]> sigrok.org Git - libsigrok.git/blob - src/hardware/agilent-dmm/protocol.c
agilent-dmm: rework job management
[libsigrok.git] / src / hardware / agilent-dmm / protocol.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2012 Bert Vermeulen <bert@biot.com>
5  *
6  * This program is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <config.h>
21 #include <glib.h>
22 #include <stdlib.h>
23 #include <stdarg.h>
24 #include <string.h>
25 #include <limits.h>
26 #include <math.h>
27 #include <libsigrok/libsigrok.h>
28 #include "libsigrok-internal.h"
29 #include "protocol.h"
30
31 #define JOB_TIMEOUT 300
32
33 #define INFINITE_INTERVAL   INT_MAX
34 #define SAMPLERATE_INTERVAL -1
35
36 static const struct agdmm_job *job_current(const struct dev_context *devc)
37 {
38         return &devc->profile->jobs[devc->current_job];
39 }
40
41 static void job_done(struct dev_context *devc)
42 {
43         devc->job_running = FALSE;
44 }
45
46 static void job_again(struct dev_context *devc)
47 {
48         devc->job_again = TRUE;
49 }
50
51 static gboolean job_is_running(const struct dev_context *devc)
52 {
53         return devc->job_running;
54 }
55
56 static gboolean job_in_interval(const struct dev_context *devc)
57 {
58         int64_t job_start = devc->jobs_start[devc->current_job];
59         int64_t now = g_get_monotonic_time() / 1000;
60         int interval = job_current(devc)->interval;
61         if (interval == SAMPLERATE_INTERVAL)
62                 interval = 1000 / devc->cur_samplerate;
63         return (now - job_start) < interval || interval == INFINITE_INTERVAL;
64 }
65
66 static gboolean job_has_timeout(const struct dev_context *devc)
67 {
68         int64_t job_start = devc->jobs_start[devc->current_job];
69         int64_t now = g_get_monotonic_time() / 1000;
70         return job_is_running(devc) && (now - job_start) > JOB_TIMEOUT;
71 }
72
73 static const struct agdmm_job *job_next(struct dev_context *devc)
74 {
75         int current_job = devc->current_job;
76         do {
77                 devc->current_job++;
78                 if (!job_current(devc)->send)
79                         devc->current_job = 0;
80         } while(job_in_interval(devc) && devc->current_job != current_job);
81         return job_current(devc);
82 }
83
84 static void job_run_again(const struct sr_dev_inst *sdi)
85 {
86         struct dev_context *devc = sdi->priv;
87         devc->job_again = FALSE;
88         devc->job_running = TRUE;
89         if (job_current(devc)->send(sdi) == SR_ERR_NA)
90                 job_done(devc);
91 }
92
93 static void job_run(const struct sr_dev_inst *sdi)
94 {
95         struct dev_context *devc = sdi->priv;
96         int64_t now = g_get_monotonic_time() / 1000;
97         devc->jobs_start[devc->current_job] = now;
98         job_run_again(sdi);
99 }
100
101 static void dispatch(const struct sr_dev_inst *sdi)
102 {
103         struct dev_context *devc = sdi->priv;
104
105         if (devc->job_again) {
106                 job_run_again(sdi);
107                 return;
108         }
109
110         if (!job_is_running(devc))
111                 job_next(devc);
112         else if (job_has_timeout(devc))
113                 job_done(devc);
114
115         if (!job_is_running(devc) && !job_in_interval(devc))
116                 job_run(sdi);
117 }
118
119 static void receive_line(const struct sr_dev_inst *sdi)
120 {
121         struct dev_context *devc;
122         const struct agdmm_recv *recvs, *recv;
123         GRegex *reg;
124         GMatchInfo *match;
125         int i;
126
127         devc = sdi->priv;
128
129         /* Strip CRLF */
130         while (devc->buflen) {
131                 if (*(devc->buf + devc->buflen - 1) == '\r'
132                                 || *(devc->buf + devc->buflen - 1) == '\n')
133                         *(devc->buf + --devc->buflen) = '\0';
134                 else
135                         break;
136         }
137         sr_spew("Received '%s'.", devc->buf);
138
139         recv = NULL;
140         recvs = devc->profile->recvs;
141         for (i = 0; (&recvs[i])->recv_regex; i++) {
142                 reg = g_regex_new((&recvs[i])->recv_regex, 0, 0, NULL);
143                 if (g_regex_match(reg, (char *)devc->buf, 0, &match)) {
144                         recv = &recvs[i];
145                         break;
146                 }
147                 g_match_info_unref(match);
148                 g_regex_unref(reg);
149         }
150         if (recv) {
151                 enum job_type type = recv->recv(sdi, match);
152                 if (type == job_current(devc)->type)
153                         job_done(devc);
154                 else if (type == JOB_AGAIN)
155                         job_again(devc);
156                 g_match_info_unref(match);
157                 g_regex_unref(reg);
158         } else
159                 sr_dbg("Unknown line '%s'.", devc->buf);
160
161         /* Done with this. */
162         devc->buflen = 0;
163 }
164
165 SR_PRIV int agdmm_receive_data(int fd, int revents, void *cb_data)
166 {
167         struct sr_dev_inst *sdi;
168         struct dev_context *devc;
169         struct sr_serial_dev_inst *serial;
170         int len;
171
172         (void)fd;
173
174         if (!(sdi = cb_data))
175                 return TRUE;
176
177         if (!(devc = sdi->priv))
178                 return TRUE;
179
180         serial = sdi->conn;
181         if (revents == G_IO_IN) {
182                 /* Serial data arrived. */
183                 while (AGDMM_BUFSIZE - devc->buflen - 1 > 0) {
184                         len = serial_read_nonblocking(serial, devc->buf + devc->buflen, 1);
185                         if (len < 1)
186                                 break;
187                         devc->buflen += len;
188                         *(devc->buf + devc->buflen) = '\0';
189                         if (*(devc->buf + devc->buflen - 1) == '\n') {
190                                 /* End of line */
191                                 receive_line(sdi);
192                                 break;
193                         }
194                 }
195         }
196
197         dispatch(sdi);
198
199         if (sr_sw_limits_check(&devc->limits))
200                 sdi->driver->dev_acquisition_stop(sdi);
201
202         return TRUE;
203 }
204
205 static int agdmm_send(const struct sr_dev_inst *sdi, const char *cmd, ...)
206 {
207         struct sr_serial_dev_inst *serial;
208         va_list args;
209         char buf[32];
210
211         serial = sdi->conn;
212
213         va_start(args, cmd);
214         vsnprintf(buf, sizeof(buf) - 3, cmd, args);
215         va_end(args);
216         sr_spew("Sending '%s'.", buf);
217         if (!strncmp(buf, "*IDN?", 5))
218                 strcat(buf, "\r\n");
219         else
220                 strcat(buf, "\n\r\n");
221         if (serial_write_blocking(serial, buf, strlen(buf), SERIAL_WRITE_TIMEOUT_MS) < (int)strlen(buf)) {
222                 sr_err("Failed to send.");
223                 return SR_ERR;
224         }
225
226         return SR_OK;
227 }
228
229 static int send_stat(const struct sr_dev_inst *sdi)
230 {
231         return agdmm_send(sdi, "STAT?");
232 }
233
234 static int recv_stat_u123x(const struct sr_dev_inst *sdi, GMatchInfo *match)
235 {
236         struct dev_context *devc;
237         char *s;
238
239         devc = sdi->priv;
240         s = g_match_info_fetch(match, 1);
241         sr_spew("STAT response '%s'.", s);
242
243         /* Max, Min or Avg mode -- no way to tell which, so we'll
244          * set both flags to denote it's not a normal measurement. */
245         if (s[0] == '1')
246                 devc->cur_mqflags[0] |= SR_MQFLAG_MAX | SR_MQFLAG_MIN;
247         else
248                 devc->cur_mqflags[0] &= ~(SR_MQFLAG_MAX | SR_MQFLAG_MIN);
249
250         if (s[1] == '1')
251                 devc->cur_mqflags[0] |= SR_MQFLAG_RELATIVE;
252         else
253                 devc->cur_mqflags[0] &= ~SR_MQFLAG_RELATIVE;
254
255         /* Triggered or auto hold modes. */
256         if (s[2] == '1' || s[3] == '1')
257                 devc->cur_mqflags[0] |= SR_MQFLAG_HOLD;
258         else
259                 devc->cur_mqflags[0] &= ~SR_MQFLAG_HOLD;
260
261         /* Temp/aux mode. */
262         if (s[7] == '1')
263                 devc->mode_tempaux = TRUE;
264         else
265                 devc->mode_tempaux = FALSE;
266
267         /* Continuity mode. */
268         if (s[16] == '1')
269                 devc->mode_continuity = TRUE;
270         else
271                 devc->mode_continuity = FALSE;
272
273         g_free(s);
274
275         return JOB_STAT;
276 }
277
278 static int recv_stat_u124x(const struct sr_dev_inst *sdi, GMatchInfo *match)
279 {
280         struct dev_context *devc;
281         char *s;
282
283         devc = sdi->priv;
284         s = g_match_info_fetch(match, 1);
285         sr_spew("STAT response '%s'.", s);
286
287         /* Max, Min or Avg mode -- no way to tell which, so we'll
288          * set both flags to denote it's not a normal measurement. */
289         if (s[0] == '1')
290                 devc->cur_mqflags[0] |= SR_MQFLAG_MAX | SR_MQFLAG_MIN;
291         else
292                 devc->cur_mqflags[0] &= ~(SR_MQFLAG_MAX | SR_MQFLAG_MIN);
293
294         if (s[1] == '1')
295                 devc->cur_mqflags[0] |= SR_MQFLAG_RELATIVE;
296         else
297                 devc->cur_mqflags[0] &= ~SR_MQFLAG_RELATIVE;
298
299         /* Hold mode. */
300         if (s[7] == '1')
301                 devc->cur_mqflags[0] |= SR_MQFLAG_HOLD;
302         else
303                 devc->cur_mqflags[0] &= ~SR_MQFLAG_HOLD;
304
305         g_free(s);
306
307         return JOB_STAT;
308 }
309
310 static int recv_stat_u125x(const struct sr_dev_inst *sdi, GMatchInfo *match)
311 {
312         struct dev_context *devc;
313         char *s;
314
315         devc = sdi->priv;
316         s = g_match_info_fetch(match, 1);
317         sr_spew("STAT response '%s'.", s);
318
319         /* dBm/dBV modes. */
320         if ((s[2] & ~0x20) == 'M')
321                 devc->mode_dbm_dbv = devc->cur_unit[0] = SR_UNIT_DECIBEL_MW;
322         else if ((s[2] & ~0x20) == 'V')
323                 devc->mode_dbm_dbv = devc->cur_unit[0] = SR_UNIT_DECIBEL_VOLT;
324         else
325                 devc->mode_dbm_dbv = 0;
326
327         /* Peak hold mode. */
328         if (s[4] == '1')
329                 devc->cur_mqflags[0] |= SR_MQFLAG_MAX;
330         else
331                 devc->cur_mqflags[0] &= ~SR_MQFLAG_MAX;
332
333         /* Triggered hold mode. */
334         if (s[7] == '1')
335                 devc->cur_mqflags[0] |= SR_MQFLAG_HOLD;
336         else
337                 devc->cur_mqflags[0] &= ~SR_MQFLAG_HOLD;
338
339         g_free(s);
340
341         return JOB_STAT;
342 }
343
344 static int recv_stat_u128x(const struct sr_dev_inst *sdi, GMatchInfo *match)
345 {
346         struct dev_context *devc;
347         char *s;
348
349         devc = sdi->priv;
350         s = g_match_info_fetch(match, 1);
351         sr_spew("STAT response '%s'.", s);
352
353         /* Max, Min or Avg mode -- no way to tell which, so we'll
354          * set both flags to denote it's not a normal measurement. */
355         if (s[0] == '1')
356                 devc->cur_mqflags[0] |= SR_MQFLAG_MAX | SR_MQFLAG_MIN | SR_MQFLAG_AVG;
357         else
358                 devc->cur_mqflags[0] &= ~(SR_MQFLAG_MAX | SR_MQFLAG_MIN | SR_MQFLAG_AVG);
359
360         /* dBm/dBV modes. */
361         if ((s[2] & ~0x20) == 'M')
362                 devc->mode_dbm_dbv = devc->cur_unit[0] = SR_UNIT_DECIBEL_MW;
363         else if ((s[2] & ~0x20) == 'V')
364                 devc->mode_dbm_dbv = devc->cur_unit[0] = SR_UNIT_DECIBEL_VOLT;
365         else
366                 devc->mode_dbm_dbv = 0;
367
368         /* Peak hold mode. */
369         if (s[4] == '4')
370                 devc->cur_mqflags[0] |= SR_MQFLAG_MAX;
371         else
372                 devc->cur_mqflags[0] &= ~SR_MQFLAG_MAX;
373
374         /* Null function. */
375         if (s[1] == '1')
376                 devc->cur_mqflags[0] |= SR_MQFLAG_RELATIVE;
377         else
378                 devc->cur_mqflags[0] &= ~SR_MQFLAG_RELATIVE;
379
380         /* Triggered or auto hold modes. */
381         if (s[7] == '1' || s[11] == '1')
382                 devc->cur_mqflags[0] |= SR_MQFLAG_HOLD;
383         else
384                 devc->cur_mqflags[0] &= ~SR_MQFLAG_HOLD;
385
386         g_free(s);
387
388         return JOB_STAT;
389 }
390
391 static int send_fetc(const struct sr_dev_inst *sdi)
392 {
393         struct dev_context *devc = sdi->priv;
394
395         if (devc->mode_squarewave)
396                 return SR_ERR_NA;
397
398         if (devc->cur_channel->index > 0)
399                 return agdmm_send(sdi, "FETC? @%d", devc->cur_channel->index + 1);
400         else
401                 return agdmm_send(sdi, "FETC?");
402 }
403
404 static int recv_fetc(const struct sr_dev_inst *sdi, GMatchInfo *match)
405 {
406         struct dev_context *devc;
407         struct sr_datafeed_packet packet;
408         struct sr_datafeed_analog analog;
409         struct sr_analog_encoding encoding;
410         struct sr_analog_meaning meaning;
411         struct sr_analog_spec spec;
412         float fvalue;
413         const char *s;
414         char *mstr;
415         int i, exp;
416
417         sr_spew("FETC reply '%s'.", g_match_info_get_string(match));
418         devc = sdi->priv;
419         i = devc->cur_channel->index;
420
421         if (devc->cur_mq[i] == -1)
422                 /* This detects when channel P2 is reporting TEMP as an identical
423                  * copy of channel P3. In this case, we just skip P2. */
424                 goto skip_value;
425
426         s = g_match_info_get_string(match);
427         if (!strcmp(s, "-9.90000000E+37") || !strcmp(s, "+9.90000000E+37")) {
428                 /* An invalid measurement shows up on the display as "O.L", but
429                  * comes through like this. Since comparing 38-digit floats
430                  * is rather problematic, we'll cut through this here. */
431                 fvalue = NAN;
432         } else {
433                 mstr = g_match_info_fetch(match, 1);
434                 if (sr_atof_ascii(mstr, &fvalue) != SR_OK) {
435                         g_free(mstr);
436                         sr_dbg("Invalid float.");
437                         return SR_ERR;
438                 }
439                 g_free(mstr);
440                 if (devc->cur_exponent[i] != 0)
441                         fvalue *= powf(10, devc->cur_exponent[i]);
442         }
443
444         if (devc->cur_unit[i] == SR_UNIT_DECIBEL_MW ||
445             devc->cur_unit[i] == SR_UNIT_DECIBEL_VOLT ||
446             devc->cur_unit[i] == SR_UNIT_PERCENTAGE) {
447                 mstr = g_match_info_fetch(match, 2);
448                 if (mstr && sr_atoi(mstr, &exp) == SR_OK) {
449                         devc->cur_digits[i] = MIN(4 - exp, devc->cur_digits[i]);
450                         devc->cur_encoding[i] = MIN(5 - exp, devc->cur_encoding[i]);
451                 }
452                 g_free(mstr);
453         }
454
455         sr_analog_init(&analog, &encoding, &meaning, &spec,
456                        devc->cur_digits[i] - devc->cur_exponent[i]);
457         analog.meaning->mq = devc->cur_mq[i];
458         analog.meaning->unit = devc->cur_unit[i];
459         analog.meaning->mqflags = devc->cur_mqflags[i];
460         analog.meaning->channels = g_slist_append(NULL, devc->cur_channel);
461         analog.num_samples = 1;
462         analog.data = &fvalue;
463         encoding.digits = devc->cur_encoding[i] - devc->cur_exponent[i];
464         packet.type = SR_DF_ANALOG;
465         packet.payload = &analog;
466         sr_session_send(sdi, &packet);
467         g_slist_free(analog.meaning->channels);
468
469         sr_sw_limits_update_samples_read(&devc->limits, 1);
470
471 skip_value:;
472         struct sr_channel *prev_chan = devc->cur_channel;
473         devc->cur_channel = sr_next_enabled_channel(sdi, devc->cur_channel);
474         if (devc->cur_channel->index > prev_chan->index)
475                 return JOB_AGAIN;
476         else
477                 return JOB_FETC;
478 }
479
480 static int send_conf(const struct sr_dev_inst *sdi)
481 {
482         struct dev_context *devc = sdi->priv;
483
484         /* Do not try to send CONF? for internal temperature channel. */
485         if (devc->cur_conf->index == MAX(devc->profile->nb_channels - 1, 1))
486                 return SR_ERR_NA;
487
488         if (devc->cur_conf->index > 0)
489                 return agdmm_send(sdi, "CONF? @%d", devc->cur_conf->index + 1);
490         else
491                 return agdmm_send(sdi, "CONF?");
492 }
493
494 static int recv_conf_u123x(const struct sr_dev_inst *sdi, GMatchInfo *match)
495 {
496         struct dev_context *devc;
497         char *mstr, *rstr;
498         int i, resolution;
499
500         sr_spew("CONF? response '%s'.", g_match_info_get_string(match));
501         devc = sdi->priv;
502         i = devc->cur_conf->index;
503
504         rstr = g_match_info_fetch(match, 2);
505         if (rstr)
506                 sr_atoi(rstr, &resolution);
507         g_free(rstr);
508
509         mstr = g_match_info_fetch(match, 1);
510         if (!strcmp(mstr, "V")) {
511                 devc->cur_mq[i] = SR_MQ_VOLTAGE;
512                 devc->cur_unit[i] = SR_UNIT_VOLT;
513                 devc->cur_mqflags[i] = 0;
514                 devc->cur_exponent[i] = 0;
515                 devc->cur_digits[i] = 4 - resolution;
516         } else if (!strcmp(mstr, "MV")) {
517                 if (devc->mode_tempaux) {
518                         devc->cur_mq[i] = SR_MQ_TEMPERATURE;
519                         /* No way to detect whether Fahrenheit or Celsius
520                          * is used, so we'll just default to Celsius. */
521                         devc->cur_unit[i] = SR_UNIT_CELSIUS;
522                         devc->cur_mqflags[i] = 0;
523                         devc->cur_exponent[i] = 0;
524                         devc->cur_digits[i] = 1;
525                 } else {
526                         devc->cur_mq[i] = SR_MQ_VOLTAGE;
527                         devc->cur_unit[i] = SR_UNIT_VOLT;
528                         devc->cur_mqflags[i] = 0;
529                         devc->cur_exponent[i] = -3;
530                         devc->cur_digits[i] = 5 - resolution;
531                 }
532         } else if (!strcmp(mstr, "A")) {
533                 devc->cur_mq[i] = SR_MQ_CURRENT;
534                 devc->cur_unit[i] = SR_UNIT_AMPERE;
535                 devc->cur_mqflags[i] = 0;
536                 devc->cur_exponent[i] = 0;
537                 devc->cur_digits[i] = 3 - resolution;
538         } else if (!strcmp(mstr, "UA")) {
539                 devc->cur_mq[i] = SR_MQ_CURRENT;
540                 devc->cur_unit[i] = SR_UNIT_AMPERE;
541                 devc->cur_mqflags[i] = 0;
542                 devc->cur_exponent[i] = -6;
543                 devc->cur_digits[i] = 8 - resolution;
544         } else if (!strcmp(mstr, "FREQ")) {
545                 devc->cur_mq[i] = SR_MQ_FREQUENCY;
546                 devc->cur_unit[i] = SR_UNIT_HERTZ;
547                 devc->cur_mqflags[i] = 0;
548                 devc->cur_exponent[i] = 0;
549                 devc->cur_digits[i] = 2 - resolution;
550         } else if (!strcmp(mstr, "RES")) {
551                 if (devc->mode_continuity) {
552                         devc->cur_mq[i] = SR_MQ_CONTINUITY;
553                         devc->cur_unit[i] = SR_UNIT_BOOLEAN;
554                 } else {
555                         devc->cur_mq[i] = SR_MQ_RESISTANCE;
556                         devc->cur_unit[i] = SR_UNIT_OHM;
557                 }
558                 devc->cur_mqflags[i] = 0;
559                 devc->cur_exponent[i] = 0;
560                 devc->cur_digits[i] = 1 - resolution;
561         } else if (!strcmp(mstr, "DIOD")) {
562                 devc->cur_mq[i] = SR_MQ_VOLTAGE;
563                 devc->cur_unit[i] = SR_UNIT_VOLT;
564                 devc->cur_mqflags[i] = SR_MQFLAG_DIODE;
565                 devc->cur_exponent[i] = 0;
566                 devc->cur_digits[i] = 3;
567         } else if (!strcmp(mstr, "CAP")) {
568                 devc->cur_mq[i] = SR_MQ_CAPACITANCE;
569                 devc->cur_unit[i] = SR_UNIT_FARAD;
570                 devc->cur_mqflags[i] = 0;
571                 devc->cur_exponent[i] = 0;
572                 devc->cur_digits[i] = 9 - resolution;
573         } else
574                 sr_dbg("Unknown first argument.");
575         g_free(mstr);
576
577         /* This is based on guess, supposing similarity with other models. */
578         devc->cur_encoding[i] = devc->cur_digits[i] + 1;
579
580         if (g_match_info_get_match_count(match) == 4) {
581                 mstr = g_match_info_fetch(match, 3);
582                 /* Third value, if present, is always AC or DC. */
583                 if (!strcmp(mstr, "AC")) {
584                         devc->cur_mqflags[i] |= SR_MQFLAG_AC;
585                         if (devc->cur_mq[i] == SR_MQ_VOLTAGE)
586                                 devc->cur_mqflags[i] |= SR_MQFLAG_RMS;
587                 } else if (!strcmp(mstr, "DC")) {
588                         devc->cur_mqflags[i] |= SR_MQFLAG_DC;
589                 } else {
590                 sr_dbg("Unknown first argument '%s'.", mstr);
591                 }
592                 g_free(mstr);
593         } else
594                 devc->cur_mqflags[i] &= ~(SR_MQFLAG_AC | SR_MQFLAG_DC);
595
596         return JOB_CONF;
597 }
598
599 static int recv_conf_u124x_5x(const struct sr_dev_inst *sdi, GMatchInfo *match)
600 {
601         struct dev_context *devc;
602         char *mstr, *rstr, *m2;
603         int i, resolution;
604
605         sr_spew("CONF? response '%s'.", g_match_info_get_string(match));
606         devc = sdi->priv;
607         i = devc->cur_conf->index;
608
609         devc->mode_squarewave = 0;
610
611         rstr = g_match_info_fetch(match, 4);
612         if (rstr && sr_atoi(rstr, &resolution) == SR_OK) {
613                 devc->cur_digits[i] = -resolution;
614                 devc->cur_encoding[i] = -resolution + 1;
615         }
616         g_free(rstr);
617
618         mstr = g_match_info_fetch(match, 1);
619         if (!strncmp(mstr, "VOLT", 4)) {
620                 devc->cur_mq[i] = SR_MQ_VOLTAGE;
621                 devc->cur_unit[i] = SR_UNIT_VOLT;
622                 devc->cur_mqflags[i] = 0;
623                 devc->cur_exponent[i] = 0;
624                 if (i == 0 && devc->mode_dbm_dbv) {
625                         devc->cur_unit[i] = devc->mode_dbm_dbv;
626                         devc->cur_digits[i] = 3;
627                         devc->cur_encoding[i] = 4;
628                 }
629                 if (mstr[4] == ':') {
630                         if (!strncmp(mstr + 5, "ACDC", 4)) {
631                                 /* AC + DC offset */
632                                 devc->cur_mqflags[i] |= SR_MQFLAG_AC | SR_MQFLAG_DC | SR_MQFLAG_RMS;
633                         } else if (!strncmp(mstr + 5, "AC", 2)) {
634                                 devc->cur_mqflags[i] |= SR_MQFLAG_AC | SR_MQFLAG_RMS;
635                         } else if (!strncmp(mstr + 5, "DC", 2)) {
636                                 devc->cur_mqflags[i] |= SR_MQFLAG_DC;
637                         }
638                 } else
639                         devc->cur_mqflags[i] |= SR_MQFLAG_DC;
640         } else if (!strncmp(mstr, "CURR", 4)) {
641                 devc->cur_mq[i] = SR_MQ_CURRENT;
642                 devc->cur_unit[i] = SR_UNIT_AMPERE;
643                 devc->cur_mqflags[i] = 0;
644                 devc->cur_exponent[i] = 0;
645                 if (mstr[4] == ':') {
646                         if (!strncmp(mstr + 5, "ACDC", 4)) {
647                                 /* AC + DC offset */
648                                 devc->cur_mqflags[i] |= SR_MQFLAG_AC | SR_MQFLAG_DC | SR_MQFLAG_RMS;
649                         } else if (!strncmp(mstr + 5, "AC", 2)) {
650                                 devc->cur_mqflags[i] |= SR_MQFLAG_AC | SR_MQFLAG_RMS;
651                         } else if (!strncmp(mstr + 5, "DC", 2)) {
652                                 devc->cur_mqflags[i] |= SR_MQFLAG_DC;
653                         }
654                 } else
655                         devc->cur_mqflags[i] |= SR_MQFLAG_DC;
656         } else if (!strcmp(mstr, "RES")) {
657                 devc->cur_mq[i] = SR_MQ_RESISTANCE;
658                 devc->cur_unit[i] = SR_UNIT_OHM;
659                 devc->cur_mqflags[i] = 0;
660                 devc->cur_exponent[i] = 0;
661         } else if (!strcmp(mstr, "COND")) {
662                 devc->cur_mq[i] = SR_MQ_CONDUCTANCE;
663                 devc->cur_unit[i] = SR_UNIT_SIEMENS;
664                 devc->cur_mqflags[i] = 0;
665                 devc->cur_exponent[i] = 0;
666         } else if (!strcmp(mstr, "CAP")) {
667                 devc->cur_mq[i] = SR_MQ_CAPACITANCE;
668                 devc->cur_unit[i] = SR_UNIT_FARAD;
669                 devc->cur_mqflags[i] = 0;
670                 devc->cur_exponent[i] = 0;
671         } else if (!strncmp(mstr, "FREQ", 4) || !strncmp(mstr, "FC1", 3)) {
672                 devc->cur_mq[i] = SR_MQ_FREQUENCY;
673                 devc->cur_unit[i] = SR_UNIT_HERTZ;
674                 devc->cur_mqflags[i] = 0;
675                 devc->cur_exponent[i] = 0;
676         } else if (!strncmp(mstr, "PULS:PWID", 9)) {
677                 devc->cur_mq[i] = SR_MQ_PULSE_WIDTH;
678                 devc->cur_unit[i] = SR_UNIT_SECOND;
679                 devc->cur_mqflags[i] = 0;
680                 devc->cur_exponent[i] = 0;
681                 devc->cur_encoding[i] = MIN(devc->cur_encoding[i], 6);
682         } else if (!strncmp(mstr, "PULS:PDUT", 9)) {
683                 devc->cur_mq[i] = SR_MQ_DUTY_CYCLE;
684                 devc->cur_unit[i] = SR_UNIT_PERCENTAGE;
685                 devc->cur_mqflags[i] = 0;
686                 devc->cur_exponent[i] = 0;
687                 devc->cur_digits[i] = 3;
688                 devc->cur_encoding[i] = 4;
689         } else if (!strcmp(mstr, "CONT")) {
690                 devc->cur_mq[i] = SR_MQ_CONTINUITY;
691                 devc->cur_unit[i] = SR_UNIT_OHM;
692                 devc->cur_mqflags[i] = 0;
693                 devc->cur_exponent[i] = 0;
694         } else if (!strcmp(mstr, "DIOD")) {
695                 devc->cur_mq[i] = SR_MQ_VOLTAGE;
696                 devc->cur_unit[i] = SR_UNIT_VOLT;
697                 devc->cur_mqflags[i] = SR_MQFLAG_DIODE;
698                 devc->cur_exponent[i] = 0;
699                 devc->cur_digits[i] = 4;
700                 devc->cur_encoding[i] = 5;
701         } else if (!strncmp(mstr, "T1", 2) || !strncmp(mstr, "T2", 2) ||
702                    !strncmp(mstr, "TEMP", 2)) {
703                 devc->cur_mq[i] = SR_MQ_TEMPERATURE;
704                 m2 = g_match_info_fetch(match, 2);
705                 if (!m2)
706                         /*
707                          * TEMP without param is for secondary display (channel P2)
708                          * and is identical to channel P3, so discard it.
709                          */
710                         devc->cur_mq[i] = -1;
711                 else if (!strcmp(m2, "FAR"))
712                         devc->cur_unit[i] = SR_UNIT_FAHRENHEIT;
713                 else
714                         devc->cur_unit[i] = SR_UNIT_CELSIUS;
715                 g_free(m2);
716                 devc->cur_mqflags[i] = 0;
717                 devc->cur_exponent[i] = 0;
718                 devc->cur_digits[i] = 1;
719                 devc->cur_encoding[i] = 2;
720         } else if (!strcmp(mstr, "SCOU")) {
721                 /*
722                  * Switch counter, not supported. Not sure what values
723                  * come from FETC in this mode, or how they would map
724                  * into libsigrok.
725                  */
726         } else if (!strncmp(mstr, "CPER:", 5)) {
727                 devc->cur_mq[i] = SR_MQ_CURRENT;
728                 devc->cur_unit[i] = SR_UNIT_PERCENTAGE;
729                 devc->cur_mqflags[i] = 0;
730                 devc->cur_exponent[i] = 0;
731                 devc->cur_digits[i] = 2;
732                 devc->cur_encoding[i] = 3;
733         } else if (!strcmp(mstr, "SQU")) {
734                 /*
735                  * Square wave output, not supported. FETC just return
736                  * an error in this mode, so don't even call it.
737                  */
738                 devc->mode_squarewave = 1;
739         } else {
740                 sr_dbg("Unknown first argument '%s'.", mstr);
741         }
742         g_free(mstr);
743
744         struct sr_channel *prev_conf = devc->cur_conf;
745         devc->cur_conf = sr_next_enabled_channel(sdi, devc->cur_conf);
746         if (devc->cur_conf->index == MAX(devc->profile->nb_channels - 1, 1))
747                 devc->cur_conf = sr_next_enabled_channel(sdi, devc->cur_conf);
748         if (devc->cur_conf->index > prev_conf->index)
749                 return JOB_AGAIN;
750         else
751                 return JOB_CONF;
752 }
753
754 /* This comes in whenever the rotary switch is changed to a new position.
755  * We could use it to determine the major measurement mode, but we already
756  * have the output of CONF? for that, which is more detailed. However
757  * we do need to catch this here, or it'll show up in some other output. */
758 static int recv_switch(const struct sr_dev_inst *sdi, GMatchInfo *match)
759 {
760         struct dev_context *devc = sdi->priv;
761
762         sr_spew("Switch '%s'.", g_match_info_get_string(match));
763
764         devc->current_job = 0;
765         devc->job_running = FALSE;
766         memset(devc->jobs_start, 0, sizeof(devc->jobs_start));
767         devc->cur_mq[0] = -1;
768         if (devc->profile->nb_channels > 2)
769                 devc->cur_mq[1] = -1;
770
771         return SR_OK;
772 }
773
774 /* Poll CONF/STAT at 1Hz and values at samplerate. */
775 SR_PRIV const struct agdmm_job agdmm_jobs_u12xx[] = {
776         { JOB_FETC, SAMPLERATE_INTERVAL, send_fetc },
777         { JOB_CONF,                1000, send_conf },
778         { JOB_STAT,                1000, send_stat },
779         ALL_ZERO
780 };
781
782 SR_PRIV const struct agdmm_recv agdmm_recvs_u123x[] = {
783         { "^\"(\\d\\d.{18}\\d)\"$", recv_stat_u123x },
784         { "^\\*([0-9])$", recv_switch },
785         { "^([-+][0-9]\\.[0-9]{8}E[-+][0-9]{2})$", recv_fetc },
786         { "^\"(V|MV|A|UA|FREQ),(\\d),(AC|DC)\"$", recv_conf_u123x },
787         { "^\"(RES|CAP),(\\d)\"$", recv_conf_u123x},
788         { "^\"(DIOD)\"$", recv_conf_u123x },
789         ALL_ZERO
790 };
791
792 SR_PRIV const struct agdmm_recv agdmm_recvs_u124x[] = {
793         { "^\"(\\d\\d.{18}\\d)\"$", recv_stat_u124x },
794         { "^\\*([0-9])$", recv_switch },
795         { "^([-+][0-9]\\.[0-9]{8}E[-+][0-9]{2})$", recv_fetc },
796         { "^\"(VOLT|CURR|RES|CAP|FREQ) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
797         { "^\"(VOLT:[ACD]+) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
798         { "^\"(CURR:[ACD]+) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
799         { "^\"(CPER:[40]-20mA) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
800         { "^\"(T[0-9]:[A-Z]+) ([A-Z]+)\"$", recv_conf_u124x_5x },
801         { "^\"(DIOD)\"$", recv_conf_u124x_5x },
802         ALL_ZERO
803 };
804
805 SR_PRIV const struct agdmm_recv agdmm_recvs_u125x[] = {
806         { "^\"(\\d\\d.{18}\\d)\"$", recv_stat_u125x },
807         { "^\\*([0-9])$", recv_switch },
808         { "^([-+][0-9]\\.[0-9]{8}E[-+][0-9]{2})$", recv_fetc },
809         { "^\"(VOLT|CURR|RES|CAP|FREQ) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
810         { "^\"(VOLT:[ACD]+) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
811         { "^\"(CURR:[ACD]+) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
812         { "^\"(CPER:[40]-20mA) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
813         { "^\"(T[0-9]:[A-Z]+) ([A-Z]+)\"$", recv_conf_u124x_5x },
814         { "^\"(DIOD)\"$", recv_conf_u124x_5x },
815         ALL_ZERO
816 };
817
818 SR_PRIV const struct agdmm_recv agdmm_recvs_u128x[] = {
819         { "^\"(\\d\\d.{18}\\d)\"$", recv_stat_u128x },
820         { "^\\*([0-9])$", recv_switch },
821         { "^([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))$", recv_fetc },
822         { "^\"(VOLT|CURR|RES|CONT|COND|CAP|FREQ|FC1|FC100) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
823         { "^\"(VOLT:[ACD]+) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
824         { "^\"(CURR:[ACD]+) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
825         { "^\"(FREQ:[ACD]+) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
826         { "^\"(CPER:[40]-20mA) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
827         { "^\"(PULS:PWID|PULS:PWID:[ACD]+) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
828         { "^\"(TEMP:[A-Z]+) ([A-Z]+)\"$", recv_conf_u124x_5x },
829         { "^\"(DIOD|SQU|PULS:PDUT|TEMP)\"$", recv_conf_u124x_5x },
830         ALL_ZERO
831 };