]> sigrok.org Git - libsigrok.git/blob - src/analog.c
analog: Implement multiplication for sr_rational
[libsigrok.git] / src / analog.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2014 Bert Vermeulen <bert@biot.com>
5  *
6  * This program is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <config.h>
21 #include <stdio.h>
22 #include <stdint.h>
23 #include <string.h>
24 #include <ctype.h>
25 #include <libsigrok/libsigrok.h>
26 #include "libsigrok-internal.h"
27
28 /** @cond PRIVATE */
29 #define LOG_PREFIX "analog"
30 /** @endcond */
31
32 /**
33  * @file
34  *
35  * Handling and converting analog data.
36  */
37
38 /**
39  * @defgroup grp_analog Analog data handling
40  *
41  * Handling and converting analog data.
42  *
43  * @{
44  */
45
46 struct unit_mq_string {
47         uint64_t value;
48         const char *str;
49 };
50
51 /* Please use the same order as in enum sr_unit (libsigrok.h). */
52 static struct unit_mq_string unit_strings[] = {
53         { SR_UNIT_VOLT, "V" },
54         { SR_UNIT_AMPERE, "A" },
55         { SR_UNIT_OHM, "\xe2\x84\xa6" },
56         { SR_UNIT_FARAD, "F" },
57         { SR_UNIT_KELVIN, "K" },
58         { SR_UNIT_CELSIUS, "\xc2\xb0""C" },
59         { SR_UNIT_FAHRENHEIT, "\xc2\xb0""F" },
60         { SR_UNIT_HERTZ, "Hz" },
61         { SR_UNIT_PERCENTAGE, "%" },
62         { SR_UNIT_BOOLEAN, "" },
63         { SR_UNIT_SECOND, "s" },
64         { SR_UNIT_SIEMENS, "S" },
65         { SR_UNIT_DECIBEL_MW, "dBu" },
66         { SR_UNIT_DECIBEL_VOLT, "dBv" },
67         { SR_UNIT_UNITLESS, "" },
68         { SR_UNIT_DECIBEL_SPL, "dB" },
69         { SR_UNIT_CONCENTRATION, "ppm" },
70         { SR_UNIT_REVOLUTIONS_PER_MINUTE, "RPM" },
71         { SR_UNIT_VOLT_AMPERE, "VA" },
72         { SR_UNIT_WATT, "W" },
73         { SR_UNIT_WATT_HOUR, "Wh" },
74         { SR_UNIT_METER_SECOND, "m/s" },
75         { SR_UNIT_HECTOPASCAL, "hPa" },
76         { SR_UNIT_HUMIDITY_293K, "%rF" },
77         { SR_UNIT_DEGREE, "\xc2\xb0" },
78         { SR_UNIT_HENRY, "H" },
79         { SR_UNIT_GRAM, "g" },
80         { SR_UNIT_CARAT, "ct" },
81         { SR_UNIT_OUNCE, "oz" },
82         { SR_UNIT_TROY_OUNCE, "oz t" },
83         { SR_UNIT_POUND, "lb" },
84         { SR_UNIT_PENNYWEIGHT, "dwt" },
85         { SR_UNIT_GRAIN, "gr" },
86         { SR_UNIT_TAEL, "tael" },
87         { SR_UNIT_MOMME, "momme" },
88         { SR_UNIT_TOLA, "tola" },
89         { SR_UNIT_PIECE, "pcs" },
90         ALL_ZERO
91 };
92
93 /* Please use the same order as in enum sr_mqflag (libsigrok.h). */
94 static struct unit_mq_string mq_strings[] = {
95         { SR_MQFLAG_AC, " AC" },
96         { SR_MQFLAG_DC, " DC" },
97         { SR_MQFLAG_RMS, " RMS" },
98         { SR_MQFLAG_DIODE, " DIODE" },
99         { SR_MQFLAG_HOLD, " HOLD" },
100         { SR_MQFLAG_MAX, " MAX" },
101         { SR_MQFLAG_MIN, " MIN" },
102         { SR_MQFLAG_AUTORANGE, " AUTO" },
103         { SR_MQFLAG_RELATIVE, " REL" },
104         { SR_MQFLAG_SPL_FREQ_WEIGHT_A, "(A)" },
105         { SR_MQFLAG_SPL_FREQ_WEIGHT_C, "(C)" },
106         { SR_MQFLAG_SPL_FREQ_WEIGHT_Z, "(Z)" },
107         { SR_MQFLAG_SPL_FREQ_WEIGHT_FLAT, "(SPL)" },
108         { SR_MQFLAG_SPL_TIME_WEIGHT_S, " S" },
109         { SR_MQFLAG_SPL_TIME_WEIGHT_F, " F" },
110         { SR_MQFLAG_SPL_LAT, " LAT" },
111         /* Not a standard function for SLMs, so this is a made-up notation. */
112         { SR_MQFLAG_SPL_PCT_OVER_ALARM, "%oA" },
113         { SR_MQFLAG_DURATION, " DURATION" },
114         { SR_MQFLAG_AVG, " AVG" },
115         { SR_MQFLAG_REFERENCE, " REF" },
116         { SR_MQFLAG_UNSTABLE, " UNSTABLE" },
117         { SR_MQFLAG_FOUR_WIRE, " 4-WIRE" },
118         ALL_ZERO
119 };
120
121 SR_PRIV int sr_analog_init(struct sr_datafeed_analog *analog,
122                 struct sr_analog_encoding *encoding,
123                 struct sr_analog_meaning *meaning,
124                 struct sr_analog_spec *spec,
125                 int digits)
126 {
127         memset(analog, 0, sizeof(*analog));
128         memset(encoding, 0, sizeof(*encoding));
129         memset(meaning, 0, sizeof(*meaning));
130         memset(spec, 0, sizeof(*spec));
131
132         analog->encoding = encoding;
133         analog->meaning = meaning;
134         analog->spec = spec;
135
136         encoding->unitsize = sizeof(float);
137         encoding->is_float = TRUE;
138 #ifdef WORDS_BIGENDIAN
139         encoding->is_bigendian = TRUE;
140 #else
141         encoding->is_bigendian = FALSE;
142 #endif
143         encoding->digits = digits;
144         encoding->is_digits_decimal = TRUE;
145         encoding->scale.p = 1;
146         encoding->scale.q = 1;
147         encoding->offset.p = 0;
148         encoding->offset.q = 1;
149
150         spec->spec_digits = digits;
151
152         return SR_OK;
153 }
154
155 /**
156  * Convert an analog datafeed payload to an array of floats.
157  *
158  * @param[in] analog The analog payload to convert. Must not be NULL.
159  *                   analog->data, analog->meaning, and analog->encoding
160  *                   must not be NULL.
161  * @param[out] outbuf Memory where to store the result. Must not be NULL.
162  *
163  * Sufficient memory for outbuf must have been pre-allocated by the caller,
164  * who is also responsible for freeing it when no longer needed.
165  *
166  * @retval SR_OK Success.
167  * @retval SR_ERR Unsupported encoding.
168  * @retval SR_ERR_ARG Invalid argument.
169  *
170  * @since 0.4.0
171  */
172 SR_API int sr_analog_to_float(const struct sr_datafeed_analog *analog,
173                 float *outbuf)
174 {
175         float offset;
176         unsigned int b, i, count;
177         gboolean bigendian;
178
179         if (!analog || !(analog->data) || !(analog->meaning)
180                         || !(analog->encoding) || !outbuf)
181                 return SR_ERR_ARG;
182
183         count = analog->num_samples * g_slist_length(analog->meaning->channels);
184
185 #ifdef WORDS_BIGENDIAN
186         bigendian = TRUE;
187 #else
188         bigendian = FALSE;
189 #endif
190         if (!analog->encoding->is_float) {
191                 float offset = analog->encoding->offset.p / (float)analog->encoding->offset.q;
192                 float scale = analog->encoding->scale.p / (float)analog->encoding->scale.q;
193                 gboolean is_signed = analog->encoding->is_signed;
194                 gboolean is_bigendian = analog->encoding->is_bigendian;
195                 int8_t *data8 = (int8_t *)(analog->data);
196                 int16_t *data16 = (int16_t *)(analog->data);
197                 int32_t *data32 = (int32_t *)(analog->data);
198
199                 switch (analog->encoding->unitsize) {
200                 case 1:
201                         if (is_signed) {
202                                 for (unsigned int i = 0; i < count; i++) {
203                                         outbuf[i] = scale * data8[i];
204                                         outbuf[i] += offset;
205                                 }
206                         } else {
207                                 for (unsigned int i = 0; i < count; i++) {
208                                         outbuf[i] = scale * R8(data8 + i);
209                                         outbuf[i] += offset;
210                                 }
211                         }
212                         break;
213                 case 2:
214                         if (is_signed && is_bigendian) {
215                                 for (unsigned int i = 0; i < count; i++) {
216                                         outbuf[i] = scale * RB16S(&data16[i]);
217                                         outbuf[i] += offset;
218                                 }
219                         } else if (is_bigendian) {
220                                 for (unsigned int i = 0; i < count; i++) {
221                                         outbuf[i] = scale * RB16(&data16[i]);
222                                         outbuf[i] += offset;
223                                 }
224                         } else if (is_signed) {
225                                 for (unsigned int i = 0; i < count; i++) {
226                                         outbuf[i] = scale * RL16S(&data16[i]);
227                                         outbuf[i] += offset;
228                                 }
229                         } else {
230                                 for (unsigned int i = 0; i < count; i++) {
231                                         outbuf[i] = scale * RL16(&data16[i]);
232                                         outbuf[i] += offset;
233                                 }
234                         }
235                         break;
236                 case 4:
237                         if (is_signed && is_bigendian) {
238                                 for (unsigned int i = 0; i < count; i++) {
239                                         outbuf[i] = scale * RB32S(&data32[i]);
240                                         outbuf[i] += offset;
241                                 }
242                         } else if (is_bigendian) {
243                                 for (unsigned int i = 0; i < count; i++) {
244                                         outbuf[i] = scale * RB32(&data32[i]);
245                                         outbuf[i] += offset;
246                                 }
247                         } else if (is_signed) {
248                                 for (unsigned int i = 0; i < count; i++) {
249                                         outbuf[i] = scale * RL32S(&data32[i]);
250                                         outbuf[i] += offset;
251                                 }
252                         } else {
253                                 for (unsigned int i = 0; i < count; i++) {
254                                         outbuf[i] = scale * RL32(&data32[i]);
255                                         outbuf[i] += offset;
256                                 }
257                         }
258                         break;
259                 default:
260                         sr_err("Unsupported unit size '%d' for analog-to-float conversion.",
261                                 analog->encoding->unitsize);
262                         return SR_ERR;
263                 }
264                 return SR_OK;
265         }
266
267         if (analog->encoding->unitsize == sizeof(float)
268                         && analog->encoding->is_bigendian == bigendian
269                         && analog->encoding->scale.p == 1
270                         && analog->encoding->scale.q == 1
271                         && analog->encoding->offset.p / (float)analog->encoding->offset.q == 0) {
272                 /* The data is already in the right format. */
273                 memcpy(outbuf, analog->data, count * sizeof(float));
274         } else {
275                 for (i = 0; i < count; i += analog->encoding->unitsize) {
276                         for (b = 0; b < analog->encoding->unitsize; b++) {
277                                 if (analog->encoding->is_bigendian == bigendian)
278                                         ((uint8_t *)outbuf)[i + b] =
279                                                 ((uint8_t *)analog->data)[i * analog->encoding->unitsize + b];
280                                 else
281                                         ((uint8_t *)outbuf)[i + (analog->encoding->unitsize - b)] =
282                                                 ((uint8_t *)analog->data)[i * analog->encoding->unitsize + b];
283                         }
284                         if (analog->encoding->scale.p != 1
285                                         || analog->encoding->scale.q != 1)
286                                 outbuf[i] = (outbuf[i] * analog->encoding->scale.p) / analog->encoding->scale.q;
287                         offset = ((float)analog->encoding->offset.p / (float)analog->encoding->offset.q);
288                         outbuf[i] += offset;
289                 }
290         }
291
292         return SR_OK;
293 }
294
295 /**
296  * Convert the unit/MQ/MQ flags in the analog struct to a string.
297  *
298  * @param[in] analog Struct containing the unit, MQ and MQ flags.
299  *                   Must not be NULL. analog->meaning must not be NULL.
300  * @param[out] result Pointer to store result. Must not be NULL.
301  *
302  * The string is allocated by the function and must be freed by the caller
303  * after use by calling g_free().
304  *
305  * @retval SR_OK Success.
306  * @retval SR_ERR_ARG Invalid argument.
307  *
308  * @since 0.4.0
309  */
310 SR_API int sr_analog_unit_to_string(const struct sr_datafeed_analog *analog,
311                 char **result)
312 {
313         int i;
314         GString *buf;
315
316         if (!analog || !(analog->meaning) || !result)
317                 return SR_ERR_ARG;
318
319         buf = g_string_new(NULL);
320
321         for (i = 0; unit_strings[i].value; i++) {
322                 if (analog->meaning->unit == unit_strings[i].value) {
323                         g_string_assign(buf, unit_strings[i].str);
324                         break;
325                 }
326         }
327
328         /* More than one MQ flag may apply. */
329         for (i = 0; mq_strings[i].value; i++)
330                 if (analog->meaning->mqflags & mq_strings[i].value)
331                         g_string_append(buf, mq_strings[i].str);
332
333         *result = buf->str;
334         g_string_free(buf, FALSE);
335
336         return SR_OK;
337 }
338
339 /**
340  * Set sr_rational r to the given value.
341  *
342  * @param[out] r Rational number struct to set. Must not be NULL.
343  * @param[in] p Numerator.
344  * @param[in] q Denominator.
345  *
346  * @since 0.4.0
347  */
348 SR_API void sr_rational_set(struct sr_rational *r, int64_t p, uint64_t q)
349 {
350         if (!r)
351                 return;
352
353         r->p = p;
354         r->q = q;
355 }
356
357 #ifndef HAVE___INT128_T
358 struct sr_int128_t {
359         int64_t high;
360         uint64_t low;
361 };
362
363 struct sr_uint128_t {
364         uint64_t high;
365         uint64_t low;
366 };
367
368 static void mult_int64(struct sr_int128_t *res, const int64_t a,
369         const int64_t b)
370 {
371         uint64_t t1, t2, t3, t4;
372
373         t1 = (UINT32_MAX & a) * (UINT32_MAX & b);
374         t2 = (UINT32_MAX & a) * (b >> 32);
375         t3 = (a >> 32) * (UINT32_MAX & b);
376         t4 = (a >> 32) * (b >> 32);
377
378         res->low = t1 + (t2 << 32) + (t3 << 32);
379         res->high = (t1 >> 32) + (uint64_t)((uint32_t)(t2)) + (uint64_t)((uint32_t)(t3));
380         res->high >>= 32;
381         res->high += ((int64_t)t2 >> 32) + ((int64_t)t3 >> 32) + t4;
382 }
383
384 static void mult_uint64(struct sr_uint128_t *res, const uint64_t a,
385         const uint64_t b)
386 {
387         uint64_t t1, t2, t3, t4;
388
389         // (x1 + x2) * (y1 + y2) = x1*y1 + x1*y2 + x2*y1 + x2*y2
390         t1 = (UINT32_MAX & a) * (UINT32_MAX & b);
391         t2 = (UINT32_MAX & a) * (b >> 32);
392         t3 = (a >> 32) * (UINT32_MAX & b);
393         t4 = (a >> 32) * (b >> 32);
394
395         res->low = t1 + (t2 << 32) + (t3 << 32);
396         res->high = (t1 >> 32) + (uint64_t)((uint32_t)(t2)) + (uint64_t)((uint32_t)(t3));
397         res->high >>= 32;
398         res->high += ((int64_t)t2 >> 32) + ((int64_t)t3 >> 32) + t4;
399 }
400 #endif
401
402 /**
403  * Compare two sr_rational for equality
404  *
405  * @param[in] a First value
406  * @param[in] b Second value
407  *
408  * The values are compared for numerical equality, i.e. 2/10 == 1/5
409  *
410  * @retval 1 if both values are equal
411  * @retval 0 otherwise
412  *
413  * @since 0.5.0
414  */
415 SR_API int sr_rational_eq(const struct sr_rational *a, const struct sr_rational *b)
416 {
417 #ifdef HAVE___INT128_T
418         __int128_t m1, m2;
419
420         /* p1/q1 = p2/q2  <=>  p1*q2 = p2*q1 */
421         m1 = ((__int128_t)(b->p)) * ((__uint128_t)a->q);
422         m2 = ((__int128_t)(a->p)) * ((__uint128_t)b->q);
423
424         return (m1 == m2);
425
426 #else
427         struct sr_int128_t m1, m2;
428
429         mult_int64(&m1, a->q, b->p);
430         mult_int64(&m2, a->p, b->q);
431
432         return (m1.high == m2.high) && (m1.low == m2.low);
433 #endif
434 }
435
436 /**
437  * Multiply two sr_rational
438  *
439  * @param[in] a First value
440  * @param[in] b Second value
441  * @param[out] res Result
442  *
443  * The resulting nominator/denominator are reduced if the result would not fit
444  * otherwise. If the resulting nominator/denominator are relatively prime,
445  * this may not be possible.
446  *
447  * @retval SR_OK Success.
448  * @retval SR_ERR_ARG Resulting value to large
449  *
450  * @since 0.5.0
451  */
452 SR_API int sr_rational_mult(struct sr_rational *res, const struct sr_rational *a,
453         const struct sr_rational *b)
454 {
455 #ifdef HAVE___INT128_T
456         __int128_t p;
457         __uint128_t q;
458
459         p = (__int128_t)(a->p) * (__int128_t)(b->p);
460         q = (__uint128_t)(a->q) * (__uint128_t)(b->q);
461
462         if ((p > INT64_MAX) || (p < INT64_MIN) || (q > UINT64_MAX)) {
463                 while (!((p & 1) || (q & 1))) {
464                         p /= 2;
465                         q /= 2;
466                 }
467         }
468
469         if ((p > INT64_MAX) || (p < INT64_MIN) || (q > UINT64_MAX)) {
470                 // TODO: determine gcd to do further reduction
471                 return SR_ERR_ARG;
472         }
473
474         res->p = (int64_t)(p);
475         res->q = (uint64_t)(q);
476
477         return SR_OK;
478
479 #else
480         struct sr_int128_t p;
481         struct sr_uint128_t q;
482
483         mult_int64(&p, a->p, b->p);
484         mult_uint64(&q, a->q, b->q);
485
486         while (!(p.low & 1) && !(q.low & 1)) {
487                 p.low /= 2;
488                 if (p.high & 1) p.low |= (1ll << 63);
489                 p.high >>= 1;
490                 q.low /= 2;
491                 if (q.high & 1) q.low |= (1ll << 63);
492                 q.high >>= 1;
493         }
494
495         if (q.high)
496                 return SR_ERR_ARG;
497         if ((p.high >= 0) && (p.low > INT64_MAX))
498                 return SR_ERR_ARG;
499         if (p.high < -1)
500                 return SR_ERR_ARG;
501
502         res->p = (int64_t)p.low;
503         res->q = q.low;
504
505         return SR_OK;
506 #endif
507 }
508
509 /** @} */