]> sigrok.org Git - libsigrok.git/blob - hardware/saleae-logic16/protocol.c
saleae-logic16: Update copyright blurbs.
[libsigrok.git] / hardware / saleae-logic16 / protocol.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2013 Marcus Comstedt <marcus@mc.pp.se>
5  * Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
6  * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
7  *
8  * This program is free software: you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 3 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21
22 #include "protocol.h"
23
24 #include <stdint.h>
25 #include <string.h>
26 #include <glib.h>
27 #include <glib/gstdio.h>
28 #include <stdio.h>
29 #include <errno.h>
30 #include <math.h>
31 #include "libsigrok.h"
32 #include "libsigrok-internal.h"
33
34 #define FPGA_FIRMWARE_18        FIRMWARE_DIR"/saleae-logic16-fpga-18.bitstream"
35 #define FPGA_FIRMWARE_33        FIRMWARE_DIR"/saleae-logic16-fpga-33.bitstream"
36
37 #define MAX_SAMPLE_RATE         SR_MHZ(100)
38 #define MAX_4CH_SAMPLE_RATE     SR_MHZ(50)
39 #define MAX_7CH_SAMPLE_RATE     SR_MHZ(40)
40 #define MAX_8CH_SAMPLE_RATE     SR_MHZ(32)
41 #define MAX_10CH_SAMPLE_RATE    SR_MHZ(25)
42 #define MAX_13CH_SAMPLE_RATE    SR_MHZ(16)
43
44 #define BASE_CLOCK_0_FREQ       SR_MHZ(100)
45 #define BASE_CLOCK_1_FREQ       SR_MHZ(160)
46
47 #define COMMAND_START_ACQUISITION       1
48 #define COMMAND_ABORT_ACQUISITION_ASYNC 2
49 #define COMMAND_WRITE_EEPROM            6
50 #define COMMAND_READ_EEPROM             7
51 #define COMMAND_WRITE_LED_TABLE         0x7a
52 #define COMMAND_SET_LED_MODE            0x7b
53 #define COMMAND_RETURN_TO_BOOTLOADER    0x7c
54 #define COMMAND_ABORT_ACQUISITION_SYNC  0x7d
55 #define COMMAND_FPGA_UPLOAD_INIT        0x7e
56 #define COMMAND_FPGA_UPLOAD_SEND_DATA   0x7f
57 #define COMMAND_FPGA_WRITE_REGISTER     0x80
58 #define COMMAND_FPGA_READ_REGISTER      0x81
59 #define COMMAND_GET_REVID               0x82
60
61 #define WRITE_EEPROM_COOKIE1            0x42
62 #define WRITE_EEPROM_COOKIE2            0x55
63 #define READ_EEPROM_COOKIE1             0x33
64 #define READ_EEPROM_COOKIE2             0x81
65 #define ABORT_ACQUISITION_SYNC_PATTERN  0x55
66
67 #define MAX_EMPTY_TRANSFERS             64
68
69
70 static void encrypt(uint8_t *dest, const uint8_t *src, uint8_t cnt)
71 {
72         uint8_t state1 = 0x9b, state2 = 0x54;
73         int i;
74
75         for (i=0; i<cnt; i++) {
76                 uint8_t t, v = src[i];
77                 t = (((v ^ state2 ^ 0x2b) - 0x05) ^ 0x35) - 0x39;
78                 t = (((t ^ state1 ^ 0x5a) - 0xb0) ^ 0x38) - 0x45;
79                 dest[i] = state2 = t;
80                 state1 = v;
81         }
82 }
83
84 static void decrypt(uint8_t *dest, const uint8_t *src, uint8_t cnt)
85 {
86         uint8_t state1 = 0x9b, state2 = 0x54;
87         int i;
88         for (i=0; i<cnt; i++) {
89                 uint8_t t, v = src[i];
90                 t = (((v + 0x45) ^ 0x38) + 0xb0) ^ 0x5a ^ state1;
91                 t = (((t + 0x39) ^ 0x35) + 0x05) ^ 0x2b ^ state2;
92                 dest[i] = state1 = t;
93                 state2 = v;
94         }
95 }
96
97 static int do_ep1_command(const struct sr_dev_inst *sdi,
98                           const uint8_t *command, uint8_t cmd_len,
99                           uint8_t *reply, uint8_t reply_len)
100 {
101         uint8_t buf[64];
102         struct sr_usb_dev_inst *usb;
103         int ret, xfer;
104
105         usb = sdi->conn;
106
107         if (cmd_len < 1 || cmd_len > 64 || reply_len > 64 ||
108             command == NULL || (reply_len > 0 && reply == NULL))
109                 return SR_ERR_ARG;
110
111         encrypt(buf, command, cmd_len);
112
113         ret = libusb_bulk_transfer(usb->devhdl, 1, buf, cmd_len, &xfer, 1000);
114         if (ret != 0) {
115                 sr_dbg("Failed to send EP1 command 0x%02x: %s",
116                        command[0], libusb_error_name(ret));
117                 return SR_ERR;
118         }
119         if (xfer != cmd_len) {
120                 sr_dbg("Failed to send EP1 command 0x%02x: incorrect length %d != %d",
121                        xfer, cmd_len);
122                 return SR_ERR;
123         }
124
125         if (reply_len == 0)
126                 return SR_OK;
127
128         ret = libusb_bulk_transfer(usb->devhdl, 0x80 | 1, buf, reply_len, &xfer, 1000);
129         if (ret != 0) {
130                 sr_dbg("Failed to receive reply to EP1 command 0x%02x: %s",
131                        command[0], libusb_error_name(ret));
132                 return SR_ERR;
133         }
134         if (xfer != reply_len) {
135                 sr_dbg("Failed to receive reply to EP1 command 0x%02x: incorrect length %d != %d",
136                        xfer, reply_len);
137                 return SR_ERR;
138         }
139
140         decrypt(reply, buf, reply_len);
141
142         return SR_OK;
143 }
144
145 static int read_eeprom(const struct sr_dev_inst *sdi,
146                        uint8_t address, uint8_t length, uint8_t *buf)
147 {
148         uint8_t command[5] = {
149                 COMMAND_READ_EEPROM,
150                 READ_EEPROM_COOKIE1,
151                 READ_EEPROM_COOKIE2,
152                 address,
153                 length,
154         };
155
156         return do_ep1_command(sdi, command, 5, buf, length);
157 }
158
159 static int upload_led_table(const struct sr_dev_inst *sdi,
160                             const uint8_t *table, uint8_t offset, uint8_t cnt)
161 {
162         uint8_t command[64];
163         int ret;
164
165         if (cnt < 1 || cnt+offset > 64 || table == NULL)
166                 return SR_ERR_ARG;
167
168         while (cnt > 0) {
169                 uint8_t chunk = (cnt > 32? 32 : cnt);
170
171                 command[0] = COMMAND_WRITE_LED_TABLE;
172                 command[1] = offset;
173                 command[2] = chunk;
174                 memcpy(command+3, table, chunk);
175
176                 if ((ret = do_ep1_command(sdi, command, 3+chunk, NULL, 0)) != SR_OK)
177                         return ret;
178
179                 table += chunk;
180                 offset += chunk;
181                 cnt -= chunk;
182         }
183
184         return SR_OK;
185 }
186
187 static int set_led_mode(const struct sr_dev_inst *sdi,
188                         uint8_t animate, uint16_t t2reload, uint8_t div,
189                         uint8_t repeat)
190 {
191         uint8_t command[6] = {
192                 COMMAND_SET_LED_MODE,
193                 animate,
194                 t2reload&0xff,
195                 t2reload>>8,
196                 div,
197                 repeat,
198         };
199
200         return do_ep1_command(sdi, command, 6, NULL, 0);
201 }
202
203 static int read_fpga_register(const struct sr_dev_inst *sdi,
204                               uint8_t address, uint8_t *value)
205 {
206         uint8_t command[3] = {
207                 COMMAND_FPGA_READ_REGISTER,
208                 1,
209                 address,
210         };
211
212         return do_ep1_command(sdi, command, 3, value, 1);
213 }
214
215 static int write_fpga_registers(const struct sr_dev_inst *sdi,
216                                 uint8_t (*regs)[2], uint8_t cnt)
217 {
218         uint8_t command[64];
219         int i;
220
221         if (cnt < 1 || cnt > 31)
222                 return SR_ERR_ARG;
223
224         command[0] = COMMAND_FPGA_WRITE_REGISTER;
225         command[1] = cnt;
226         for (i=0; i<cnt; i++) {
227                 command[2+2*i] = regs[i][0];
228                 command[3+2*i] = regs[i][1];
229         }
230
231         return do_ep1_command(sdi, command, 2*(cnt+1), NULL, 0);
232 }
233
234 static int write_fpga_register(const struct sr_dev_inst *sdi,
235                                uint8_t address, uint8_t value)
236 {
237         uint8_t regs[2] = { address, value };
238         return write_fpga_registers(sdi, &regs, 1);
239 }
240
241
242 static uint8_t map_eeprom_data(uint8_t v)
243 {
244         /* ??? */
245         switch (v) {
246         case 0x00: return 0x7a;
247         case 0x01: return 0x79;
248         case 0x05: return 0x85;
249         case 0x10: return 0x6a;
250         case 0x11: return 0x69;
251         case 0x14: return 0x76;
252         case 0x15: return 0x75;
253         case 0x41: return 0x39;
254         case 0x50: return 0x2a;
255         case 0x51: return 0x29;
256         case 0x55: return 0x35;
257         default:
258                 sr_err("No mapping of 0x%02x defined", v);
259                 return 0xff;
260         }
261 }
262
263 static int prime_fpga(const struct sr_dev_inst *sdi)
264 {
265         uint8_t eeprom_data[16];
266         uint8_t old_reg_10, status;
267         uint8_t regs[8][2] = {
268                 {10, 0x00},
269                 {10, 0x40},
270                 {12, 0},
271                 {10, 0xc0},
272                 {10, 0x40},
273                 { 6, 0},
274                 { 7, 1},
275                 { 7, 0}
276         };
277         int i, ret;
278
279         if ((ret = read_eeprom(sdi, 16, 16, eeprom_data)) != SR_OK)
280                 return ret;
281
282         if ((ret = read_fpga_register(sdi, 10, &old_reg_10)) != SR_OK)
283                 return ret;
284
285         for (i=0; i<16; i++) {
286                 regs[2][1] = eeprom_data[i];
287                 regs[5][1] = map_eeprom_data(eeprom_data[i]);
288                 if (i)
289                         ret = write_fpga_registers(sdi, &regs[2], 6);
290                 else
291                         ret = write_fpga_registers(sdi, &regs[0], 8);
292                 if (ret != SR_OK)
293                         return ret;
294         }
295
296         if ((ret = write_fpga_register(sdi, 10, old_reg_10)) != SR_OK)
297                 return ret;
298
299         if ((ret = read_fpga_register(sdi, 0, &status)) != SR_OK)
300                 return ret;
301
302         if (status != 0x10) {
303                 sr_err("Invalid FPGA status: 0x%02x != 0x10", status);
304                 return SR_ERR;
305         }
306
307         return SR_OK;
308 }
309
310 static void make_heartbeat(uint8_t *table, int len)
311 {
312         int i, j;
313
314         memset(table, 0, len);
315         len >>= 3;
316         for (i=0; i<2; i++)
317                 for (j=0; j<len; j++)
318                         *table++ = sin(j*M_PI/len)*255;
319 }
320
321 static int configure_led(const struct sr_dev_inst *sdi)
322 {
323         uint8_t table[64];
324         int ret;
325
326         make_heartbeat(table, 64);
327         if ((ret = upload_led_table(sdi, table, 0, 64)) != SR_OK)
328                 return ret;
329
330         return set_led_mode(sdi, 1, 6250, 0, 1);
331 }
332
333 static int upload_fpga_bitstream(const struct sr_dev_inst *sdi,
334                                  enum voltage_range vrange)
335 {
336         struct dev_context *devc;
337         int offset, chunksize, ret;
338         const char *filename;
339         FILE *fw;
340         unsigned char buf[256*62];
341
342         devc = sdi->priv;
343
344         if (devc->cur_voltage_range == vrange)
345                 return SR_OK;
346
347         switch (vrange) {
348         case VOLTAGE_RANGE_18_33_V:
349                 filename = FPGA_FIRMWARE_18;
350                 break;
351         case VOLTAGE_RANGE_5_V:
352                 filename = FPGA_FIRMWARE_33;
353                 break;
354         default:
355                 sr_err("Unsupported voltage range");
356                 return SR_ERR;
357         }
358
359         sr_info("Uploading FPGA bitstream at %s", filename);
360         if ((fw = g_fopen(filename, "rb")) == NULL) {
361                 sr_err("Unable to open bitstream file %s for reading: %s",
362                        filename, strerror(errno));
363                 return SR_ERR;
364         }
365
366         buf[0] = COMMAND_FPGA_UPLOAD_INIT;
367         if ((ret = do_ep1_command(sdi, buf, 1, NULL, 0)) != SR_OK) {
368                 fclose(fw);
369                 return ret;
370         }
371
372         while (1) {
373                 chunksize = fread(buf, 1, sizeof(buf), fw);
374                 if (chunksize == 0)
375                         break;
376
377                 for (offset = 0; offset < chunksize; offset += 62) {
378                         uint8_t command[64];
379                         uint8_t len = (offset + 62 > chunksize?
380                                        chunksize - offset : 62);
381                         command[0] = COMMAND_FPGA_UPLOAD_SEND_DATA;
382                         command[1] = len;
383                         memcpy(command+2, buf+offset, len);
384                         if ((ret = do_ep1_command(sdi, command, len+2, NULL, 0)) != SR_OK) {
385                                 fclose(fw);
386                                 return ret;
387                         }
388                 }
389
390                 sr_info("Uploaded %d bytes", chunksize);
391         }
392         fclose(fw);
393         sr_info("FPGA bitstream upload done");
394
395         if ((ret = prime_fpga(sdi)) != SR_OK)
396                 return ret;
397
398         if ((ret = configure_led(sdi)) != SR_OK)
399                 return ret;
400
401         devc->cur_voltage_range = vrange;
402         return SR_OK;
403 }
404
405 static int abort_acquisition_sync(const struct sr_dev_inst *sdi)
406 {
407         static const uint8_t command[2] = {
408                 COMMAND_ABORT_ACQUISITION_SYNC,
409                 ABORT_ACQUISITION_SYNC_PATTERN,
410         };
411         uint8_t reply, expected_reply;
412         int ret;
413
414         if ((ret = do_ep1_command(sdi, command, 2, &reply, 1)) != SR_OK)
415                 return ret;
416
417         expected_reply = ~command[1];
418         if (reply != expected_reply) {
419                 sr_err("Invalid response for abort acquisition command: "
420                        "0x%02x != 0x%02x", reply, expected_reply);
421                 return SR_ERR;
422         }
423
424         return SR_OK;
425 }
426
427 SR_PRIV int saleae_logic16_setup_acquisition(const struct sr_dev_inst *sdi,
428                                              uint64_t samplerate,
429                                              uint16_t channels)
430 {
431         uint8_t clock_select, reg1, reg10;
432         uint64_t div;
433         int i, ret, nchan = 0;
434         struct dev_context *devc;
435
436         devc = sdi->priv;
437
438         if (samplerate == 0 || samplerate > MAX_SAMPLE_RATE) {
439                 sr_err("Unable to sample at %" PRIu64 "Hz.", samplerate);
440                 return SR_ERR;
441         }
442
443         if (BASE_CLOCK_0_FREQ % samplerate == 0 &&
444             (div = BASE_CLOCK_0_FREQ / samplerate) <= 256) {
445                 clock_select = 0;
446         } else if (BASE_CLOCK_1_FREQ % samplerate == 0 &&
447                    (div = BASE_CLOCK_1_FREQ / samplerate) <= 256) {
448                 clock_select = 1;
449         } else {
450                 sr_err("Unable to sample at %" PRIu64 "Hz.", samplerate);
451                 return SR_ERR;
452         }
453
454         for (i=0; i<16; i++)
455                 if (channels & (1U<<i))
456                         nchan++;
457
458         if ((nchan >= 13 && samplerate > MAX_13CH_SAMPLE_RATE) ||
459             (nchan >= 10 && samplerate > MAX_10CH_SAMPLE_RATE) ||
460             (nchan >= 8  && samplerate > MAX_8CH_SAMPLE_RATE) ||
461             (nchan >= 7  && samplerate > MAX_7CH_SAMPLE_RATE) ||
462             (nchan >= 4  && samplerate > MAX_4CH_SAMPLE_RATE)) {
463                 sr_err("Unable to sample at %" PRIu64 "Hz "
464                        "with this many channels.", samplerate);
465                 return SR_ERR;
466         }
467
468         if ((ret = upload_fpga_bitstream(sdi, devc->selected_voltage_range)) != SR_OK)
469                 return ret;
470
471         if ((ret = read_fpga_register(sdi, 1, &reg1)) != SR_OK)
472                 return ret;
473
474         if (reg1 != 0x08) {
475                 sr_dbg("Invalid state at acquisition setup: 0x%02x != 0x08", reg1);
476                 return SR_ERR;
477         }
478
479         if ((ret = write_fpga_register(sdi, 1, 0x40)) != SR_OK)
480                 return ret;
481
482         if ((ret = write_fpga_register(sdi, 10, clock_select)) != SR_OK)
483                 return ret;
484
485         if ((ret = write_fpga_register(sdi, 4, (uint8_t)(div-1))) != SR_OK)
486                 return ret;
487
488         if ((ret = write_fpga_register(sdi, 2, (uint8_t)(channels & 0xff))) != SR_OK)
489                 return ret;
490
491         if ((ret = write_fpga_register(sdi, 3, (uint8_t)(channels >> 8))) != SR_OK)
492                 return ret;
493
494         if ((ret = write_fpga_register(sdi, 1, 0x42)) != SR_OK)
495                 return ret;
496
497         if ((ret = write_fpga_register(sdi, 1, 0x40)) != SR_OK)
498                 return ret;
499
500         if ((ret = read_fpga_register(sdi, 1, &reg1)) != SR_OK)
501                 return ret;
502
503         if (reg1 != 0x48) {
504                 sr_dbg("Invalid state at acquisition setup: 0x%02x != 0x48", reg1);
505                 return SR_ERR;
506         }
507
508         if ((ret = read_fpga_register(sdi, 10, &reg10)) != SR_OK)
509                 return ret;
510
511         if (reg10 != clock_select) {
512                 sr_dbg("Invalid state at acquisition setup: 0x%02x != 0x%02x",
513                        reg10, (unsigned)clock_select);
514                 return SR_ERR;
515         }
516
517         return SR_OK;
518 }
519
520 SR_PRIV int saleae_logic16_start_acquisition(const struct sr_dev_inst *sdi)
521 {
522         static const uint8_t command[1] = {
523                 COMMAND_START_ACQUISITION,
524         };
525         int ret;
526
527         if ((ret = do_ep1_command(sdi, command, 1, NULL, 0)) != SR_OK)
528                 return ret;
529
530         return write_fpga_register(sdi, 1, 0x41);
531 }
532
533 SR_PRIV int saleae_logic16_abort_acquisition(const struct sr_dev_inst *sdi)
534 {
535         static const uint8_t command[1] = {
536                 COMMAND_ABORT_ACQUISITION_ASYNC,
537         };
538         int ret;
539         uint8_t reg1, reg8, reg9;
540
541         if ((ret = do_ep1_command(sdi, command, 1, NULL, 0)) != SR_OK)
542                 return ret;
543
544         if ((ret = write_fpga_register(sdi, 1, 0x00)) != SR_OK)
545                 return ret;
546
547         if ((ret = read_fpga_register(sdi, 1, &reg1)) != SR_OK)
548                 return ret;
549
550         if (reg1 != 0x08) {
551                 sr_dbg("Invalid state at acquisition stop: 0x%02x != 0x08", reg1);
552                 return SR_ERR;
553         }
554
555         if ((ret = read_fpga_register(sdi, 8, &reg8)) != SR_OK)
556                 return ret;
557
558         if ((ret = read_fpga_register(sdi, 9, &reg9)) != SR_OK)
559                 return ret;
560
561         return SR_OK;
562 }
563
564 SR_PRIV int saleae_logic16_init_device(const struct sr_dev_inst *sdi)
565 {
566         struct dev_context *devc;
567         int ret;
568
569         devc = sdi->priv;
570
571         devc->cur_voltage_range = VOLTAGE_RANGE_UNKNOWN;
572
573         if ((ret = abort_acquisition_sync(sdi)) != SR_OK)
574                 return ret;
575
576         if ((ret = read_eeprom(sdi, 8, 8, devc->eeprom_data)) != SR_OK)
577                 return ret;
578
579         if ((ret = upload_fpga_bitstream(sdi, devc->selected_voltage_range)) != SR_OK)
580                 return ret;
581
582         return SR_OK;
583 }
584
585 static void finish_acquisition(struct dev_context *devc)
586 {
587         struct sr_datafeed_packet packet;
588         int i;
589
590         /* Terminate session. */
591         packet.type = SR_DF_END;
592         sr_session_send(devc->cb_data, &packet);
593
594         /* Remove fds from polling. */
595         if (devc->usbfd != NULL) {
596                 for (i = 0; devc->usbfd[i] != -1; i++)
597                         sr_source_remove(devc->usbfd[i]);
598                 g_free(devc->usbfd);
599         }
600
601         devc->num_transfers = 0;
602         g_free(devc->transfers);
603         g_free(devc->convbuffer);
604 }
605
606 static void free_transfer(struct libusb_transfer *transfer)
607 {
608         struct dev_context *devc;
609         unsigned int i;
610
611         devc = transfer->user_data;
612
613         g_free(transfer->buffer);
614         transfer->buffer = NULL;
615         libusb_free_transfer(transfer);
616
617         for (i = 0; i < devc->num_transfers; i++) {
618                 if (devc->transfers[i] == transfer) {
619                         devc->transfers[i] = NULL;
620                         break;
621                 }
622         }
623
624         devc->submitted_transfers--;
625         if (devc->submitted_transfers == 0)
626                 finish_acquisition(devc);
627 }
628
629 static void resubmit_transfer(struct libusb_transfer *transfer)
630 {
631         int ret;
632
633         if ((ret = libusb_submit_transfer(transfer)) == LIBUSB_SUCCESS)
634                 return;
635
636         free_transfer(transfer);
637         /* TODO: Stop session? */
638
639         sr_err("%s: %s", __func__, libusb_error_name(ret));
640 }
641
642 static size_t convert_sample_data(struct dev_context *devc,
643                                   uint8_t *dest, size_t destcnt,
644                                   const uint8_t *src, size_t srccnt)
645 {
646         uint16_t *channel_data;
647         int i, cur_channel;
648         size_t ret = 0;
649
650         srccnt /= 2;
651
652         channel_data = devc->channel_data;
653         cur_channel = devc->cur_channel;
654
655         while(srccnt--) {
656                 uint16_t sample, channel_mask;
657
658                 sample = src[0] | (src[1] << 8);
659                 src += 2;
660
661                 channel_mask = devc->channel_masks[cur_channel];
662
663                 for (i=15; i>=0; --i, sample >>= 1)
664                         if (sample & 1)
665                                 channel_data[i] |= channel_mask;
666
667                 if (++cur_channel == devc->num_channels) {
668                         cur_channel = 0;
669                         if (destcnt < 16*2) {
670                                 sr_err("Conversion buffer too small!");
671                                 break;
672                         }
673                         memcpy(dest, channel_data, 16*2);
674                         memset(channel_data, 0, 16*2);
675                         dest += 16*2;
676                         ret += 16*2;
677                         destcnt -= 16*2;
678                 }
679         }
680
681         devc->cur_channel = cur_channel;
682
683         return ret;
684 }
685
686 SR_PRIV void saleae_logic16_receive_transfer(struct libusb_transfer *transfer)
687 {
688         gboolean packet_has_error = FALSE;
689         struct sr_datafeed_packet packet;
690         struct sr_datafeed_logic logic;
691         struct dev_context *devc;
692         size_t converted_length;
693
694         devc = transfer->user_data;
695
696         /*
697          * If acquisition has already ended, just free any queued up
698          * transfer that come in.
699          */
700         if (devc->num_samples < 0) {
701                 free_transfer(transfer);
702                 return;
703         }
704
705         sr_info("receive_transfer(): status %d received %d bytes.",
706                 transfer->status, transfer->actual_length);
707
708         switch (transfer->status) {
709         case LIBUSB_TRANSFER_NO_DEVICE:
710                 devc->num_samples = -2;
711                 free_transfer(transfer);
712                 return;
713         case LIBUSB_TRANSFER_COMPLETED:
714         case LIBUSB_TRANSFER_TIMED_OUT: /* We may have received some data though. */
715                 break;
716         default:
717                 packet_has_error = TRUE;
718                 break;
719         }
720
721         if (transfer->actual_length & 1) {
722                 sr_err("Got an odd number of bytes from the device.  This should not happen.");
723                 /* Bail out right away */
724                 packet_has_error = TRUE;
725                 devc->empty_transfer_count = MAX_EMPTY_TRANSFERS;
726         }
727
728         if (transfer->actual_length == 0 || packet_has_error) {
729                 devc->empty_transfer_count++;
730                 if (devc->empty_transfer_count > MAX_EMPTY_TRANSFERS) {
731                         /*
732                          * The FX2 gave up. End the acquisition, the frontend
733                          * will work out that the samplecount is short.
734                          */
735                         devc->num_samples = -2;
736                         free_transfer(transfer);
737                 } else {
738                         resubmit_transfer(transfer);
739                 }
740                 return;
741         } else {
742                 devc->empty_transfer_count = 0;
743         }
744
745         converted_length =
746                 convert_sample_data(devc,
747                                     devc->convbuffer, devc->convbuffer_size,
748                                     transfer->buffer, transfer->actual_length);
749
750         if (converted_length > 0) {
751                 /* Send the incoming transfer to the session bus. */
752                 packet.type = SR_DF_LOGIC;
753                 packet.payload = &logic;
754                 logic.length = converted_length;
755                 logic.unitsize = 2;
756                 logic.data = devc->convbuffer;
757                 sr_session_send(devc->cb_data, &packet);
758
759                 devc->num_samples += converted_length / 2;
760                 if (devc->limit_samples &&
761                     (uint64_t)devc->num_samples > devc->limit_samples) {
762                         devc->num_samples = -2;
763                         free_transfer(transfer);
764                         return;
765                 }
766         }
767
768         resubmit_transfer(transfer);
769 }