]> sigrok.org Git - libsigrok.git/blob - hardware/zeroplus-logic-cube/api.c
Replace 'probe' with 'channel' in most places.
[libsigrok.git] / hardware / zeroplus-logic-cube / api.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2010-2012 Bert Vermeulen <bert@biot.com>
5  *
6  * This program is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include "protocol.h"
21
22 #define VENDOR_NAME                     "ZEROPLUS"
23 #define USB_INTERFACE                   0
24 #define USB_CONFIGURATION               1
25 #define NUM_TRIGGER_STAGES              4
26 #define TRIGGER_TYPE                    "01"
27 #define PACKET_SIZE                     2048    /* ?? */
28
29 //#define ZP_EXPERIMENTAL
30
31 struct zp_model {
32         uint16_t vid;
33         uint16_t pid;
34         char *model_name;
35         unsigned int channels;
36         unsigned int sample_depth;      /* In Ksamples/channel */
37         unsigned int max_sampling_freq;
38 };
39
40 /*
41  * Note -- 16032, 16064 and 16128 *usually* -- but not always -- have the
42  * same 128K sample depth.
43  */
44 static const struct zp_model zeroplus_models[] = {
45         {0x0c12, 0x7002, "LAP-16128U",    16, 128,  200},
46         {0x0c12, 0x7009, "LAP-C(16064)",  16, 64,   100},
47         {0x0c12, 0x700a, "LAP-C(16128)",  16, 128,  200},
48         {0x0c12, 0x700b, "LAP-C(32128)",  32, 128,  200},
49         {0x0c12, 0x700c, "LAP-C(321000)", 32, 1024, 200},
50         {0x0c12, 0x700d, "LAP-C(322000)", 32, 2048, 200},
51         {0x0c12, 0x700e, "LAP-C(16032)",  16, 32,   100},
52         {0x0c12, 0x7016, "LAP-C(162000)", 16, 2048, 200},
53         { 0, 0, 0, 0, 0, 0 }
54 };
55
56 static const int32_t hwcaps[] = {
57         SR_CONF_LOGIC_ANALYZER,
58         SR_CONF_SAMPLERATE,
59         SR_CONF_CAPTURE_RATIO,
60         SR_CONF_VOLTAGE_THRESHOLD,
61         SR_CONF_LIMIT_SAMPLES,
62 };
63
64 /*
65  * ZEROPLUS LAP-C (16032) numbers the 16 channels A0-A7 and B0-B7.
66  * We currently ignore other untested/unsupported devices here.
67  */
68 static const char *channel_names[] = {
69         "A0", "A1", "A2", "A3", "A4", "A5", "A6", "A7",
70         "B0", "B1", "B2", "B3", "B4", "B5", "B6", "B7",
71         "C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7",
72         "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
73         NULL,
74 };
75
76 SR_PRIV struct sr_dev_driver zeroplus_logic_cube_driver_info;
77 static struct sr_dev_driver *di = &zeroplus_logic_cube_driver_info;
78
79 /*
80  * The hardware supports more samplerates than these, but these are the
81  * options hardcoded into the vendor's Windows GUI.
82  */
83
84 static const uint64_t samplerates_100[] = {
85         SR_HZ(100),
86         SR_HZ(500),
87         SR_KHZ(1),
88         SR_KHZ(5),
89         SR_KHZ(25),
90         SR_KHZ(50),
91         SR_KHZ(100),
92         SR_KHZ(200),
93         SR_KHZ(400),
94         SR_KHZ(800),
95         SR_MHZ(1),
96         SR_MHZ(10),
97         SR_MHZ(25),
98         SR_MHZ(50),
99         SR_MHZ(80),
100         SR_MHZ(100),
101 };
102
103 const uint64_t samplerates_200[] = {
104         SR_HZ(100),
105         SR_HZ(500),
106         SR_KHZ(1),
107         SR_KHZ(5),
108         SR_KHZ(25),
109         SR_KHZ(50),
110         SR_KHZ(100),
111         SR_KHZ(200),
112         SR_KHZ(400),
113         SR_KHZ(800),
114         SR_MHZ(1),
115         SR_MHZ(10),
116         SR_MHZ(25),
117         SR_MHZ(50),
118         SR_MHZ(80),
119         SR_MHZ(100),
120         SR_MHZ(150),
121         SR_MHZ(200),
122 };
123
124 static int dev_close(struct sr_dev_inst *sdi);
125
126 #if 0
127 static int configure_channels(const struct sr_dev_inst *sdi)
128 {
129         struct dev_context *devc;
130         const struct sr_channel *ch;
131         const GSList *l;
132         int channel_bit, stage, i;
133         char *tc;
134
135         /* Note: sdi and sdi->priv are non-NULL, the caller checked this. */
136         devc = sdi->priv;
137
138         devc->channel_mask = 0;
139         for (i = 0; i < NUM_TRIGGER_STAGES; i++) {
140                 devc->trigger_mask[i] = 0;
141                 devc->trigger_value[i] = 0;
142         }
143
144         stage = -1;
145         for (l = sdi->channels; l; l = l->next) {
146                 ch = (struct sr_channel *)l->data;
147                 if (ch->enabled == FALSE)
148                         continue;
149                 channel_bit = 1 << (ch->index);
150                 devc->channel_mask |= channel_bit;
151
152                 if (ch->trigger) {
153                         stage = 0;
154                         for (tc = ch->trigger; *tc; tc++) {
155                                 devc->trigger_mask[stage] |= channel_bit;
156                                 if (*tc == '1')
157                                         devc->trigger_value[stage] |= channel_bit;
158                                 stage++;
159                                 if (stage > NUM_TRIGGER_STAGES)
160                                         return SR_ERR;
161                         }
162                 }
163         }
164
165         return SR_OK;
166 }
167 #endif
168
169 static int configure_channels(const struct sr_dev_inst *sdi)
170 {
171         struct dev_context *devc;
172         const GSList *l;
173         const struct sr_channel *ch;
174         char *tc;
175         int type;
176
177         /* Note: sdi and sdi->priv are non-NULL, the caller checked this. */
178         devc = sdi->priv;
179
180         for (l = sdi->channels; l; l = l->next) {
181                 ch = (struct sr_channel *)l->data;
182                 if (ch->enabled == FALSE)
183                         continue;
184
185                 if ((tc = ch->trigger)) {
186                         switch (*tc) {
187                         case '1':
188                                 type = TRIGGER_HIGH;
189                                 break;
190                         case '0':
191                                 type = TRIGGER_LOW;
192                                 break;
193 #if 0
194                         case 'r':
195                                 type = TRIGGER_POSEDGE;
196                                 break;
197                         case 'f':
198                                 type = TRIGGER_NEGEDGE;
199                                 break;
200                         case 'c':
201                                 type = TRIGGER_ANYEDGE;
202                                 break;
203 #endif
204                         default:
205                                 return SR_ERR;
206                         }
207                         analyzer_add_trigger(ch->index, type);
208                         devc->trigger = 1;
209                 }
210         }
211
212         return SR_OK;
213 }
214
215 SR_PRIV int zp_set_samplerate(struct dev_context *devc, uint64_t samplerate)
216 {
217         int i;
218
219         for (i = 0; ARRAY_SIZE(samplerates_200); i++)
220                 if (samplerate == samplerates_200[i])
221                         break;
222
223         if (i == ARRAY_SIZE(samplerates_200) || samplerate > devc->max_samplerate) {
224                 sr_err("Unsupported samplerate: %" PRIu64 "Hz.", samplerate);
225                 return SR_ERR_ARG;
226         }
227
228         sr_info("Setting samplerate to %" PRIu64 "Hz.", samplerate);
229
230         if (samplerate >= SR_MHZ(1))
231                 analyzer_set_freq(samplerate / SR_MHZ(1), FREQ_SCALE_MHZ);
232         else if (samplerate >= SR_KHZ(1))
233                 analyzer_set_freq(samplerate / SR_KHZ(1), FREQ_SCALE_KHZ);
234         else
235                 analyzer_set_freq(samplerate, FREQ_SCALE_HZ);
236
237         devc->cur_samplerate = samplerate;
238
239         return SR_OK;
240 }
241
242 static int init(struct sr_context *sr_ctx)
243 {
244         return std_init(sr_ctx, di, LOG_PREFIX);
245 }
246
247 static GSList *scan(GSList *options)
248 {
249         struct sr_dev_inst *sdi;
250         struct sr_channel *ch;
251         struct drv_context *drvc;
252         struct dev_context *devc;
253         const struct zp_model *prof;
254         struct libusb_device_descriptor des;
255         libusb_device **devlist;
256         GSList *devices;
257         int ret, devcnt, i, j;
258
259         (void)options;
260
261         drvc = di->priv;
262
263         devices = NULL;
264
265         /* Find all ZEROPLUS analyzers and add them to device list. */
266         devcnt = 0;
267         libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist); /* TODO: Errors. */
268
269         for (i = 0; devlist[i]; i++) {
270                 ret = libusb_get_device_descriptor(devlist[i], &des);
271                 if (ret != 0) {
272                         sr_err("Failed to get device descriptor: %s.",
273                                libusb_error_name(ret));
274                         continue;
275                 }
276
277                 prof = NULL;
278                 for (j = 0; j < zeroplus_models[j].vid; j++) {
279                         if (des.idVendor == zeroplus_models[j].vid &&
280                                 des.idProduct == zeroplus_models[j].pid) {
281                                 prof = &zeroplus_models[j];
282                         }
283                 }
284                 /* Skip if the device was not found. */
285                 if (!prof)
286                         continue;
287                 sr_info("Found ZEROPLUS %s.", prof->model_name);
288
289                 /* Register the device with libsigrok. */
290                 if (!(sdi = sr_dev_inst_new(devcnt, SR_ST_INACTIVE,
291                                 VENDOR_NAME, prof->model_name, NULL))) {
292                         sr_err("%s: sr_dev_inst_new failed", __func__);
293                         return NULL;
294                 }
295                 sdi->driver = di;
296
297                 /* Allocate memory for our private driver context. */
298                 if (!(devc = g_try_malloc0(sizeof(struct dev_context)))) {
299                         sr_err("Device context malloc failed.");
300                         return NULL;
301                 }
302
303                 sdi->priv = devc;
304                 devc->prof = prof;
305                 devc->num_channels = prof->channels;
306 #ifdef ZP_EXPERIMENTAL
307                 devc->max_sample_depth = 128 * 1024;
308                 devc->max_samplerate = 200;
309 #else
310                 devc->max_sample_depth = prof->sample_depth * 1024;
311                 devc->max_samplerate = prof->max_sampling_freq;
312 #endif
313                 devc->max_samplerate *= SR_MHZ(1);
314                 devc->memory_size = MEMORY_SIZE_8K;
315                 // memset(devc->trigger_buffer, 0, NUM_TRIGGER_STAGES);
316
317                 /* Fill in channellist according to this device's profile. */
318                 for (j = 0; j < devc->num_channels; j++) {
319                         if (!(ch = sr_probe_new(j, SR_PROBE_LOGIC, TRUE,
320                                         channel_names[j])))
321                                 return NULL;
322                         sdi->channels = g_slist_append(sdi->channels, ch);
323                 }
324
325                 devices = g_slist_append(devices, sdi);
326                 drvc->instances = g_slist_append(drvc->instances, sdi);
327                 sdi->inst_type = SR_INST_USB;
328                 sdi->conn = sr_usb_dev_inst_new(
329                         libusb_get_bus_number(devlist[i]),
330                         libusb_get_device_address(devlist[i]), NULL);
331                 devcnt++;
332
333         }
334         libusb_free_device_list(devlist, 1);
335
336         return devices;
337 }
338
339 static GSList *dev_list(void)
340 {
341         return ((struct drv_context *)(di->priv))->instances;
342 }
343
344 static int dev_open(struct sr_dev_inst *sdi)
345 {
346         struct dev_context *devc;
347         struct drv_context *drvc;
348         struct sr_usb_dev_inst *usb;
349         libusb_device **devlist, *dev;
350         struct libusb_device_descriptor des;
351         int device_count, ret, i;
352
353         drvc = di->priv;
354         usb = sdi->conn;
355
356         if (!(devc = sdi->priv)) {
357                 sr_err("%s: sdi->priv was NULL", __func__);
358                 return SR_ERR_ARG;
359         }
360
361         device_count = libusb_get_device_list(drvc->sr_ctx->libusb_ctx,
362                                               &devlist);
363         if (device_count < 0) {
364                 sr_err("Failed to retrieve device list.");
365                 return SR_ERR;
366         }
367
368         dev = NULL;
369         for (i = 0; i < device_count; i++) {
370                 if ((ret = libusb_get_device_descriptor(devlist[i], &des))) {
371                         sr_err("Failed to get device descriptor: %s.",
372                                libusb_error_name(ret));
373                         continue;
374                 }
375                 if (libusb_get_bus_number(devlist[i]) == usb->bus
376                     && libusb_get_device_address(devlist[i]) == usb->address) {
377                         dev = devlist[i];
378                         break;
379                 }
380         }
381         if (!dev) {
382                 sr_err("Device on bus %d address %d disappeared!",
383                        usb->bus, usb->address);
384                 return SR_ERR;
385         }
386
387         if (!(ret = libusb_open(dev, &(usb->devhdl)))) {
388                 sdi->status = SR_ST_ACTIVE;
389                 sr_info("Opened device %d on %d.%d interface %d.",
390                         sdi->index, usb->bus, usb->address, USB_INTERFACE);
391         } else {
392                 sr_err("Failed to open device: %s.", libusb_error_name(ret));
393                 return SR_ERR;
394         }
395
396         ret = libusb_set_configuration(usb->devhdl, USB_CONFIGURATION);
397         if (ret < 0) {
398                 sr_err("Unable to set USB configuration %d: %s.",
399                        USB_CONFIGURATION, libusb_error_name(ret));
400                 return SR_ERR;
401         }
402
403         ret = libusb_claim_interface(usb->devhdl, USB_INTERFACE);
404         if (ret != 0) {
405                 sr_err("Unable to claim interface: %s.",
406                        libusb_error_name(ret));
407                 return SR_ERR;
408         }
409
410         /* Set default configuration after power on. */
411         if (analyzer_read_status(usb->devhdl) == 0)
412                 analyzer_configure(usb->devhdl);
413
414         analyzer_reset(usb->devhdl);
415         analyzer_initialize(usb->devhdl);
416
417         //analyzer_set_memory_size(MEMORY_SIZE_512K);
418         // analyzer_set_freq(g_freq, g_freq_scale);
419         analyzer_set_trigger_count(1);
420         // analyzer_set_ramsize_trigger_address((((100 - g_pre_trigger)
421         // * get_memory_size(g_memory_size)) / 100) >> 2);
422
423 #if 0
424         if (g_double_mode == 1)
425                 analyzer_set_compression(COMPRESSION_DOUBLE);
426         else if (g_compression == 1)
427                 analyzer_set_compression(COMPRESSION_ENABLE);
428         else
429 #endif
430         analyzer_set_compression(COMPRESSION_NONE);
431
432         if (devc->cur_samplerate == 0) {
433                 /* Samplerate hasn't been set. Default to 1MHz. */
434                 analyzer_set_freq(1, FREQ_SCALE_MHZ);
435                 devc->cur_samplerate = SR_MHZ(1);
436         }
437
438         if (devc->cur_threshold == 0)
439                 set_voltage_threshold(devc, 1.5);
440
441         return SR_OK;
442 }
443
444 static int dev_close(struct sr_dev_inst *sdi)
445 {
446         struct sr_usb_dev_inst *usb;
447
448         usb = sdi->conn;
449
450         if (!usb->devhdl)
451                 return SR_ERR;
452
453         sr_info("Closing device %d on %d.%d interface %d.", sdi->index,
454                 usb->bus, usb->address, USB_INTERFACE);
455         libusb_release_interface(usb->devhdl, USB_INTERFACE);
456         libusb_reset_device(usb->devhdl);
457         libusb_close(usb->devhdl);
458         usb->devhdl = NULL;
459         sdi->status = SR_ST_INACTIVE;
460
461         return SR_OK;
462 }
463
464 static int cleanup(void)
465 {
466         return std_dev_clear(di, NULL);
467 }
468
469 static int config_get(int id, GVariant **data, const struct sr_dev_inst *sdi,
470                 const struct sr_channel_group *cg)
471 {
472         struct dev_context *devc;
473
474         (void)cg;
475
476         switch (id) {
477         case SR_CONF_SAMPLERATE:
478                 if (sdi) {
479                         devc = sdi->priv;
480                         *data = g_variant_new_uint64(devc->cur_samplerate);
481                         sr_spew("Returning samplerate: %" PRIu64 "Hz.",
482                                 devc->cur_samplerate);
483                 } else
484                         return SR_ERR_ARG;
485                 break;
486         case SR_CONF_CAPTURE_RATIO:
487                 if (sdi) {
488                         devc = sdi->priv;
489                         *data = g_variant_new_uint64(devc->capture_ratio);
490                 } else
491                         return SR_ERR_ARG;
492                 break;
493         case SR_CONF_VOLTAGE_THRESHOLD:
494                 if (sdi) {
495                         GVariant *range[2];
496                         devc = sdi->priv;
497                         range[0] = g_variant_new_double(devc->cur_threshold);
498                         range[1] = g_variant_new_double(devc->cur_threshold);
499                         *data = g_variant_new_tuple(range, 2);
500                 } else
501                         return SR_ERR_ARG;
502                 break;
503         default:
504                 return SR_ERR_NA;
505         }
506
507         return SR_OK;
508 }
509
510 static int config_set(int id, GVariant *data, const struct sr_dev_inst *sdi,
511                 const struct sr_channel_group *cg)
512 {
513         struct dev_context *devc;
514         gdouble low, high;
515
516         (void)cg;
517
518         if (sdi->status != SR_ST_ACTIVE)
519                 return SR_ERR_DEV_CLOSED;
520
521         if (!(devc = sdi->priv)) {
522                 sr_err("%s: sdi->priv was NULL", __func__);
523                 return SR_ERR_ARG;
524         }
525
526         switch (id) {
527         case SR_CONF_SAMPLERATE:
528                 return zp_set_samplerate(devc, g_variant_get_uint64(data));
529         case SR_CONF_LIMIT_SAMPLES:
530                 return set_limit_samples(devc, g_variant_get_uint64(data));
531         case SR_CONF_CAPTURE_RATIO:
532                 return set_capture_ratio(devc, g_variant_get_uint64(data));
533         case SR_CONF_VOLTAGE_THRESHOLD:
534                 g_variant_get(data, "(dd)", &low, &high);
535                 return set_voltage_threshold(devc, (low + high) / 2.0);
536         default:
537                 return SR_ERR_NA;
538         }
539
540         return SR_OK;
541 }
542
543 static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi,
544                 const struct sr_channel_group *cg)
545 {
546         struct dev_context *devc;
547         GVariant *gvar, *grange[2];
548         GVariantBuilder gvb;
549         double v;
550         GVariant *range[2];
551
552         (void)cg;
553
554         switch (key) {
555         case SR_CONF_DEVICE_OPTIONS:
556                 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
557                                 hwcaps, ARRAY_SIZE(hwcaps), sizeof(int32_t));
558                 break;
559         case SR_CONF_SAMPLERATE:
560                 devc = sdi->priv;
561                 g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
562                 if (devc->prof->max_sampling_freq == 100) {
563                         gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
564                                         samplerates_100, ARRAY_SIZE(samplerates_100),
565                                         sizeof(uint64_t));
566                 } else if (devc->prof->max_sampling_freq == 200) {
567                         gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
568                                         samplerates_200, ARRAY_SIZE(samplerates_200),
569                                         sizeof(uint64_t));
570                 } else {
571                         sr_err("Internal error: Unknown max. samplerate: %d.",
572                                devc->prof->max_sampling_freq);
573                         return SR_ERR_ARG;
574                 }
575                 g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
576                 *data = g_variant_builder_end(&gvb);
577                 break;
578         case SR_CONF_TRIGGER_TYPE:
579                 *data = g_variant_new_string(TRIGGER_TYPE);
580                 break;
581         case SR_CONF_VOLTAGE_THRESHOLD:
582                 g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY);
583                 for (v = -6.0; v <= 6.0; v += 0.1) {
584                         range[0] = g_variant_new_double(v);
585                         range[1] = g_variant_new_double(v);
586                         gvar = g_variant_new_tuple(range, 2);
587                         g_variant_builder_add_value(&gvb, gvar);
588                 }
589                 *data = g_variant_builder_end(&gvb);
590                 break;
591         case SR_CONF_LIMIT_SAMPLES:
592                 if (!sdi)
593                         return SR_ERR_ARG;
594                 devc = sdi->priv;
595                 grange[0] = g_variant_new_uint64(0);
596                 grange[1] = g_variant_new_uint64(devc->max_sample_depth);
597                 *data = g_variant_new_tuple(grange, 2);
598                 break;
599         default:
600                 return SR_ERR_NA;
601         }
602
603         return SR_OK;
604 }
605
606 static int dev_acquisition_start(const struct sr_dev_inst *sdi,
607                 void *cb_data)
608 {
609         struct dev_context *devc;
610         struct sr_usb_dev_inst *usb;
611         struct sr_datafeed_packet packet;
612         struct sr_datafeed_logic logic;
613         unsigned int samples_read;
614         int res;
615         unsigned int packet_num, n;
616         unsigned char *buf;
617         unsigned int status;
618         unsigned int stop_address;
619         unsigned int now_address;
620         unsigned int trigger_address;
621         unsigned int trigger_offset;
622         unsigned int triggerbar;
623         unsigned int ramsize_trigger;
624         unsigned int memory_size;
625         unsigned int valid_samples;
626         unsigned int discard;
627         int trigger_now;
628
629         if (sdi->status != SR_ST_ACTIVE)
630                 return SR_ERR_DEV_CLOSED;
631
632         if (!(devc = sdi->priv)) {
633                 sr_err("%s: sdi->priv was NULL", __func__);
634                 return SR_ERR_ARG;
635         }
636
637         if (configure_channels(sdi) != SR_OK) {
638                 sr_err("Failed to configure channels.");
639                 return SR_ERR;
640         }
641
642         usb = sdi->conn;
643
644         set_triggerbar(devc);
645
646         /* Push configured settings to device. */
647         analyzer_configure(usb->devhdl);
648
649         analyzer_start(usb->devhdl);
650         sr_info("Waiting for data.");
651         analyzer_wait_data(usb->devhdl);
652
653         status = analyzer_read_status(usb->devhdl);
654         stop_address = analyzer_get_stop_address(usb->devhdl);
655         now_address = analyzer_get_now_address(usb->devhdl);
656         trigger_address = analyzer_get_trigger_address(usb->devhdl);
657
658         triggerbar = analyzer_get_triggerbar_address();
659         ramsize_trigger = analyzer_get_ramsize_trigger_address();
660
661         n = get_memory_size(devc->memory_size);
662         memory_size = n / 4;
663
664         sr_info("Status = 0x%x.", status);
665         sr_info("Stop address       = 0x%x.", stop_address);
666         sr_info("Now address        = 0x%x.", now_address);
667         sr_info("Trigger address    = 0x%x.", trigger_address);
668         sr_info("Triggerbar address = 0x%x.", triggerbar);
669         sr_info("Ramsize trigger    = 0x%x.", ramsize_trigger);
670         sr_info("Memory size        = 0x%x.", memory_size);
671
672         /* Send header packet to the session bus. */
673         std_session_send_df_header(cb_data, LOG_PREFIX);
674
675         /* Check for empty capture */
676         if ((status & STATUS_READY) && !stop_address) {
677                 packet.type = SR_DF_END;
678                 sr_session_send(cb_data, &packet);
679                 return SR_OK;
680         }
681
682         if (!(buf = g_try_malloc(PACKET_SIZE))) {
683                 sr_err("Packet buffer malloc failed.");
684                 return SR_ERR_MALLOC;
685         }
686
687         /* Check if the trigger is in the samples we are throwing away */
688         trigger_now = now_address == trigger_address ||
689                 ((now_address + 1) % memory_size) == trigger_address;
690
691         /*
692          * STATUS_READY doesn't clear until now_address advances past
693          * addr 0, but for our logic, clear it in that case
694          */
695         if (!now_address)
696                 status &= ~STATUS_READY;
697
698         analyzer_read_start(usb->devhdl);
699
700         /* Calculate how much data to discard */
701         discard = 0;
702         if (status & STATUS_READY) {
703                 /*
704                  * We haven't wrapped around, we need to throw away data from
705                  * our current position to the end of the buffer.
706                  * Additionally, the first two samples captured are always
707                  * bogus.
708                  */
709                 discard += memory_size - now_address + 2;
710                 now_address = 2;
711         }
712
713         /* If we have more samples than we need, discard them */
714         valid_samples = (stop_address - now_address) % memory_size;
715         if (valid_samples > ramsize_trigger + triggerbar) {
716                 discard += valid_samples - (ramsize_trigger + triggerbar);
717                 now_address += valid_samples - (ramsize_trigger + triggerbar);
718         }
719
720         sr_info("Need to discard %d samples.", discard);
721
722         /* Calculate how far in the trigger is */
723         if (trigger_now)
724                 trigger_offset = 0;
725         else
726                 trigger_offset = (trigger_address - now_address) % memory_size;
727
728         /* Recalculate the number of samples available */
729         valid_samples = (stop_address - now_address) % memory_size;
730
731         /* Send the incoming transfer to the session bus. */
732         samples_read = 0;
733         for (packet_num = 0; packet_num < n / PACKET_SIZE; packet_num++) {
734                 unsigned int len;
735                 unsigned int buf_offset;
736
737                 res = analyzer_read_data(usb->devhdl, buf, PACKET_SIZE);
738                 sr_info("Tried to read %d bytes, actually read %d bytes.",
739                         PACKET_SIZE, res);
740
741                 if (discard >= PACKET_SIZE / 4) {
742                         discard -= PACKET_SIZE / 4;
743                         continue;
744                 }
745
746                 len = PACKET_SIZE - discard * 4;
747                 buf_offset = discard * 4;
748                 discard = 0;
749
750                 /* Check if we've read all the samples */
751                 if (samples_read + len / 4 >= valid_samples)
752                         len = (valid_samples - samples_read) * 4;
753                 if (!len)
754                         break;
755
756                 if (samples_read < trigger_offset &&
757                     samples_read + len / 4 > trigger_offset) {
758                         /* Send out samples remaining before trigger */
759                         packet.type = SR_DF_LOGIC;
760                         packet.payload = &logic;
761                         logic.length = (trigger_offset - samples_read) * 4;
762                         logic.unitsize = 4;
763                         logic.data = buf + buf_offset;
764                         sr_session_send(cb_data, &packet);
765                         len -= logic.length;
766                         samples_read += logic.length / 4;
767                         buf_offset += logic.length;
768                 }
769
770                 if (samples_read == trigger_offset) {
771                         /* Send out trigger */
772                         packet.type = SR_DF_TRIGGER;
773                         packet.payload = NULL;
774                         sr_session_send(cb_data, &packet);
775                 }
776
777                 /* Send out data (or data after trigger) */
778                 packet.type = SR_DF_LOGIC;
779                 packet.payload = &logic;
780                 logic.length = len;
781                 logic.unitsize = 4;
782                 logic.data = buf + buf_offset;
783                 sr_session_send(cb_data, &packet);
784                 samples_read += len / 4;
785         }
786         analyzer_read_stop(usb->devhdl);
787         g_free(buf);
788
789         packet.type = SR_DF_END;
790         sr_session_send(cb_data, &packet);
791
792         return SR_OK;
793 }
794
795 /* TODO: This stops acquisition on ALL devices, ignoring dev_index. */
796 static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
797 {
798         struct dev_context *devc;
799         struct sr_usb_dev_inst *usb;
800         struct sr_datafeed_packet packet;
801
802         packet.type = SR_DF_END;
803         sr_session_send(cb_data, &packet);
804
805         if (!(devc = sdi->priv)) {
806                 sr_err("%s: sdi->priv was NULL", __func__);
807                 return SR_ERR_BUG;
808         }
809
810         usb = sdi->conn;
811         analyzer_reset(usb->devhdl);
812         /* TODO: Need to cancel and free any queued up transfers. */
813
814         return SR_OK;
815 }
816
817 SR_PRIV struct sr_dev_driver zeroplus_logic_cube_driver_info = {
818         .name = "zeroplus-logic-cube",
819         .longname = "ZEROPLUS Logic Cube LAP-C series",
820         .api_version = 1,
821         .init = init,
822         .cleanup = cleanup,
823         .scan = scan,
824         .dev_list = dev_list,
825         .dev_clear = NULL,
826         .config_get = config_get,
827         .config_set = config_set,
828         .config_list = config_list,
829         .dev_open = dev_open,
830         .dev_close = dev_close,
831         .dev_acquisition_start = dev_acquisition_start,
832         .dev_acquisition_stop = dev_acquisition_stop,
833         .priv = NULL,
834 };