]> sigrok.org Git - libsigrok.git/blob - hardware/asix-sigma/asix-sigma.c
log messages: Use device name, not vendor name.
[libsigrok.git] / hardware / asix-sigma / asix-sigma.c
1 /*
2  * This file is part of the sigrok project.
3  *
4  * Copyright (C) 2010 Håvard Espeland <gus@ping.uio.no>,
5  * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6  * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7  *
8  * This program is free software: you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 3 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21
22 /*
23  * ASIX SIGMA Logic Analyzer Driver
24  */
25
26 #include "config.h"
27 #include <glib.h>
28 #include <glib/gstdio.h>
29 #include <ftdi.h>
30 #include <string.h>
31 #include <zlib.h>
32 #include <sigrok.h>
33 #include <sigrok-internal.h>
34 #include "asix-sigma.h"
35
36 #define USB_VENDOR                      0xa600
37 #define USB_PRODUCT                     0xa000
38 #define USB_DESCRIPTION                 "ASIX SIGMA"
39 #define USB_VENDOR_NAME                 "ASIX"
40 #define USB_MODEL_NAME                  "SIGMA"
41 #define USB_MODEL_VERSION               ""
42 #define TRIGGER_TYPES                   "rf10"
43
44 static GSList *device_instances = NULL;
45
46 static uint64_t supported_samplerates[] = {
47         SR_KHZ(200),
48         SR_KHZ(250),
49         SR_KHZ(500),
50         SR_MHZ(1),
51         SR_MHZ(5),
52         SR_MHZ(10),
53         SR_MHZ(25),
54         SR_MHZ(50),
55         SR_MHZ(100),
56         SR_MHZ(200),
57         0,
58 };
59
60 static struct sr_samplerates samplerates = {
61         SR_KHZ(200),
62         SR_MHZ(200),
63         SR_HZ(0),
64         supported_samplerates,
65 };
66
67 static int capabilities[] = {
68         SR_HWCAP_LOGIC_ANALYZER,
69         SR_HWCAP_SAMPLERATE,
70         SR_HWCAP_CAPTURE_RATIO,
71         SR_HWCAP_PROBECONFIG,
72
73         SR_HWCAP_LIMIT_MSEC,
74         0,
75 };
76
77 /* Force the FPGA to reboot. */
78 static uint8_t suicide[] = {
79         0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
80 };
81
82 /* Prepare to upload firmware (FPGA specific). */
83 static uint8_t init[] = {
84         0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
85 };
86
87 /* Initialize the logic analyzer mode. */
88 static uint8_t logic_mode_start[] = {
89         0x00, 0x40, 0x0f, 0x25, 0x35, 0x40,
90         0x2a, 0x3a, 0x40, 0x03, 0x20, 0x38,
91 };
92
93 static const char *firmware_files[] = {
94         "asix-sigma-50.fw",     /* 50 MHz, supports 8 bit fractions */
95         "asix-sigma-100.fw",    /* 100 MHz */
96         "asix-sigma-200.fw",    /* 200 MHz */
97         "asix-sigma-50sync.fw", /* Synchronous clock from pin */
98         "asix-sigma-phasor.fw", /* Frequency counter */
99 };
100
101 static void hw_stop_acquisition(int device_index, gpointer session_device_id);
102
103 static int sigma_read(void *buf, size_t size, struct sigma *sigma)
104 {
105         int ret;
106
107         ret = ftdi_read_data(&sigma->ftdic, (unsigned char *)buf, size);
108         if (ret < 0) {
109                 sr_warn("ftdi_read_data failed: %s",
110                         ftdi_get_error_string(&sigma->ftdic));
111         }
112
113         return ret;
114 }
115
116 static int sigma_write(void *buf, size_t size, struct sigma *sigma)
117 {
118         int ret;
119
120         ret = ftdi_write_data(&sigma->ftdic, (unsigned char *)buf, size);
121         if (ret < 0) {
122                 sr_warn("ftdi_write_data failed: %s",
123                         ftdi_get_error_string(&sigma->ftdic));
124         } else if ((size_t) ret != size) {
125                 sr_warn("ftdi_write_data did not complete write\n");
126         }
127
128         return ret;
129 }
130
131 static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
132                 struct sigma *sigma)
133 {
134         size_t i;
135         uint8_t buf[len + 2];
136         int idx = 0;
137
138         buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
139         buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
140
141         for (i = 0; i < len; ++i) {
142                 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
143                 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
144         }
145
146         return sigma_write(buf, idx, sigma);
147 }
148
149 static int sigma_set_register(uint8_t reg, uint8_t value, struct sigma *sigma)
150 {
151         return sigma_write_register(reg, &value, 1, sigma);
152 }
153
154 static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
155                 struct sigma *sigma)
156 {
157         uint8_t buf[3];
158
159         buf[0] = REG_ADDR_LOW | (reg & 0xf);
160         buf[1] = REG_ADDR_HIGH | (reg >> 4);
161         buf[2] = REG_READ_ADDR;
162
163         sigma_write(buf, sizeof(buf), sigma);
164
165         return sigma_read(data, len, sigma);
166 }
167
168 static uint8_t sigma_get_register(uint8_t reg, struct sigma *sigma)
169 {
170         uint8_t value;
171
172         if (1 != sigma_read_register(reg, &value, 1, sigma)) {
173                 sr_warn("sigma_get_register: 1 byte expected");
174                 return 0;
175         }
176
177         return value;
178 }
179
180 static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
181                 struct sigma *sigma)
182 {
183         uint8_t buf[] = {
184                 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
185
186                 REG_READ_ADDR | NEXT_REG,
187                 REG_READ_ADDR | NEXT_REG,
188                 REG_READ_ADDR | NEXT_REG,
189                 REG_READ_ADDR | NEXT_REG,
190                 REG_READ_ADDR | NEXT_REG,
191                 REG_READ_ADDR | NEXT_REG,
192         };
193         uint8_t result[6];
194
195         sigma_write(buf, sizeof(buf), sigma);
196
197         sigma_read(result, sizeof(result), sigma);
198
199         *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
200         *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
201
202         /* Not really sure why this must be done, but according to spec. */
203         if ((--*stoppos & 0x1ff) == 0x1ff)
204                 stoppos -= 64;
205
206         if ((*--triggerpos & 0x1ff) == 0x1ff)
207                 triggerpos -= 64;
208
209         return 1;
210 }
211
212 static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
213                 uint8_t *data, struct sigma *sigma)
214 {
215         size_t i;
216         uint8_t buf[4096];
217         int idx = 0;
218
219         /* Send the startchunk. Index start with 1. */
220         buf[0] = startchunk >> 8;
221         buf[1] = startchunk & 0xff;
222         sigma_write_register(WRITE_MEMROW, buf, 2, sigma);
223
224         /* Read the DRAM. */
225         buf[idx++] = REG_DRAM_BLOCK;
226         buf[idx++] = REG_DRAM_WAIT_ACK;
227
228         for (i = 0; i < numchunks; ++i) {
229                 /* Alternate bit to copy from DRAM to cache. */
230                 if (i != (numchunks - 1))
231                         buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
232
233                 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
234
235                 if (i != (numchunks - 1))
236                         buf[idx++] = REG_DRAM_WAIT_ACK;
237         }
238
239         sigma_write(buf, idx, sigma);
240
241         return sigma_read(data, numchunks * CHUNK_SIZE, sigma);
242 }
243
244 /* Upload trigger look-up tables to Sigma. */
245 static int sigma_write_trigger_lut(struct triggerlut *lut, struct sigma *sigma)
246 {
247         int i;
248         uint8_t tmp[2];
249         uint16_t bit;
250
251         /* Transpose the table and send to Sigma. */
252         for (i = 0; i < 16; ++i) {
253                 bit = 1 << i;
254
255                 tmp[0] = tmp[1] = 0;
256
257                 if (lut->m2d[0] & bit)
258                         tmp[0] |= 0x01;
259                 if (lut->m2d[1] & bit)
260                         tmp[0] |= 0x02;
261                 if (lut->m2d[2] & bit)
262                         tmp[0] |= 0x04;
263                 if (lut->m2d[3] & bit)
264                         tmp[0] |= 0x08;
265
266                 if (lut->m3 & bit)
267                         tmp[0] |= 0x10;
268                 if (lut->m3s & bit)
269                         tmp[0] |= 0x20;
270                 if (lut->m4 & bit)
271                         tmp[0] |= 0x40;
272
273                 if (lut->m0d[0] & bit)
274                         tmp[1] |= 0x01;
275                 if (lut->m0d[1] & bit)
276                         tmp[1] |= 0x02;
277                 if (lut->m0d[2] & bit)
278                         tmp[1] |= 0x04;
279                 if (lut->m0d[3] & bit)
280                         tmp[1] |= 0x08;
281
282                 if (lut->m1d[0] & bit)
283                         tmp[1] |= 0x10;
284                 if (lut->m1d[1] & bit)
285                         tmp[1] |= 0x20;
286                 if (lut->m1d[2] & bit)
287                         tmp[1] |= 0x40;
288                 if (lut->m1d[3] & bit)
289                         tmp[1] |= 0x80;
290
291                 sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
292                                 sigma);
293                 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, sigma);
294         }
295
296         /* Send the parameters */
297         sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
298                              sizeof(lut->params), sigma);
299
300         return SR_OK;
301 }
302
303 /* Generate the bitbang stream for programming the FPGA. */
304 static int bin2bitbang(const char *filename,
305                        unsigned char **buf, size_t *buf_size)
306 {
307         FILE *f;
308         long file_size;
309         unsigned long offset = 0;
310         unsigned char *p;
311         uint8_t *compressed_buf, *firmware;
312         uLongf csize, fwsize;
313         const int buffer_size = 65536;
314         size_t i;
315         int c, ret, bit, v;
316         uint32_t imm = 0x3f6df2ab;
317
318         f = g_fopen(filename, "rb");
319         if (!f) {
320                 sr_warn("g_fopen(\"%s\", \"rb\")", filename);
321                 return SR_ERR;
322         }
323
324         if (-1 == fseek(f, 0, SEEK_END)) {
325                 sr_warn("fseek on %s failed", filename);
326                 fclose(f);
327                 return SR_ERR;
328         }
329
330         file_size = ftell(f);
331
332         fseek(f, 0, SEEK_SET);
333
334         if (!(compressed_buf = g_try_malloc(file_size))) {
335                 sr_err("sigma: %s: compressed_buf malloc failed", __func__);
336                 fclose(f);
337                 return SR_ERR_MALLOC;
338         }
339
340         if (!(firmware = g_try_malloc(buffer_size))) {
341                 sr_err("sigma: %s: firmware malloc failed", __func__);
342                 fclose(f);
343                 g_free(compressed_buf);
344                 return SR_ERR_MALLOC;
345         }
346
347         csize = 0;
348         while ((c = getc(f)) != EOF) {
349                 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
350                 compressed_buf[csize++] = c ^ imm;
351         }
352         fclose(f);
353
354         fwsize = buffer_size;
355         ret = uncompress(firmware, &fwsize, compressed_buf, csize);
356         if (ret < 0) {
357                 g_free(compressed_buf);
358                 g_free(firmware);
359                 sr_warn("Could not unpack Sigma firmware. (Error %d)\n", ret);
360                 return SR_ERR;
361         }
362
363         g_free(compressed_buf);
364
365         *buf_size = fwsize * 2 * 8;
366
367         *buf = p = (unsigned char *)g_try_malloc(*buf_size);
368         if (!p) {
369                 sr_err("sigma: %s: buf/p malloc failed", __func__);
370                 g_free(compressed_buf);
371                 g_free(firmware);
372                 return SR_ERR_MALLOC;
373         }
374
375         for (i = 0; i < fwsize; ++i) {
376                 for (bit = 7; bit >= 0; --bit) {
377                         v = firmware[i] & 1 << bit ? 0x40 : 0x00;
378                         p[offset++] = v | 0x01;
379                         p[offset++] = v;
380                 }
381         }
382
383         g_free(firmware);
384
385         if (offset != *buf_size) {
386                 g_free(*buf);
387                 sr_warn("Error reading firmware %s "
388                         "offset=%ld, file_size=%ld, buf_size=%zd\n",
389                         filename, offset, file_size, *buf_size);
390
391                 return SR_ERR;
392         }
393
394         return SR_OK;
395 }
396
397 static int hw_init(const char *deviceinfo)
398 {
399         struct sr_device_instance *sdi;
400         struct sigma *sigma;
401
402         /* Avoid compiler warnings. */
403         deviceinfo = deviceinfo;
404
405         if (!(sigma = g_try_malloc(sizeof(struct sigma)))) {
406                 sr_err("sigma: %s: sigma malloc failed", __func__);
407                 return 0; /* FIXME: Should be SR_ERR_MALLOC. */
408         }
409
410         ftdi_init(&sigma->ftdic);
411
412         /* Look for SIGMAs. */
413         if (ftdi_usb_open_desc(&sigma->ftdic, USB_VENDOR, USB_PRODUCT,
414                                USB_DESCRIPTION, NULL) < 0)
415                 goto free;
416
417         sigma->cur_samplerate = 0;
418         sigma->limit_msec = 0;
419         sigma->cur_firmware = -1;
420         sigma->num_probes = 0;
421         sigma->samples_per_event = 0;
422         sigma->capture_ratio = 50;
423         sigma->use_triggers = 0;
424
425         /* Register SIGMA device. */
426         sdi = sr_device_instance_new(0, SR_ST_INITIALIZING,
427                         USB_VENDOR_NAME, USB_MODEL_NAME, USB_MODEL_VERSION);
428         if (!sdi)
429                 goto free;
430
431         sdi->priv = sigma;
432
433         device_instances = g_slist_append(device_instances, sdi);
434
435         /* We will open the device again when we need it. */
436         ftdi_usb_close(&sigma->ftdic);
437
438         return 1;
439 free:
440         g_free(sigma);
441         return 0;
442 }
443
444 static int upload_firmware(int firmware_idx, struct sigma *sigma)
445 {
446         int ret;
447         unsigned char *buf;
448         unsigned char pins;
449         size_t buf_size;
450         unsigned char result[32];
451         char firmware_path[128];
452
453         /* Make sure it's an ASIX SIGMA. */
454         if ((ret = ftdi_usb_open_desc(&sigma->ftdic,
455                 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
456                 sr_warn("ftdi_usb_open failed: %s",
457                         ftdi_get_error_string(&sigma->ftdic));
458                 return 0;
459         }
460
461         if ((ret = ftdi_set_bitmode(&sigma->ftdic, 0xdf, BITMODE_BITBANG)) < 0) {
462                 sr_warn("ftdi_set_bitmode failed: %s",
463                         ftdi_get_error_string(&sigma->ftdic));
464                 return 0;
465         }
466
467         /* Four times the speed of sigmalogan - Works well. */
468         if ((ret = ftdi_set_baudrate(&sigma->ftdic, 750000)) < 0) {
469                 sr_warn("ftdi_set_baudrate failed: %s",
470                         ftdi_get_error_string(&sigma->ftdic));
471                 return 0;
472         }
473
474         /* Force the FPGA to reboot. */
475         sigma_write(suicide, sizeof(suicide), sigma);
476         sigma_write(suicide, sizeof(suicide), sigma);
477         sigma_write(suicide, sizeof(suicide), sigma);
478         sigma_write(suicide, sizeof(suicide), sigma);
479
480         /* Prepare to upload firmware (FPGA specific). */
481         sigma_write(init, sizeof(init), sigma);
482
483         ftdi_usb_purge_buffers(&sigma->ftdic);
484
485         /* Wait until the FPGA asserts INIT_B. */
486         while (1) {
487                 ret = sigma_read(result, 1, sigma);
488                 if (result[0] & 0x20)
489                         break;
490         }
491
492         /* Prepare firmware. */
493         snprintf(firmware_path, sizeof(firmware_path), "%s/%s", FIRMWARE_DIR,
494                  firmware_files[firmware_idx]);
495
496         if ((ret = bin2bitbang(firmware_path, &buf, &buf_size)) != SR_OK) {
497                 sr_warn("An error occured while reading the firmware: %s",
498                         firmware_path);
499                 return ret;
500         }
501
502         /* Upload firmare. */
503         sigma_write(buf, buf_size, sigma);
504
505         g_free(buf);
506
507         if ((ret = ftdi_set_bitmode(&sigma->ftdic, 0x00, BITMODE_RESET)) < 0) {
508                 sr_warn("ftdi_set_bitmode failed: %s",
509                         ftdi_get_error_string(&sigma->ftdic));
510                 return SR_ERR;
511         }
512
513         ftdi_usb_purge_buffers(&sigma->ftdic);
514
515         /* Discard garbage. */
516         while (1 == sigma_read(&pins, 1, sigma))
517                 ;
518
519         /* Initialize the logic analyzer mode. */
520         sigma_write(logic_mode_start, sizeof(logic_mode_start), sigma);
521
522         /* Expect a 3 byte reply. */
523         ret = sigma_read(result, 3, sigma);
524         if (ret != 3 ||
525             result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) {
526                 sr_warn("Configuration failed. Invalid reply received.");
527                 return SR_ERR;
528         }
529
530         sigma->cur_firmware = firmware_idx;
531
532         return SR_OK;
533 }
534
535 static int hw_opendev(int device_index)
536 {
537         struct sr_device_instance *sdi;
538         struct sigma *sigma;
539         int ret;
540
541         if (!(sdi = sr_get_device_instance(device_instances, device_index)))
542                 return SR_ERR;
543
544         sigma = sdi->priv;
545
546         /* Make sure it's an ASIX SIGMA. */
547         if ((ret = ftdi_usb_open_desc(&sigma->ftdic,
548                 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
549
550                 sr_warn("ftdi_usb_open failed: %s",
551                         ftdi_get_error_string(&sigma->ftdic));
552
553                 return 0;
554         }
555
556         sdi->status = SR_ST_ACTIVE;
557
558         return SR_OK;
559 }
560
561 static int set_samplerate(struct sr_device_instance *sdi,
562                           uint64_t samplerate)
563 {
564         int i, ret;
565         struct sigma *sigma = sdi->priv;
566
567         for (i = 0; supported_samplerates[i]; i++) {
568                 if (supported_samplerates[i] == samplerate)
569                         break;
570         }
571         if (supported_samplerates[i] == 0)
572                 return SR_ERR_SAMPLERATE;
573
574         if (samplerate <= SR_MHZ(50)) {
575                 ret = upload_firmware(0, sigma);
576                 sigma->num_probes = 16;
577         }
578         if (samplerate == SR_MHZ(100)) {
579                 ret = upload_firmware(1, sigma);
580                 sigma->num_probes = 8;
581         }
582         else if (samplerate == SR_MHZ(200)) {
583                 ret = upload_firmware(2, sigma);
584                 sigma->num_probes = 4;
585         }
586
587         sigma->cur_samplerate = samplerate;
588         sigma->samples_per_event = 16 / sigma->num_probes;
589         sigma->state.state = SIGMA_IDLE;
590
591         sr_info("Firmware uploaded");
592
593         return ret;
594 }
595
596 /*
597  * In 100 and 200 MHz mode, only a single pin rising/falling can be
598  * set as trigger. In other modes, two rising/falling triggers can be set,
599  * in addition to value/mask trigger for any number of probes.
600  *
601  * The Sigma supports complex triggers using boolean expressions, but this
602  * has not been implemented yet.
603  */
604 static int configure_probes(struct sr_device_instance *sdi, GSList *probes)
605 {
606         struct sigma *sigma = sdi->priv;
607         struct sr_probe *probe;
608         GSList *l;
609         int trigger_set = 0;
610         int probebit;
611
612         memset(&sigma->trigger, 0, sizeof(struct sigma_trigger));
613
614         for (l = probes; l; l = l->next) {
615                 probe = (struct sr_probe *)l->data;
616                 probebit = 1 << (probe->index - 1);
617
618                 if (!probe->enabled || !probe->trigger)
619                         continue;
620
621                 if (sigma->cur_samplerate >= SR_MHZ(100)) {
622                         /* Fast trigger support. */
623                         if (trigger_set) {
624                                 sr_warn("ASIX SIGMA only supports a single "
625                                         "pin trigger in 100 and 200MHz mode.");
626                                 return SR_ERR;
627                         }
628                         if (probe->trigger[0] == 'f')
629                                 sigma->trigger.fallingmask |= probebit;
630                         else if (probe->trigger[0] == 'r')
631                                 sigma->trigger.risingmask |= probebit;
632                         else {
633                                 sr_warn("ASIX SIGMA only supports "
634                                         "rising/falling trigger in 100 "
635                                         "and 200MHz mode.");
636                                 return SR_ERR;
637                         }
638
639                         ++trigger_set;
640                 } else {
641                         /* Simple trigger support (event). */
642                         if (probe->trigger[0] == '1') {
643                                 sigma->trigger.simplevalue |= probebit;
644                                 sigma->trigger.simplemask |= probebit;
645                         }
646                         else if (probe->trigger[0] == '0') {
647                                 sigma->trigger.simplevalue &= ~probebit;
648                                 sigma->trigger.simplemask |= probebit;
649                         }
650                         else if (probe->trigger[0] == 'f') {
651                                 sigma->trigger.fallingmask |= probebit;
652                                 ++trigger_set;
653                         }
654                         else if (probe->trigger[0] == 'r') {
655                                 sigma->trigger.risingmask |= probebit;
656                                 ++trigger_set;
657                         }
658
659                         /*
660                          * Actually, Sigma supports 2 rising/falling triggers,
661                          * but they are ORed and the current trigger syntax
662                          * does not permit ORed triggers.
663                          */
664                         if (trigger_set > 1) {
665                                 sr_warn("ASIX SIGMA only supports 1 rising/"
666                                         "falling triggers.");
667                                 return SR_ERR;
668                         }
669                 }
670
671                 if (trigger_set)
672                         sigma->use_triggers = 1;
673         }
674
675         return SR_OK;
676 }
677
678 static int hw_closedev(int device_index)
679 {
680         struct sr_device_instance *sdi;
681         struct sigma *sigma;
682
683         if (!(sdi = sr_get_device_instance(device_instances, device_index))) {
684                 sr_err("sigma: %s: sdi was NULL", __func__);
685                 return SR_ERR; /* TODO: SR_ERR_ARG? */
686         }
687
688         if (!(sigma = sdi->priv)) {
689                 sr_err("sigma: %s: sdi->priv was NULL", __func__);
690                 return SR_ERR; /* TODO: SR_ERR_ARG? */
691         }
692
693         /* TODO */
694         if (sdi->status == SR_ST_ACTIVE)
695                 ftdi_usb_close(&sigma->ftdic);
696
697         sdi->status = SR_ST_INACTIVE;
698
699         return SR_OK;
700 }
701
702 static void hw_cleanup(void)
703 {
704         GSList *l;
705         struct sr_device_instance *sdi;
706
707         /* Properly close all devices. */
708         for (l = device_instances; l; l = l->next) {
709                 sdi = l->data;
710                 if (sdi->priv != NULL)
711                         free(sdi->priv);
712                 sr_device_instance_free(sdi);
713         }
714         g_slist_free(device_instances);
715         device_instances = NULL;
716 }
717
718 static void *hw_get_device_info(int device_index, int device_info_id)
719 {
720         struct sr_device_instance *sdi;
721         struct sigma *sigma;
722         void *info = NULL;
723
724         if (!(sdi = sr_get_device_instance(device_instances, device_index))) {
725                 fprintf(stderr, "It's NULL.\n");
726                 return NULL;
727         }
728
729         sigma = sdi->priv;
730
731         switch (device_info_id) {
732         case SR_DI_INSTANCE:
733                 info = sdi;
734                 break;
735         case SR_DI_NUM_PROBES:
736                 info = GINT_TO_POINTER(16);
737                 break;
738         case SR_DI_SAMPLERATES:
739                 info = &samplerates;
740                 break;
741         case SR_DI_TRIGGER_TYPES:
742                 info = (char *)TRIGGER_TYPES;
743                 break;
744         case SR_DI_CUR_SAMPLERATE:
745                 info = &sigma->cur_samplerate;
746                 break;
747         }
748
749         return info;
750 }
751
752 static int hw_get_status(int device_index)
753 {
754         struct sr_device_instance *sdi;
755
756         sdi = sr_get_device_instance(device_instances, device_index);
757         if (sdi)
758                 return sdi->status;
759         else
760                 return SR_ST_NOT_FOUND;
761 }
762
763 static int *hw_get_capabilities(void)
764 {
765         return capabilities;
766 }
767
768 static int hw_set_configuration(int device_index, int capability, void *value)
769 {
770         struct sr_device_instance *sdi;
771         struct sigma *sigma;
772         int ret;
773
774         if (!(sdi = sr_get_device_instance(device_instances, device_index)))
775                 return SR_ERR;
776
777         sigma = sdi->priv;
778
779         if (capability == SR_HWCAP_SAMPLERATE) {
780                 ret = set_samplerate(sdi, *(uint64_t*) value);
781         } else if (capability == SR_HWCAP_PROBECONFIG) {
782                 ret = configure_probes(sdi, value);
783         } else if (capability == SR_HWCAP_LIMIT_MSEC) {
784                 sigma->limit_msec = *(uint64_t*) value;
785                 if (sigma->limit_msec > 0)
786                         ret = SR_OK;
787                 else
788                         ret = SR_ERR;
789         } else if (capability == SR_HWCAP_CAPTURE_RATIO) {
790                 sigma->capture_ratio = *(uint64_t*) value;
791                 if (sigma->capture_ratio < 0 || sigma->capture_ratio > 100)
792                         ret = SR_ERR;
793                 else
794                         ret = SR_OK;
795         } else {
796                 ret = SR_ERR;
797         }
798
799         return ret;
800 }
801
802 /* Software trigger to determine exact trigger position. */
803 static int get_trigger_offset(uint16_t *samples, uint16_t last_sample,
804                               struct sigma_trigger *t)
805 {
806         int i;
807
808         for (i = 0; i < 8; ++i) {
809                 if (i > 0)
810                         last_sample = samples[i-1];
811
812                 /* Simple triggers. */
813                 if ((samples[i] & t->simplemask) != t->simplevalue)
814                         continue;
815
816                 /* Rising edge. */
817                 if ((last_sample & t->risingmask) != 0 || (samples[i] &
818                     t->risingmask) != t->risingmask)
819                         continue;
820
821                 /* Falling edge. */
822                 if ((last_sample & t->fallingmask) != t->fallingmask ||
823                     (samples[i] & t->fallingmask) != 0)
824                         continue;
825
826                 break;
827         }
828
829         /* If we did not match, return original trigger pos. */
830         return i & 0x7;
831 }
832
833 /*
834  * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
835  * Each event is 20ns apart, and can contain multiple samples.
836  *
837  * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
838  * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
839  * For 50 MHz and below, events contain one sample for each channel,
840  * spread 20 ns apart.
841  */
842 static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
843                            uint16_t *lastsample, int triggerpos,
844                            uint16_t limit_chunk, void *user_data)
845 {
846         struct sr_device_instance *sdi = user_data;
847         struct sigma *sigma = sdi->priv;
848         uint16_t tsdiff, ts;
849         uint16_t samples[65536 * sigma->samples_per_event];
850         struct sr_datafeed_packet packet;
851         int i, j, k, l, numpad, tosend;
852         size_t n = 0, sent = 0;
853         int clustersize = EVENTS_PER_CLUSTER * sigma->samples_per_event;
854         uint16_t *event;
855         uint16_t cur_sample;
856         int triggerts = -1;
857
858         /* Check if trigger is in this chunk. */
859         if (triggerpos != -1) {
860                 if (sigma->cur_samplerate <= SR_MHZ(50))
861                         triggerpos -= EVENTS_PER_CLUSTER - 1;
862
863                 if (triggerpos < 0)
864                         triggerpos = 0;
865
866                 /* Find in which cluster the trigger occured. */
867                 triggerts = triggerpos / 7;
868         }
869
870         /* For each ts. */
871         for (i = 0; i < 64; ++i) {
872                 ts = *(uint16_t *) &buf[i * 16];
873                 tsdiff = ts - *lastts;
874                 *lastts = ts;
875
876                 /* Decode partial chunk. */
877                 if (limit_chunk && ts > limit_chunk)
878                         return SR_OK;
879
880                 /* Pad last sample up to current point. */
881                 numpad = tsdiff * sigma->samples_per_event - clustersize;
882                 if (numpad > 0) {
883                         for (j = 0; j < numpad; ++j)
884                                 samples[j] = *lastsample;
885
886                         n = numpad;
887                 }
888
889                 /* Send samples between previous and this timestamp to sigrok. */
890                 sent = 0;
891                 while (sent < n) {
892                         tosend = MIN(2048, n - sent);
893
894                         packet.type = SR_DF_LOGIC;
895                         packet.length = tosend * sizeof(uint16_t);
896                         packet.unitsize = 2;
897                         packet.payload = samples + sent;
898                         sr_session_bus(sigma->session_id, &packet);
899
900                         sent += tosend;
901                 }
902                 n = 0;
903
904                 event = (uint16_t *) &buf[i * 16 + 2];
905                 cur_sample = 0;
906
907                 /* For each event in cluster. */
908                 for (j = 0; j < 7; ++j) {
909
910                         /* For each sample in event. */
911                         for (k = 0; k < sigma->samples_per_event; ++k) {
912                                 cur_sample = 0;
913
914                                 /* For each probe. */
915                                 for (l = 0; l < sigma->num_probes; ++l)
916                                         cur_sample |= (!!(event[j] & (1 << (l *
917                                                       sigma->samples_per_event
918                                                       + k))))
919                                                       << l;
920
921                                 samples[n++] = cur_sample;
922                         }
923                 }
924
925                 /* Send data up to trigger point (if triggered). */
926                 sent = 0;
927                 if (i == triggerts) {
928                         /*
929                          * Trigger is not always accurate to sample because of
930                          * pipeline delay. However, it always triggers before
931                          * the actual event. We therefore look at the next
932                          * samples to pinpoint the exact position of the trigger.
933                          */
934                         tosend = get_trigger_offset(samples, *lastsample,
935                                                     &sigma->trigger);
936
937                         if (tosend > 0) {
938                                 packet.type = SR_DF_LOGIC;
939                                 packet.length = tosend * sizeof(uint16_t);
940                                 packet.unitsize = 2;
941                                 packet.payload = samples;
942                                 sr_session_bus(sigma->session_id, &packet);
943
944                                 sent += tosend;
945                         }
946
947                         /* Only send trigger if explicitly enabled. */
948                         if (sigma->use_triggers) {
949                                 packet.type = SR_DF_TRIGGER;
950                                 packet.length = 0;
951                                 packet.payload = 0;
952                                 sr_session_bus(sigma->session_id, &packet);
953                         }
954                 }
955
956                 /* Send rest of the chunk to sigrok. */
957                 tosend = n - sent;
958
959                 if (tosend > 0) {
960                         packet.type = SR_DF_LOGIC;
961                         packet.length = tosend * sizeof(uint16_t);
962                         packet.unitsize = 2;
963                         packet.payload = samples + sent;
964                         sr_session_bus(sigma->session_id, &packet);
965                 }
966
967                 *lastsample = samples[n - 1];
968         }
969
970         return SR_OK;
971 }
972
973 static int receive_data(int fd, int revents, void *user_data)
974 {
975         struct sr_device_instance *sdi = user_data;
976         struct sigma *sigma = sdi->priv;
977         struct sr_datafeed_packet packet;
978         const int chunks_per_read = 32;
979         unsigned char buf[chunks_per_read * CHUNK_SIZE];
980         int bufsz, numchunks, i, newchunks;
981         uint64_t running_msec;
982         struct timeval tv;
983
984         fd = fd;
985         revents = revents;
986
987         numchunks = (sigma->state.stoppos + 511) / 512;
988
989         if (sigma->state.state == SIGMA_IDLE)
990                 return FALSE;
991
992         if (sigma->state.state == SIGMA_CAPTURE) {
993
994                 /* Check if the timer has expired, or memory is full. */
995                 gettimeofday(&tv, 0);
996                 running_msec = (tv.tv_sec - sigma->start_tv.tv_sec) * 1000 +
997                         (tv.tv_usec - sigma->start_tv.tv_usec) / 1000;
998
999                 if (running_msec < sigma->limit_msec && numchunks < 32767)
1000                         return FALSE;
1001
1002                 hw_stop_acquisition(sdi->index, user_data);
1003
1004                 return FALSE;
1005
1006         } else if (sigma->state.state == SIGMA_DOWNLOAD) {
1007                 if (sigma->state.chunks_downloaded >= numchunks) {
1008                         /* End of samples. */
1009                         packet.type = SR_DF_END;
1010                         packet.length = 0;
1011                         sr_session_bus(sigma->session_id, &packet);
1012
1013                         sigma->state.state = SIGMA_IDLE;
1014
1015                         return TRUE;
1016                 }
1017
1018                 newchunks = MIN(chunks_per_read,
1019                                 numchunks - sigma->state.chunks_downloaded);
1020
1021                 sr_info("Downloading sample data: %.0f %%",
1022                         100.0 * sigma->state.chunks_downloaded / numchunks);
1023
1024                 bufsz = sigma_read_dram(sigma->state.chunks_downloaded,
1025                                         newchunks, buf, sigma);
1026
1027                 /* Find first ts. */
1028                 if (sigma->state.chunks_downloaded == 0) {
1029                         sigma->state.lastts = *(uint16_t *) buf - 1;
1030                         sigma->state.lastsample = 0;
1031                 }
1032
1033                 /* Decode chunks and send them to sigrok. */
1034                 for (i = 0; i < newchunks; ++i) {
1035                         int limit_chunk = 0;
1036
1037                         /* The last chunk may potentially be only in part. */
1038                         if (sigma->state.chunks_downloaded == numchunks - 1)
1039                         {
1040                                 /* Find the last valid timestamp */
1041                                 limit_chunk = sigma->state.stoppos % 512 + sigma->state.lastts;
1042                         }
1043
1044                         if (sigma->state.chunks_downloaded + i == sigma->state.triggerchunk)
1045                                 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1046                                                 &sigma->state.lastts,
1047                                                 &sigma->state.lastsample,
1048                                                 sigma->state.triggerpos & 0x1ff,
1049                                                 limit_chunk, user_data);
1050                         else
1051                                 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1052                                                 &sigma->state.lastts,
1053                                                 &sigma->state.lastsample,
1054                                                 -1, limit_chunk, user_data);
1055
1056                         ++sigma->state.chunks_downloaded;
1057                 }
1058         }
1059
1060         return TRUE;
1061 }
1062
1063 /* Build a LUT entry used by the trigger functions. */
1064 static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
1065 {
1066         int i, j, k, bit;
1067
1068         /* For each quad probe. */
1069         for (i = 0; i < 4; ++i) {
1070                 entry[i] = 0xffff;
1071
1072                 /* For each bit in LUT. */
1073                 for (j = 0; j < 16; ++j)
1074
1075                         /* For each probe in quad. */
1076                         for (k = 0; k < 4; ++k) {
1077                                 bit = 1 << (i * 4 + k);
1078
1079                                 /* Set bit in entry */
1080                                 if ((mask & bit) &&
1081                                     ((!(value & bit)) !=
1082                                     (!(j & (1 << k)))))
1083                                         entry[i] &= ~(1 << j);
1084                         }
1085         }
1086 }
1087
1088 /* Add a logical function to LUT mask. */
1089 static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1090                                  int index, int neg, uint16_t *mask)
1091 {
1092         int i, j;
1093         int x[2][2], tmp, a, b, aset, bset, rset;
1094
1095         memset(x, 0, 4 * sizeof(int));
1096
1097         /* Trigger detect condition. */
1098         switch (oper) {
1099         case OP_LEVEL:
1100                 x[0][1] = 1;
1101                 x[1][1] = 1;
1102                 break;
1103         case OP_NOT:
1104                 x[0][0] = 1;
1105                 x[1][0] = 1;
1106                 break;
1107         case OP_RISE:
1108                 x[0][1] = 1;
1109                 break;
1110         case OP_FALL:
1111                 x[1][0] = 1;
1112                 break;
1113         case OP_RISEFALL:
1114                 x[0][1] = 1;
1115                 x[1][0] = 1;
1116                 break;
1117         case OP_NOTRISE:
1118                 x[1][1] = 1;
1119                 x[0][0] = 1;
1120                 x[1][0] = 1;
1121                 break;
1122         case OP_NOTFALL:
1123                 x[1][1] = 1;
1124                 x[0][0] = 1;
1125                 x[0][1] = 1;
1126                 break;
1127         case OP_NOTRISEFALL:
1128                 x[1][1] = 1;
1129                 x[0][0] = 1;
1130                 break;
1131         }
1132
1133         /* Transpose if neg is set. */
1134         if (neg) {
1135                 for (i = 0; i < 2; ++i)
1136                         for (j = 0; j < 2; ++j) {
1137                                 tmp = x[i][j];
1138                                 x[i][j] = x[1-i][1-j];
1139                                 x[1-i][1-j] = tmp;
1140                         }
1141         }
1142
1143         /* Update mask with function. */
1144         for (i = 0; i < 16; ++i) {
1145                 a = (i >> (2 * index + 0)) & 1;
1146                 b = (i >> (2 * index + 1)) & 1;
1147
1148                 aset = (*mask >> i) & 1;
1149                 bset = x[b][a];
1150
1151                 if (func == FUNC_AND || func == FUNC_NAND)
1152                         rset = aset & bset;
1153                 else if (func == FUNC_OR || func == FUNC_NOR)
1154                         rset = aset | bset;
1155                 else if (func == FUNC_XOR || func == FUNC_NXOR)
1156                         rset = aset ^ bset;
1157
1158                 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1159                         rset = !rset;
1160
1161                 *mask &= ~(1 << i);
1162
1163                 if (rset)
1164                         *mask |= 1 << i;
1165         }
1166 }
1167
1168 /*
1169  * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1170  * simple pin change and state triggers. Only two transitions (rise/fall) can be
1171  * set at any time, but a full mask and value can be set (0/1).
1172  */
1173 static int build_basic_trigger(struct triggerlut *lut, struct sigma *sigma)
1174 {
1175         int i,j;
1176         uint16_t masks[2] = { 0, 0 };
1177
1178         memset(lut, 0, sizeof(struct triggerlut));
1179
1180         /* Contant for simple triggers. */
1181         lut->m4 = 0xa000;
1182
1183         /* Value/mask trigger support. */
1184         build_lut_entry(sigma->trigger.simplevalue, sigma->trigger.simplemask,
1185                         lut->m2d);
1186
1187         /* Rise/fall trigger support. */
1188         for (i = 0, j = 0; i < 16; ++i) {
1189                 if (sigma->trigger.risingmask & (1 << i) ||
1190                     sigma->trigger.fallingmask & (1 << i))
1191                         masks[j++] = 1 << i;
1192         }
1193
1194         build_lut_entry(masks[0], masks[0], lut->m0d);
1195         build_lut_entry(masks[1], masks[1], lut->m1d);
1196
1197         /* Add glue logic */
1198         if (masks[0] || masks[1]) {
1199                 /* Transition trigger. */
1200                 if (masks[0] & sigma->trigger.risingmask)
1201                         add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
1202                 if (masks[0] & sigma->trigger.fallingmask)
1203                         add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
1204                 if (masks[1] & sigma->trigger.risingmask)
1205                         add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
1206                 if (masks[1] & sigma->trigger.fallingmask)
1207                         add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1208         } else {
1209                 /* Only value/mask trigger. */
1210                 lut->m3 = 0xffff;
1211         }
1212
1213         /* Triggertype: event. */
1214         lut->params.selres = 3;
1215
1216         return SR_OK;
1217 }
1218
1219 static int hw_start_acquisition(int device_index, gpointer session_device_id)
1220 {
1221         struct sr_device_instance *sdi;
1222         struct sigma *sigma;
1223         struct sr_datafeed_packet packet;
1224         struct sr_datafeed_header header;
1225         struct clockselect_50 clockselect;
1226         int frac, triggerpin, ret;
1227         uint8_t triggerselect;
1228         struct triggerinout triggerinout_conf;
1229         struct triggerlut lut;
1230
1231         session_device_id = session_device_id;
1232
1233         if (!(sdi = sr_get_device_instance(device_instances, device_index)))
1234                 return SR_ERR;
1235
1236         sigma = sdi->priv;
1237
1238         /* If the samplerate has not been set, default to 200 KHz. */
1239         if (sigma->cur_firmware == -1) {
1240                 if ((ret = set_samplerate(sdi, SR_KHZ(200))) != SR_OK)
1241                         return ret;
1242         }
1243
1244         /* Enter trigger programming mode. */
1245         sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, sigma);
1246
1247         /* 100 and 200 MHz mode. */
1248         if (sigma->cur_samplerate >= SR_MHZ(100)) {
1249                 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, sigma);
1250
1251                 /* Find which pin to trigger on from mask. */
1252                 for (triggerpin = 0; triggerpin < 8; ++triggerpin)
1253                         if ((sigma->trigger.risingmask | sigma->trigger.fallingmask) &
1254                             (1 << triggerpin))
1255                                 break;
1256
1257                 /* Set trigger pin and light LED on trigger. */
1258                 triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
1259
1260                 /* Default rising edge. */
1261                 if (sigma->trigger.fallingmask)
1262                         triggerselect |= 1 << 3;
1263
1264         /* All other modes. */
1265         } else if (sigma->cur_samplerate <= SR_MHZ(50)) {
1266                 build_basic_trigger(&lut, sigma);
1267
1268                 sigma_write_trigger_lut(&lut, sigma);
1269
1270                 triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
1271         }
1272
1273         /* Setup trigger in and out pins to default values. */
1274         memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
1275         triggerinout_conf.trgout_bytrigger = 1;
1276         triggerinout_conf.trgout_enable = 1;
1277
1278         sigma_write_register(WRITE_TRIGGER_OPTION,
1279                              (uint8_t *) &triggerinout_conf,
1280                              sizeof(struct triggerinout), sigma);
1281
1282         /* Go back to normal mode. */
1283         sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, sigma);
1284
1285         /* Set clock select register. */
1286         if (sigma->cur_samplerate == SR_MHZ(200))
1287                 /* Enable 4 probes. */
1288                 sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, sigma);
1289         else if (sigma->cur_samplerate == SR_MHZ(100))
1290                 /* Enable 8 probes. */
1291                 sigma_set_register(WRITE_CLOCK_SELECT, 0x00, sigma);
1292         else {
1293                 /*
1294                  * 50 MHz mode (or fraction thereof). Any fraction down to
1295                  * 50 MHz / 256 can be used, but is not supported by sigrok API.
1296                  */
1297                 frac = SR_MHZ(50) / sigma->cur_samplerate - 1;
1298
1299                 clockselect.async = 0;
1300                 clockselect.fraction = frac;
1301                 clockselect.disabled_probes = 0;
1302
1303                 sigma_write_register(WRITE_CLOCK_SELECT,
1304                                      (uint8_t *) &clockselect,
1305                                      sizeof(clockselect), sigma);
1306         }
1307
1308         /* Setup maximum post trigger time. */
1309         sigma_set_register(WRITE_POST_TRIGGER,
1310                         (sigma->capture_ratio * 255) / 100, sigma);
1311
1312         /* Start acqusition. */
1313         gettimeofday(&sigma->start_tv, 0);
1314         sigma_set_register(WRITE_MODE, 0x0d, sigma);
1315
1316         sigma->session_id = session_device_id;
1317
1318         /* Send header packet to the session bus. */
1319         packet.type = SR_DF_HEADER;
1320         packet.length = sizeof(struct sr_datafeed_header);
1321         packet.payload = &header;
1322         header.feed_version = 1;
1323         gettimeofday(&header.starttime, NULL);
1324         header.samplerate = sigma->cur_samplerate;
1325         header.protocol_id = SR_PROTO_RAW;
1326         header.num_logic_probes = sigma->num_probes;
1327         header.num_analog_probes = 0;
1328         sr_session_bus(session_device_id, &packet);
1329
1330         /* Add capture source. */
1331         sr_source_add(0, G_IO_IN, 10, receive_data, sdi);
1332
1333         sigma->state.state = SIGMA_CAPTURE;
1334
1335         return SR_OK;
1336 }
1337
1338 static void hw_stop_acquisition(int device_index, gpointer session_device_id)
1339 {
1340         struct sr_device_instance *sdi;
1341         struct sigma *sigma;
1342         uint8_t modestatus;
1343
1344         if (!(sdi = sr_get_device_instance(device_instances, device_index)))
1345                 return;
1346
1347         sigma = sdi->priv;
1348
1349         session_device_id = session_device_id;
1350
1351         /* Stop acquisition. */
1352         sigma_set_register(WRITE_MODE, 0x11, sigma);
1353
1354         /* Set SDRAM Read Enable. */
1355         sigma_set_register(WRITE_MODE, 0x02, sigma);
1356
1357         /* Get the current position. */
1358         sigma_read_pos(&sigma->state.stoppos, &sigma->state.triggerpos, sigma);
1359
1360         /* Check if trigger has fired. */
1361         modestatus = sigma_get_register(READ_MODE, sigma);
1362         if (modestatus & 0x20) {
1363                 sigma->state.triggerchunk = sigma->state.triggerpos / 512;
1364
1365         } else
1366                 sigma->state.triggerchunk = -1;
1367
1368         sigma->state.chunks_downloaded = 0;
1369
1370         sigma->state.state = SIGMA_DOWNLOAD;
1371 }
1372
1373 struct sr_device_plugin asix_sigma_plugin_info = {
1374         .name = "asix-sigma",
1375         .longname = "ASIX SIGMA",
1376         .api_version = 1,
1377         .init = hw_init,
1378         .cleanup = hw_cleanup,
1379         .opendev = hw_opendev,
1380         .closedev = hw_closedev,
1381         .get_device_info = hw_get_device_info,
1382         .get_status = hw_get_status,
1383         .get_capabilities = hw_get_capabilities,
1384         .set_configuration = hw_set_configuration,
1385         .start_acquisition = hw_start_acquisition,
1386         .stop_acquisition = hw_stop_acquisition,
1387 };