]> sigrok.org Git - libsigrok.git/blob - hardware/saleae-logic16/protocol.c
saleae-logic16: Cleanup the prime_fpga function
[libsigrok.git] / hardware / saleae-logic16 / protocol.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2013 Marcus Comstedt <marcus@mc.pp.se>
5  * Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
6  * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
7  *
8  * This program is free software: you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 3 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21
22 #include "protocol.h"
23
24 #include <stdint.h>
25 #include <string.h>
26 #include <glib.h>
27 #include <glib/gstdio.h>
28 #include <stdio.h>
29 #include <errno.h>
30 #include <math.h>
31 #include "libsigrok.h"
32 #include "libsigrok-internal.h"
33
34 #define FPGA_FIRMWARE_18        FIRMWARE_DIR"/saleae-logic16-fpga-18.bitstream"
35 #define FPGA_FIRMWARE_33        FIRMWARE_DIR"/saleae-logic16-fpga-33.bitstream"
36
37 #define MAX_SAMPLE_RATE         SR_MHZ(100)
38 #define MAX_4CH_SAMPLE_RATE     SR_MHZ(50)
39 #define MAX_7CH_SAMPLE_RATE     SR_MHZ(40)
40 #define MAX_8CH_SAMPLE_RATE     SR_MHZ(32)
41 #define MAX_10CH_SAMPLE_RATE    SR_MHZ(25)
42 #define MAX_13CH_SAMPLE_RATE    SR_MHZ(16)
43
44 #define BASE_CLOCK_0_FREQ       SR_MHZ(100)
45 #define BASE_CLOCK_1_FREQ       SR_MHZ(160)
46
47 #define COMMAND_START_ACQUISITION       1
48 #define COMMAND_ABORT_ACQUISITION_ASYNC 2
49 #define COMMAND_WRITE_EEPROM            6
50 #define COMMAND_READ_EEPROM             7
51 #define COMMAND_WRITE_LED_TABLE         0x7a
52 #define COMMAND_SET_LED_MODE            0x7b
53 #define COMMAND_RETURN_TO_BOOTLOADER    0x7c
54 #define COMMAND_ABORT_ACQUISITION_SYNC  0x7d
55 #define COMMAND_FPGA_UPLOAD_INIT        0x7e
56 #define COMMAND_FPGA_UPLOAD_SEND_DATA   0x7f
57 #define COMMAND_FPGA_WRITE_REGISTER     0x80
58 #define COMMAND_FPGA_READ_REGISTER      0x81
59 #define COMMAND_GET_REVID               0x82
60
61 #define WRITE_EEPROM_COOKIE1            0x42
62 #define WRITE_EEPROM_COOKIE2            0x55
63 #define READ_EEPROM_COOKIE1             0x33
64 #define READ_EEPROM_COOKIE2             0x81
65 #define ABORT_ACQUISITION_SYNC_PATTERN  0x55
66
67 #define MAX_EMPTY_TRANSFERS             64
68
69
70 static void encrypt(uint8_t *dest, const uint8_t *src, uint8_t cnt)
71 {
72         uint8_t state1 = 0x9b, state2 = 0x54;
73         int i;
74
75         for (i=0; i<cnt; i++) {
76                 uint8_t t, v = src[i];
77                 t = (((v ^ state2 ^ 0x2b) - 0x05) ^ 0x35) - 0x39;
78                 t = (((t ^ state1 ^ 0x5a) - 0xb0) ^ 0x38) - 0x45;
79                 dest[i] = state2 = t;
80                 state1 = v;
81         }
82 }
83
84 static void decrypt(uint8_t *dest, const uint8_t *src, uint8_t cnt)
85 {
86         uint8_t state1 = 0x9b, state2 = 0x54;
87         int i;
88         for (i=0; i<cnt; i++) {
89                 uint8_t t, v = src[i];
90                 t = (((v + 0x45) ^ 0x38) + 0xb0) ^ 0x5a ^ state1;
91                 t = (((t + 0x39) ^ 0x35) + 0x05) ^ 0x2b ^ state2;
92                 dest[i] = state1 = t;
93                 state2 = v;
94         }
95 }
96
97 static int do_ep1_command(const struct sr_dev_inst *sdi,
98                           const uint8_t *command, uint8_t cmd_len,
99                           uint8_t *reply, uint8_t reply_len)
100 {
101         uint8_t buf[64];
102         struct sr_usb_dev_inst *usb;
103         int ret, xfer;
104
105         usb = sdi->conn;
106
107         if (cmd_len < 1 || cmd_len > 64 || reply_len > 64 ||
108             command == NULL || (reply_len > 0 && reply == NULL))
109                 return SR_ERR_ARG;
110
111         encrypt(buf, command, cmd_len);
112
113         ret = libusb_bulk_transfer(usb->devhdl, 1, buf, cmd_len, &xfer, 1000);
114         if (ret != 0) {
115                 sr_dbg("Failed to send EP1 command 0x%02x: %s",
116                        command[0], libusb_error_name(ret));
117                 return SR_ERR;
118         }
119         if (xfer != cmd_len) {
120                 sr_dbg("Failed to send EP1 command 0x%02x: incorrect length %d != %d",
121                        xfer, cmd_len);
122                 return SR_ERR;
123         }
124
125         if (reply_len == 0)
126                 return SR_OK;
127
128         ret = libusb_bulk_transfer(usb->devhdl, 0x80 | 1, buf, reply_len, &xfer, 1000);
129         if (ret != 0) {
130                 sr_dbg("Failed to receive reply to EP1 command 0x%02x: %s",
131                        command[0], libusb_error_name(ret));
132                 return SR_ERR;
133         }
134         if (xfer != reply_len) {
135                 sr_dbg("Failed to receive reply to EP1 command 0x%02x: incorrect length %d != %d",
136                        xfer, reply_len);
137                 return SR_ERR;
138         }
139
140         decrypt(reply, buf, reply_len);
141
142         return SR_OK;
143 }
144
145 static int read_eeprom(const struct sr_dev_inst *sdi,
146                        uint8_t address, uint8_t length, uint8_t *buf)
147 {
148         uint8_t command[5] = {
149                 COMMAND_READ_EEPROM,
150                 READ_EEPROM_COOKIE1,
151                 READ_EEPROM_COOKIE2,
152                 address,
153                 length,
154         };
155
156         return do_ep1_command(sdi, command, 5, buf, length);
157 }
158
159 static int upload_led_table(const struct sr_dev_inst *sdi,
160                             const uint8_t *table, uint8_t offset, uint8_t cnt)
161 {
162         uint8_t command[64];
163         int ret;
164
165         if (cnt < 1 || cnt+offset > 64 || table == NULL)
166                 return SR_ERR_ARG;
167
168         while (cnt > 0) {
169                 uint8_t chunk = (cnt > 32? 32 : cnt);
170
171                 command[0] = COMMAND_WRITE_LED_TABLE;
172                 command[1] = offset;
173                 command[2] = chunk;
174                 memcpy(command+3, table, chunk);
175
176                 if ((ret = do_ep1_command(sdi, command, 3+chunk, NULL, 0)) != SR_OK)
177                         return ret;
178
179                 table += chunk;
180                 offset += chunk;
181                 cnt -= chunk;
182         }
183
184         return SR_OK;
185 }
186
187 static int set_led_mode(const struct sr_dev_inst *sdi,
188                         uint8_t animate, uint16_t t2reload, uint8_t div,
189                         uint8_t repeat)
190 {
191         uint8_t command[6] = {
192                 COMMAND_SET_LED_MODE,
193                 animate,
194                 t2reload&0xff,
195                 t2reload>>8,
196                 div,
197                 repeat,
198         };
199
200         return do_ep1_command(sdi, command, 6, NULL, 0);
201 }
202
203 static int read_fpga_register(const struct sr_dev_inst *sdi,
204                               uint8_t address, uint8_t *value)
205 {
206         uint8_t command[3] = {
207                 COMMAND_FPGA_READ_REGISTER,
208                 1,
209                 address,
210         };
211
212         return do_ep1_command(sdi, command, 3, value, 1);
213 }
214
215 static int write_fpga_registers(const struct sr_dev_inst *sdi,
216                                 uint8_t (*regs)[2], uint8_t cnt)
217 {
218         uint8_t command[64];
219         int i;
220
221         if (cnt < 1 || cnt > 31)
222                 return SR_ERR_ARG;
223
224         command[0] = COMMAND_FPGA_WRITE_REGISTER;
225         command[1] = cnt;
226         for (i=0; i<cnt; i++) {
227                 command[2+2*i] = regs[i][0];
228                 command[3+2*i] = regs[i][1];
229         }
230
231         return do_ep1_command(sdi, command, 2*(cnt+1), NULL, 0);
232 }
233
234 static int write_fpga_register(const struct sr_dev_inst *sdi,
235                                uint8_t address, uint8_t value)
236 {
237         uint8_t regs[2] = { address, value };
238         return write_fpga_registers(sdi, &regs, 1);
239 }
240
241
242 static uint8_t map_eeprom_data(uint8_t v)
243 {
244         return (((v ^ 0x80) + 0x44) ^ 0xd5) + 0x69;
245 }
246
247 static int prime_fpga(const struct sr_dev_inst *sdi)
248 {
249         uint8_t eeprom_data[16];
250         uint8_t old_reg_10, version;
251         uint8_t regs[8][2] = {
252                 {10, 0x00},
253                 {10, 0x40},
254                 {12, 0},
255                 {10, 0xc0},
256                 {10, 0x40},
257                 { 6, 0},
258                 { 7, 1},
259                 { 7, 0}
260         };
261         int i, ret;
262
263         if ((ret = read_eeprom(sdi, 16, 16, eeprom_data)) != SR_OK)
264                 return ret;
265
266         if ((ret = read_fpga_register(sdi, 10, &old_reg_10)) != SR_OK)
267                 return ret;
268
269         regs[0][1] = (old_reg_10 &= 0x7f);
270         regs[1][1] |= old_reg_10;
271         regs[3][1] |= old_reg_10;
272         regs[4][1] |= old_reg_10;
273
274         for (i=0; i<16; i++) {
275                 regs[2][1] = eeprom_data[i];
276                 regs[5][1] = map_eeprom_data(eeprom_data[i]);
277                 if (i)
278                         ret = write_fpga_registers(sdi, &regs[2], 6);
279                 else
280                         ret = write_fpga_registers(sdi, &regs[0], 8);
281                 if (ret != SR_OK)
282                         return ret;
283         }
284
285         if ((ret = write_fpga_register(sdi, 10, old_reg_10)) != SR_OK)
286                 return ret;
287
288         if ((ret = read_fpga_register(sdi, 0, &version)) != SR_OK)
289                 return ret;
290
291         if (version != 0x10) {
292                 sr_err("Invalid FPGA bitstream version: 0x%02x != 0x10", version);
293                 return SR_ERR;
294         }
295
296         return SR_OK;
297 }
298
299 static void make_heartbeat(uint8_t *table, int len)
300 {
301         int i, j;
302
303         memset(table, 0, len);
304         len >>= 3;
305         for (i=0; i<2; i++)
306                 for (j=0; j<len; j++)
307                         *table++ = sin(j*M_PI/len)*255;
308 }
309
310 static int configure_led(const struct sr_dev_inst *sdi)
311 {
312         uint8_t table[64];
313         int ret;
314
315         make_heartbeat(table, 64);
316         if ((ret = upload_led_table(sdi, table, 0, 64)) != SR_OK)
317                 return ret;
318
319         return set_led_mode(sdi, 1, 6250, 0, 1);
320 }
321
322 static int upload_fpga_bitstream(const struct sr_dev_inst *sdi,
323                                  enum voltage_range vrange)
324 {
325         struct dev_context *devc;
326         int offset, chunksize, ret;
327         const char *filename;
328         FILE *fw;
329         unsigned char buf[256*62];
330
331         devc = sdi->priv;
332
333         if (devc->cur_voltage_range == vrange)
334                 return SR_OK;
335
336         switch (vrange) {
337         case VOLTAGE_RANGE_18_33_V:
338                 filename = FPGA_FIRMWARE_18;
339                 break;
340         case VOLTAGE_RANGE_5_V:
341                 filename = FPGA_FIRMWARE_33;
342                 break;
343         default:
344                 sr_err("Unsupported voltage range");
345                 return SR_ERR;
346         }
347
348         sr_info("Uploading FPGA bitstream at %s", filename);
349         if ((fw = g_fopen(filename, "rb")) == NULL) {
350                 sr_err("Unable to open bitstream file %s for reading: %s",
351                        filename, strerror(errno));
352                 return SR_ERR;
353         }
354
355         buf[0] = COMMAND_FPGA_UPLOAD_INIT;
356         if ((ret = do_ep1_command(sdi, buf, 1, NULL, 0)) != SR_OK) {
357                 fclose(fw);
358                 return ret;
359         }
360
361         while (1) {
362                 chunksize = fread(buf, 1, sizeof(buf), fw);
363                 if (chunksize == 0)
364                         break;
365
366                 for (offset = 0; offset < chunksize; offset += 62) {
367                         uint8_t command[64];
368                         uint8_t len = (offset + 62 > chunksize?
369                                        chunksize - offset : 62);
370                         command[0] = COMMAND_FPGA_UPLOAD_SEND_DATA;
371                         command[1] = len;
372                         memcpy(command+2, buf+offset, len);
373                         if ((ret = do_ep1_command(sdi, command, len+2, NULL, 0)) != SR_OK) {
374                                 fclose(fw);
375                                 return ret;
376                         }
377                 }
378
379                 sr_info("Uploaded %d bytes", chunksize);
380         }
381         fclose(fw);
382         sr_info("FPGA bitstream upload done");
383
384         if ((ret = prime_fpga(sdi)) != SR_OK)
385                 return ret;
386
387         if ((ret = configure_led(sdi)) != SR_OK)
388                 return ret;
389
390         devc->cur_voltage_range = vrange;
391         return SR_OK;
392 }
393
394 static int abort_acquisition_sync(const struct sr_dev_inst *sdi)
395 {
396         static const uint8_t command[2] = {
397                 COMMAND_ABORT_ACQUISITION_SYNC,
398                 ABORT_ACQUISITION_SYNC_PATTERN,
399         };
400         uint8_t reply, expected_reply;
401         int ret;
402
403         if ((ret = do_ep1_command(sdi, command, 2, &reply, 1)) != SR_OK)
404                 return ret;
405
406         expected_reply = ~command[1];
407         if (reply != expected_reply) {
408                 sr_err("Invalid response for abort acquisition command: "
409                        "0x%02x != 0x%02x", reply, expected_reply);
410                 return SR_ERR;
411         }
412
413         return SR_OK;
414 }
415
416 SR_PRIV int saleae_logic16_setup_acquisition(const struct sr_dev_inst *sdi,
417                                              uint64_t samplerate,
418                                              uint16_t channels)
419 {
420         uint8_t clock_select, reg1, reg10;
421         uint64_t div;
422         int i, ret, nchan = 0;
423         struct dev_context *devc;
424
425         devc = sdi->priv;
426
427         if (samplerate == 0 || samplerate > MAX_SAMPLE_RATE) {
428                 sr_err("Unable to sample at %" PRIu64 "Hz.", samplerate);
429                 return SR_ERR;
430         }
431
432         if (BASE_CLOCK_0_FREQ % samplerate == 0 &&
433             (div = BASE_CLOCK_0_FREQ / samplerate) <= 256) {
434                 clock_select = 0;
435         } else if (BASE_CLOCK_1_FREQ % samplerate == 0 &&
436                    (div = BASE_CLOCK_1_FREQ / samplerate) <= 256) {
437                 clock_select = 1;
438         } else {
439                 sr_err("Unable to sample at %" PRIu64 "Hz.", samplerate);
440                 return SR_ERR;
441         }
442
443         for (i=0; i<16; i++)
444                 if (channels & (1U<<i))
445                         nchan++;
446
447         if ((nchan >= 13 && samplerate > MAX_13CH_SAMPLE_RATE) ||
448             (nchan >= 10 && samplerate > MAX_10CH_SAMPLE_RATE) ||
449             (nchan >= 8  && samplerate > MAX_8CH_SAMPLE_RATE) ||
450             (nchan >= 7  && samplerate > MAX_7CH_SAMPLE_RATE) ||
451             (nchan >= 4  && samplerate > MAX_4CH_SAMPLE_RATE)) {
452                 sr_err("Unable to sample at %" PRIu64 "Hz "
453                        "with this many channels.", samplerate);
454                 return SR_ERR;
455         }
456
457         if ((ret = upload_fpga_bitstream(sdi, devc->selected_voltage_range)) != SR_OK)
458                 return ret;
459
460         if ((ret = read_fpga_register(sdi, 1, &reg1)) != SR_OK)
461                 return ret;
462
463         if (reg1 != 0x08) {
464                 sr_dbg("Invalid state at acquisition setup: 0x%02x != 0x08", reg1);
465                 return SR_ERR;
466         }
467
468         if ((ret = write_fpga_register(sdi, 1, 0x40)) != SR_OK)
469                 return ret;
470
471         if ((ret = write_fpga_register(sdi, 10, clock_select)) != SR_OK)
472                 return ret;
473
474         if ((ret = write_fpga_register(sdi, 4, (uint8_t)(div-1))) != SR_OK)
475                 return ret;
476
477         if ((ret = write_fpga_register(sdi, 2, (uint8_t)(channels & 0xff))) != SR_OK)
478                 return ret;
479
480         if ((ret = write_fpga_register(sdi, 3, (uint8_t)(channels >> 8))) != SR_OK)
481                 return ret;
482
483         if ((ret = write_fpga_register(sdi, 1, 0x42)) != SR_OK)
484                 return ret;
485
486         if ((ret = write_fpga_register(sdi, 1, 0x40)) != SR_OK)
487                 return ret;
488
489         if ((ret = read_fpga_register(sdi, 1, &reg1)) != SR_OK)
490                 return ret;
491
492         if (reg1 != 0x48) {
493                 sr_dbg("Invalid state at acquisition setup: 0x%02x != 0x48", reg1);
494                 return SR_ERR;
495         }
496
497         if ((ret = read_fpga_register(sdi, 10, &reg10)) != SR_OK)
498                 return ret;
499
500         if (reg10 != clock_select) {
501                 sr_dbg("Invalid state at acquisition setup: 0x%02x != 0x%02x",
502                        reg10, (unsigned)clock_select);
503                 return SR_ERR;
504         }
505
506         return SR_OK;
507 }
508
509 SR_PRIV int saleae_logic16_start_acquisition(const struct sr_dev_inst *sdi)
510 {
511         static const uint8_t command[1] = {
512                 COMMAND_START_ACQUISITION,
513         };
514         int ret;
515
516         if ((ret = do_ep1_command(sdi, command, 1, NULL, 0)) != SR_OK)
517                 return ret;
518
519         return write_fpga_register(sdi, 1, 0x41);
520 }
521
522 SR_PRIV int saleae_logic16_abort_acquisition(const struct sr_dev_inst *sdi)
523 {
524         static const uint8_t command[1] = {
525                 COMMAND_ABORT_ACQUISITION_ASYNC,
526         };
527         int ret;
528         uint8_t reg1, reg8, reg9;
529
530         if ((ret = do_ep1_command(sdi, command, 1, NULL, 0)) != SR_OK)
531                 return ret;
532
533         if ((ret = write_fpga_register(sdi, 1, 0x00)) != SR_OK)
534                 return ret;
535
536         if ((ret = read_fpga_register(sdi, 1, &reg1)) != SR_OK)
537                 return ret;
538
539         if (reg1 != 0x08) {
540                 sr_dbg("Invalid state at acquisition stop: 0x%02x != 0x08", reg1);
541                 return SR_ERR;
542         }
543
544         if ((ret = read_fpga_register(sdi, 8, &reg8)) != SR_OK)
545                 return ret;
546
547         if ((ret = read_fpga_register(sdi, 9, &reg9)) != SR_OK)
548                 return ret;
549
550         return SR_OK;
551 }
552
553 SR_PRIV int saleae_logic16_init_device(const struct sr_dev_inst *sdi)
554 {
555         struct dev_context *devc;
556         int ret;
557
558         devc = sdi->priv;
559
560         devc->cur_voltage_range = VOLTAGE_RANGE_UNKNOWN;
561
562         if ((ret = abort_acquisition_sync(sdi)) != SR_OK)
563                 return ret;
564
565         if ((ret = read_eeprom(sdi, 8, 8, devc->eeprom_data)) != SR_OK)
566                 return ret;
567
568         if ((ret = upload_fpga_bitstream(sdi, devc->selected_voltage_range)) != SR_OK)
569                 return ret;
570
571         return SR_OK;
572 }
573
574 static void finish_acquisition(struct dev_context *devc)
575 {
576         struct sr_datafeed_packet packet;
577         int i;
578
579         /* Terminate session. */
580         packet.type = SR_DF_END;
581         sr_session_send(devc->cb_data, &packet);
582
583         /* Remove fds from polling. */
584         if (devc->usbfd != NULL) {
585                 for (i = 0; devc->usbfd[i] != -1; i++)
586                         sr_source_remove(devc->usbfd[i]);
587                 g_free(devc->usbfd);
588         }
589
590         devc->num_transfers = 0;
591         g_free(devc->transfers);
592         g_free(devc->convbuffer);
593 }
594
595 static void free_transfer(struct libusb_transfer *transfer)
596 {
597         struct dev_context *devc;
598         unsigned int i;
599
600         devc = transfer->user_data;
601
602         g_free(transfer->buffer);
603         transfer->buffer = NULL;
604         libusb_free_transfer(transfer);
605
606         for (i = 0; i < devc->num_transfers; i++) {
607                 if (devc->transfers[i] == transfer) {
608                         devc->transfers[i] = NULL;
609                         break;
610                 }
611         }
612
613         devc->submitted_transfers--;
614         if (devc->submitted_transfers == 0)
615                 finish_acquisition(devc);
616 }
617
618 static void resubmit_transfer(struct libusb_transfer *transfer)
619 {
620         int ret;
621
622         if ((ret = libusb_submit_transfer(transfer)) == LIBUSB_SUCCESS)
623                 return;
624
625         free_transfer(transfer);
626         /* TODO: Stop session? */
627
628         sr_err("%s: %s", __func__, libusb_error_name(ret));
629 }
630
631 static size_t convert_sample_data(struct dev_context *devc,
632                                   uint8_t *dest, size_t destcnt,
633                                   const uint8_t *src, size_t srccnt)
634 {
635         uint16_t *channel_data;
636         int i, cur_channel;
637         size_t ret = 0;
638
639         srccnt /= 2;
640
641         channel_data = devc->channel_data;
642         cur_channel = devc->cur_channel;
643
644         while(srccnt--) {
645                 uint16_t sample, channel_mask;
646
647                 sample = src[0] | (src[1] << 8);
648                 src += 2;
649
650                 channel_mask = devc->channel_masks[cur_channel];
651
652                 for (i=15; i>=0; --i, sample >>= 1)
653                         if (sample & 1)
654                                 channel_data[i] |= channel_mask;
655
656                 if (++cur_channel == devc->num_channels) {
657                         cur_channel = 0;
658                         if (destcnt < 16*2) {
659                                 sr_err("Conversion buffer too small!");
660                                 break;
661                         }
662                         memcpy(dest, channel_data, 16*2);
663                         memset(channel_data, 0, 16*2);
664                         dest += 16*2;
665                         ret += 16*2;
666                         destcnt -= 16*2;
667                 }
668         }
669
670         devc->cur_channel = cur_channel;
671
672         return ret;
673 }
674
675 SR_PRIV void saleae_logic16_receive_transfer(struct libusb_transfer *transfer)
676 {
677         gboolean packet_has_error = FALSE;
678         struct sr_datafeed_packet packet;
679         struct sr_datafeed_logic logic;
680         struct dev_context *devc;
681         size_t converted_length;
682
683         devc = transfer->user_data;
684
685         /*
686          * If acquisition has already ended, just free any queued up
687          * transfer that come in.
688          */
689         if (devc->num_samples < 0) {
690                 free_transfer(transfer);
691                 return;
692         }
693
694         sr_info("receive_transfer(): status %d received %d bytes.",
695                 transfer->status, transfer->actual_length);
696
697         switch (transfer->status) {
698         case LIBUSB_TRANSFER_NO_DEVICE:
699                 devc->num_samples = -2;
700                 free_transfer(transfer);
701                 return;
702         case LIBUSB_TRANSFER_COMPLETED:
703         case LIBUSB_TRANSFER_TIMED_OUT: /* We may have received some data though. */
704                 break;
705         default:
706                 packet_has_error = TRUE;
707                 break;
708         }
709
710         if (transfer->actual_length & 1) {
711                 sr_err("Got an odd number of bytes from the device.  This should not happen.");
712                 /* Bail out right away */
713                 packet_has_error = TRUE;
714                 devc->empty_transfer_count = MAX_EMPTY_TRANSFERS;
715         }
716
717         if (transfer->actual_length == 0 || packet_has_error) {
718                 devc->empty_transfer_count++;
719                 if (devc->empty_transfer_count > MAX_EMPTY_TRANSFERS) {
720                         /*
721                          * The FX2 gave up. End the acquisition, the frontend
722                          * will work out that the samplecount is short.
723                          */
724                         devc->num_samples = -2;
725                         free_transfer(transfer);
726                 } else {
727                         resubmit_transfer(transfer);
728                 }
729                 return;
730         } else {
731                 devc->empty_transfer_count = 0;
732         }
733
734         converted_length =
735                 convert_sample_data(devc,
736                                     devc->convbuffer, devc->convbuffer_size,
737                                     transfer->buffer, transfer->actual_length);
738
739         if (converted_length > 0) {
740                 /* Send the incoming transfer to the session bus. */
741                 packet.type = SR_DF_LOGIC;
742                 packet.payload = &logic;
743                 logic.length = converted_length;
744                 logic.unitsize = 2;
745                 logic.data = devc->convbuffer;
746                 sr_session_send(devc->cb_data, &packet);
747
748                 devc->num_samples += converted_length / 2;
749                 if (devc->limit_samples &&
750                     (uint64_t)devc->num_samples > devc->limit_samples) {
751                         devc->num_samples = -2;
752                         free_transfer(transfer);
753                         return;
754                 }
755         }
756
757         resubmit_transfer(transfer);
758 }