text;
114         struct sr_dev_inst *sdi;
115         struct dev_context *devc;
116         size_t devidx, chidx;
117
118         drvc = di->context;
119         usbctx = drvc->sr_ctx->libusb_ctx;
120
121         /* Find all devices which match an (optional) conn= spec. */
122         conn = NULL;
123         for (l = options; l; l = l->next) {
124                 src = l->data;
125                 switch (src->key) {
126                 case SR_CONF_CONN:
127                         conn = g_variant_get_string(src->data, NULL);
128                         break;
129                 }
130         }
131         conn_devices = NULL;
132         if (conn)
133                 conn_devices = sr_usb_find(usbctx, conn);
134         if (conn && !conn_devices)
135                 return NULL;
136
137         /* Find all ASIX logic analyzers (which match the connection spec). */
138         devices = NULL;
139         libusb_get_device_list(usbctx, &devlist);
140         for (devidx = 0; devlist[devidx]; devidx++) {
141                 devitem = devlist[devidx];
142
143                 /* Check for connection match if a user spec was given. */
144                 bus = libusb_get_bus_number(devitem);
145                 addr = libusb_get_device_address(devitem);
146                 if (conn && !bus_addr_in_devices(bus, addr, conn_devices))
147                         continue;
148                 snprintf(conn_id, sizeof(conn_id), "%d.%d", bus, addr);
149
150                 /*
151                  * Check for known VID:PID pairs. Get the serial number,
152                  * to then derive the device type from it.
153                  */
154                 libusb_get_device_descriptor(devitem, &des);
155                 if (!known_vid_pid(&des))
156                         continue;
157                 if (!des.iSerialNumber) {
158                         sr_warn("Cannot get serial number (index 0).");
159                         continue;
160                 }
161                 ret = libusb_open(devitem, &hdl);
162                 if (ret < 0) {
163                         sr_warn("Cannot open USB device %04x.%04x: %s.",
164                                 des.idVendor, des.idProduct,
165                                 libusb_error_name(ret));
166                         continue;
167                 }
168                 ret = libusb_get_string_descriptor_ascii(hdl,
169                         des.iSerialNumber,
170                         (unsigned char *)serno_txt, sizeof(serno_txt));
171                 if (ret < 0) {
172                         sr_warn("Cannot get serial number (%s).",
173                                 libusb_error_name(ret));
174                         libusb_close(hdl);
175                         continue;
176                 }
177                 libusb_close(hdl);
178
179                 /*
180                  * All ASIX logic analyzers have a serial number, which
181                  * reads as a hex number, and tells the device type.
182                  */
183                 ret = sr_atol_base(serno_txt, &serno_num, &end, 16);
184                 if (ret != SR_OK || !end || *end) {
185                         sr_warn("Cannot interpret serial number %s.", serno_txt);
186                         continue;
187                 }
188                 dev_type = ASIX_TYPE_NONE;
189                 dev_text = NULL;
190                 serno_pre = serno_num >> 16;
191                 switch (serno_pre) {
192                 case 0xa601:
193                         dev_type = ASIX_TYPE_SIGMA;
194                         dev_text = "SIGMA";
195                         sr_info("Found SIGMA, serno %s.", serno_txt);
196                         break;
197                 case 0xa602:
198                         dev_type = ASIX_TYPE_SIGMA;
199                         dev_text = "SIGMA2";
200                         sr_info("Found SIGMA2, serno %s.", serno_txt);
201                         break;
202                 case 0xa603:
203                         dev_type = ASIX_TYPE_OMEGA;
204                         dev_text = "OMEGA";
205                         sr_info("Found OMEGA, serno %s.", serno_txt);
206                         if (!ASIX_WITH_OMEGA) {
207                                 sr_warn("OMEGA support is not implemented yet.");
208                                 continue;
209                         }
210                         break;
211                 default:
212                         sr_warn("Unknown serno %s, skipping.", serno_txt);
213                         continue;
214                 }
215
216                 /* Create a device instance, add it to the result set. */
217
218                 sdi = g_malloc0(sizeof(*sdi));
219                 devices = g_slist_append(devices, sdi);
220                 sdi->status = SR_ST_INITIALIZING;
221                 sdi->vendor = g_strdup("ASIX");
222                 sdi->model = g_strdup(dev_text);
223                 sdi->serial_num = g_strdup(serno_txt);
224                 sdi->connection_id = g_strdup(conn_id);
225                 for (chidx = 0; chidx < ARRAY_SIZE(channel_names); chidx++)
226                         sr_channel_new(sdi, chidx, SR_CHANNEL_LOGIC,
227                                 TRUE, channel_names[chidx]);
228
229                 devc = g_malloc0(sizeof(*devc));
230                 sdi->priv = devc;
231                 devc->id.vid = des.idVendor;
232                 devc->id.pid = des.idProduct;
233                 devc->id.serno = serno_num;
234                 devc->id.prefix = serno_pre;
235                 devc->id.type = dev_type;
236                 devc->samplerate = samplerates[0];
237                 sr_sw_limits_init(&devc->cfg_limits);
238                 devc->cur_firmware = -1;
239                 devc->capture_ratio = 50;
240                 devc->use_triggers = 0;
241         }
242         libusb_free_device_list(devlist, 1);
243         g_slist_free_full(conn_devices, (GDestroyNotify)sr_usb_dev_inst_free);
244
245         return std_scan_complete(di, devices);
246 }
247
248 static int dev_open(struct sr_dev_inst *sdi)
249 {
250         struct dev_context *devc;
251         long vid, pid;
252         const char *serno;
253         int ret;
254
255         devc = sdi->priv;
256
257         if (devc->id.type == ASIX_TYPE_OMEGA && !ASIX_WITH_OMEGA) {
258                 sr_err("OMEGA support is not implemented yet.");
259                 return SR_ERR_NA;
260         }
261         vid = devc->id.vid;
262         pid = devc->id.pid;
263         serno = sdi->serial_num;
264
265         ret = ftdi_init(&devc->ftdic);
266         if (ret < 0) {
267                 sr_err("Cannot initialize FTDI context (%d): %s.",
268                         ret, ftdi_get_error_string(&devc->ftdic));
269                 return SR_ERR_IO;
270         }
271         ret = ftdi_usb_open_desc_index(&devc->ftdic, vid, pid, NULL, serno, 0);
272         if (ret < 0) {
273                 sr_err("Cannot open device (%d): %s.",
274                         ret, ftdi_get_error_string(&devc->ftdic));
275                 return SR_ERR_IO;
276         }
277
278         return SR_OK;
279 }
280
281 static int dev_close(struct sr_dev_inst *sdi)
282 {
283         struct dev_context *devc;
284         int ret;
285
286         devc = sdi->priv;
287
288         ret = ftdi_usb_close(&devc->ftdic);
289         ftdi_deinit(&devc->ftdic);
290
291         return (ret == 0) ? SR_OK : SR_ERR;
292 }
293
294 static int config_get(uint32_t key, GVariant **data,
295         const struct sr_dev_inst *sdi, const struct sr_channel_group *cg)
296 {
297         struct dev_context *devc;
298
299         (void)cg;
300
301         if (!sdi)
302                 return SR_ERR;
303         devc = sdi->priv;
304
305         switch (key) {
306         case SR_CONF_CONN:
307                 *data = g_variant_new_string(sdi->connection_id);
308                 break;
309         case SR_CONF_SAMPLERATE:
310                 *data = g_variant_new_uint64(devc->samplerate);
311                 break;
312         case SR_CONF_LIMIT_MSEC:
313         case SR_CONF_LIMIT_SAMPLES:
314                 return sr_sw_limits_config_get(&devc->cfg_limits, key, data);
315 #if ASIX_SIGMA_WITH_TRIGGER
316         case SR_CONF_CAPTURE_RATIO:
317                 *data = g_variant_new_uint64(devc->capture_ratio);
318                 break;
319 #endif
320         default:
321                 return SR_ERR_NA;
322         }
323
324         return SR_OK;
325 }
326
327 static int config_set(uint32_t key, GVariant *data,
328         const struct sr_dev_inst *sdi, const struct sr_channel_group *cg)
329 {
330         struct dev_context *devc;
331         int ret;
332         uint64_t want_rate, have_rate;
333
334         (void)cg;
335
336         devc = sdi->priv;
337
338         switch (key) {
339         case SR_CONF_SAMPLERATE:
340                 want_rate = g_variant_get_uint64(data);
341                 ret = sigma_normalize_samplerate(want_rate, &have_rate);
342                 if (ret != SR_OK)
343                         return ret;
344                 if (have_rate != want_rate) {
345                         char *text_want, *text_have;
346                         text_want = sr_samplerate_string(want_rate);
347                         text_have = sr_samplerate_string(have_rate);
348                         sr_info("Adjusted samplerate %s to %s.",
349                                 text_want, text_have);
350                         g_free(text_want);
351                         g_free(text_have);
352                 }
353                 devc->samplerate = have_rate;
354                 break;
355         case SR_CONF_LIMIT_MSEC:
356         case SR_CONF_LIMIT_SAMPLES:
357                 return sr_sw_limits_config_set(&devc->cfg_limits, key, data);
358 #if ASIX_SIGMA_WITH_TRIGGER
359         case SR_CONF_CAPTURE_RATIO:
360                 devc->capture_ratio = g_variant_get_uint64(data);
361                 break;
362 #endif
363         default:
364                 return SR_ERR_NA;
365         }
366
367         return SR_OK;
368 }
369
370 static int config_list(uint32_t key, GVariant **data,
371         const struct sr_dev_inst *sdi, const struct sr_channel_group *cg)
372 {
373         switch (key) {
374         case SR_CONF_SCAN_OPTIONS:
375         case SR_CONF_DEVICE_OPTIONS:
376                 if (cg)
377                         return SR_ERR_NA;
378                 return STD_CONFIG_LIST(key, data, sdi, cg, scanopts, drvopts, devopts);
379         case SR_CONF_SAMPLERATE:
380                 *data = std_gvar_samplerates(samplerates, samplerates_count);
381                 break;
382 #if ASIX_SIGMA_WITH_TRIGGER
383         case SR_CONF_TRIGGER_MATCH:
384                 *data = std_gvar_array_i32(ARRAY_AND_SIZE(trigger_matches));
385                 break;
386 #endif
387         default:
388                 return SR_ERR_NA;
389         }
390
391         return SR_OK;
392 }
393
394 static int dev_acquisition_start(const struct sr_dev_inst *sdi)
395 {
396         struct dev_context *devc;
397         struct clockselect_50 clockselect;
398         int triggerpin, ret;
399         uint8_t triggerselect;
400         struct triggerinout triggerinout_conf;
401         struct triggerlut lut;
402         uint8_t regval;
403         uint8_t clock_bytes[sizeof(clockselect)];
404         size_t clock_idx;
405
406         devc = sdi->priv;
407
408         /*
409          * Setup the device's samplerate from the value which up to now
410          * just got checked and stored. As a byproduct this can pick and
411          * send firmware to the device, reduce the number of available
412          * logic channels, etc.
413          *
414          * Determine an acquisition timeout from optionally configured
415          * sample count or time limits. Which depends on the samplerate.
416          */
417         ret = sigma_set_samplerate(sdi);
418         if (ret != SR_OK)
419                 return ret;
420         ret = sigma_set_acquire_timeout(devc);
421         if (ret != SR_OK)
422                 return ret;
423
424         if (sigma_convert_trigger(sdi) != SR_OK) {
425                 sr_err("Failed to configure triggers.");
426                 return SR_ERR;
427         }
428
429         /* Enter trigger programming mode. */
430         sigma_set_register(WRITE_TRIGGER_SELECT2, 0x20, devc);
431
432         triggerselect = 0;
433         if (devc->samplerate >= SR_MHZ(100)) {
434                 /* 100 and 200 MHz mode. */
435                 sigma_set_register(WRITE_TRIGGER_SELECT2, 0x81, devc);
436
437                 /* Find which pin to trigger on from mask. */
438                 for (triggerpin = 0; triggerpin < 8; triggerpin++)
439                         if ((devc->trigger.risingmask | devc->trigger.fallingmask) &
440                             (1 << triggerpin))
441                                 break;
442
443                 /* Set trigger pin and light LED on trigger. */
444                 triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
445
446                 /* Default rising edge. */
447                 if (devc->trigger.fallingmask)
448                         triggerselect |= 1 << 3;
449
450         } else if (devc->samplerate <= SR_MHZ(50)) {
451                 /* All other modes. */
452                 sigma_build_basic_trigger(&lut, devc);
453
454                 sigma_write_trigger_lut(&lut, devc);
455
456                 triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
457         }
458
459         /* Setup trigger in and out pins to default values. */
460         memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
461         triggerinout_conf.trgout_bytrigger = 1;
462         triggerinout_conf.trgout_enable = 1;
463
464         sigma_write_register(WRITE_TRIGGER_OPTION,
465                              (uint8_t *) &triggerinout_conf,
466                              sizeof(struct triggerinout), devc);
467
468         /* Go back to normal mode. */
469         sigma_set_register(WRITE_TRIGGER_SELECT2, triggerselect, devc);
470
471         /* Set clock select register. */
472         clockselect.async = 0;
473         clockselect.fraction = 1 - 1;           /* Divider 1. */
474         clockselect.disabled_channels = 0x0000; /* All channels enabled. */
475         if (devc->samplerate == SR_MHZ(200)) {
476                 /* Enable 4 channels. */
477                 clockselect.disabled_channels = 0xf0ff;
478         } else if (devc->samplerate == SR_MHZ(100)) {
479                 /* Enable 8 channels. */
480                 clockselect.disabled_channels = 0x00ff;
481         } else {
482                 /*
483                  * 50 MHz mode, or fraction thereof. The 50MHz reference
484                  * can get divided by any integer in the range 1 to 256.
485                  * Divider minus 1 gets written to the hardware.
486                  * (The driver lists a discrete set of sample rates, but
487                  * all of them fit the above description.)
488                  */
489                 clockselect.fraction = SR_MHZ(50) / devc->samplerate - 1;
490         }
491         clock_idx = 0;
492         clock_bytes[clock_idx++] = clockselect.async;
493         clock_bytes[clock_idx++] = clockselect.fraction;
494         clock_bytes[clock_idx++] = clockselect.disabled_channels & 0xff;
495         clock_bytes[clock_idx++] = clockselect.disabled_channels >> 8;
496         sigma_write_register(WRITE_CLOCK_SELECT, clock_bytes, clock_idx, devc);
497
498         /* Setup maximum post trigger time. */
499         sigma_set_register(WRITE_POST_TRIGGER,
500                            (devc->capture_ratio * 255) / 100, devc);
501
502         /* Start acqusition. */
503         regval =  WMR_TRGRES | WMR_SDRAMWRITEEN;
504 #if ASIX_SIGMA_WITH_TRIGGER
505         regval |= WMR_TRGEN;
506 #endif
507         sigma_set_register(WRITE_MODE, regval, devc);
508
509         std_session_send_df_header(sdi);
510
511         /* Add capture source. */
512         sr_session_source_add(sdi->session, -1, 0, 10, sigma_receive_data, (void *)sdi);
513
514         devc->state.state = SIGMA_CAPTURE;
515
516         return SR_OK;
517 }
518
519 static int dev_acquisition_stop(struct sr_dev_inst *sdi)
520 {
521         struct dev_context *devc;
522
523         devc = sdi->priv;
524
525         /*
526          * When acquisition is currently running, keep the receive
527          * routine registered and have it stop the acquisition upon the
528          * next invocation. Else unregister the receive routine here
529          * already. The detour is required to have sample data retrieved
530          * for forced acquisition stops.
531          */
532         if (devc->state.state == SIGMA_CAPTURE) {
533                 devc->state.state = SIGMA_STOPPING;
534         } else {
535                 devc->state.state = SIGMA_IDLE;
536                 sr_session_source_remove(sdi->session, -1);
537         }
538
539         return SR_OK;
540 }
541
542 static struct sr_dev_driver asix_sigma_driver_info = {
543         .name = "asix-sigma",
544         .longname = "ASIX SIGMA/SIGMA2",
545         .api_version = 1,
546         .init = std_init,
547         .cleanup = std_cleanup,
548         .scan = scan,
549         .dev_list = std_dev_list,
550         .dev_clear = dev_clear,
551         .config_get = config_get,
552         .config_set = config_set,
553         .config_list = config_list,
554         .dev_open = dev_open,
555         .dev_close = dev_close,
556         .dev_acquisition_start = dev_acquisition_start,
557         .dev_acquisition_stop = dev_acquisition_stop,
558         .context = NULL,
559 };
560 SR_REGISTER_DEV_DRIVER(asix_sigma_driver_info);