]> sigrok.org Git - libsigrok.git/blob - hardware/asix-sigma/asix-sigma.c
ed263acb43b47256aaab3c7a7f799cdf85dbc8ff
[libsigrok.git] / hardware / asix-sigma / asix-sigma.c
1 /*
2  * This file is part of the sigrok project.
3  *
4  * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
5  * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6  * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7  *
8  * This program is free software: you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 3 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21
22 /*
23  * ASIX SIGMA/SIGMA2 logic analyzer driver
24  */
25
26 #include <glib.h>
27 #include <glib/gstdio.h>
28 #include <ftdi.h>
29 #include <string.h>
30 #include "libsigrok.h"
31 #include "libsigrok-internal.h"
32 #include "asix-sigma.h"
33
34 #define USB_VENDOR                      0xa600
35 #define USB_PRODUCT                     0xa000
36 #define USB_DESCRIPTION                 "ASIX SIGMA"
37 #define USB_VENDOR_NAME                 "ASIX"
38 #define USB_MODEL_NAME                  "SIGMA"
39 #define USB_MODEL_VERSION               ""
40 #define TRIGGER_TYPES                   "rf10"
41 #define NUM_PROBES                      16
42
43 SR_PRIV struct sr_dev_driver asix_sigma_driver_info;
44 static struct sr_dev_driver *adi = &asix_sigma_driver_info;
45 static int hw_dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data);
46
47 static const uint64_t supported_samplerates[] = {
48         SR_KHZ(200),
49         SR_KHZ(250),
50         SR_KHZ(500),
51         SR_MHZ(1),
52         SR_MHZ(5),
53         SR_MHZ(10),
54         SR_MHZ(25),
55         SR_MHZ(50),
56         SR_MHZ(100),
57         SR_MHZ(200),
58         0,
59 };
60
61 /*
62  * Probe numbers seem to go from 1-16, according to this image:
63  * http://tools.asix.net/img/sigma_sigmacab_pins_720.jpg
64  * (the cable has two additional GND pins, and a TI and TO pin)
65  */
66 static const char *probe_names[NUM_PROBES + 1] = {
67         "1",
68         "2",
69         "3",
70         "4",
71         "5",
72         "6",
73         "7",
74         "8",
75         "9",
76         "10",
77         "11",
78         "12",
79         "13",
80         "14",
81         "15",
82         "16",
83         NULL,
84 };
85
86 static const struct sr_samplerates samplerates = {
87         0,
88         0,
89         0,
90         supported_samplerates,
91 };
92
93 static const int hwcaps[] = {
94         SR_HWCAP_LOGIC_ANALYZER,
95         SR_HWCAP_SAMPLERATE,
96         SR_HWCAP_CAPTURE_RATIO,
97
98         SR_HWCAP_LIMIT_MSEC,
99         0,
100 };
101
102 /* Force the FPGA to reboot. */
103 static uint8_t suicide[] = {
104         0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
105 };
106
107 /* Prepare to upload firmware (FPGA specific). */
108 static uint8_t init[] = {
109         0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
110 };
111
112 /* Initialize the logic analyzer mode. */
113 static uint8_t logic_mode_start[] = {
114         0x00, 0x40, 0x0f, 0x25, 0x35, 0x40,
115         0x2a, 0x3a, 0x40, 0x03, 0x20, 0x38,
116 };
117
118 static const char *firmware_files[] = {
119         "asix-sigma-50.fw",     /* 50 MHz, supports 8 bit fractions */
120         "asix-sigma-100.fw",    /* 100 MHz */
121         "asix-sigma-200.fw",    /* 200 MHz */
122         "asix-sigma-50sync.fw", /* Synchronous clock from pin */
123         "asix-sigma-phasor.fw", /* Frequency counter */
124 };
125
126 static int sigma_read(void *buf, size_t size, struct dev_context *devc)
127 {
128         int ret;
129
130         ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
131         if (ret < 0) {
132                 sr_err("ftdi_read_data failed: %s",
133                        ftdi_get_error_string(&devc->ftdic));
134         }
135
136         return ret;
137 }
138
139 static int sigma_write(void *buf, size_t size, struct dev_context *devc)
140 {
141         int ret;
142
143         ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size);
144         if (ret < 0) {
145                 sr_err("ftdi_write_data failed: %s",
146                        ftdi_get_error_string(&devc->ftdic));
147         } else if ((size_t) ret != size) {
148                 sr_err("ftdi_write_data did not complete write.");
149         }
150
151         return ret;
152 }
153
154 static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
155                                 struct dev_context *devc)
156 {
157         size_t i;
158         uint8_t buf[len + 2];
159         int idx = 0;
160
161         buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
162         buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
163
164         for (i = 0; i < len; ++i) {
165                 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
166                 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
167         }
168
169         return sigma_write(buf, idx, devc);
170 }
171
172 static int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc)
173 {
174         return sigma_write_register(reg, &value, 1, devc);
175 }
176
177 static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
178                                struct dev_context *devc)
179 {
180         uint8_t buf[3];
181
182         buf[0] = REG_ADDR_LOW | (reg & 0xf);
183         buf[1] = REG_ADDR_HIGH | (reg >> 4);
184         buf[2] = REG_READ_ADDR;
185
186         sigma_write(buf, sizeof(buf), devc);
187
188         return sigma_read(data, len, devc);
189 }
190
191 static uint8_t sigma_get_register(uint8_t reg, struct dev_context *devc)
192 {
193         uint8_t value;
194
195         if (1 != sigma_read_register(reg, &value, 1, devc)) {
196                 sr_err("sigma_get_register: 1 byte expected");
197                 return 0;
198         }
199
200         return value;
201 }
202
203 static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
204                           struct dev_context *devc)
205 {
206         uint8_t buf[] = {
207                 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
208
209                 REG_READ_ADDR | NEXT_REG,
210                 REG_READ_ADDR | NEXT_REG,
211                 REG_READ_ADDR | NEXT_REG,
212                 REG_READ_ADDR | NEXT_REG,
213                 REG_READ_ADDR | NEXT_REG,
214                 REG_READ_ADDR | NEXT_REG,
215         };
216         uint8_t result[6];
217
218         sigma_write(buf, sizeof(buf), devc);
219
220         sigma_read(result, sizeof(result), devc);
221
222         *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
223         *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
224
225         /* Not really sure why this must be done, but according to spec. */
226         if ((--*stoppos & 0x1ff) == 0x1ff)
227                 stoppos -= 64;
228
229         if ((*--triggerpos & 0x1ff) == 0x1ff)
230                 triggerpos -= 64;
231
232         return 1;
233 }
234
235 static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
236                            uint8_t *data, struct dev_context *devc)
237 {
238         size_t i;
239         uint8_t buf[4096];
240         int idx = 0;
241
242         /* Send the startchunk. Index start with 1. */
243         buf[0] = startchunk >> 8;
244         buf[1] = startchunk & 0xff;
245         sigma_write_register(WRITE_MEMROW, buf, 2, devc);
246
247         /* Read the DRAM. */
248         buf[idx++] = REG_DRAM_BLOCK;
249         buf[idx++] = REG_DRAM_WAIT_ACK;
250
251         for (i = 0; i < numchunks; ++i) {
252                 /* Alternate bit to copy from DRAM to cache. */
253                 if (i != (numchunks - 1))
254                         buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
255
256                 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
257
258                 if (i != (numchunks - 1))
259                         buf[idx++] = REG_DRAM_WAIT_ACK;
260         }
261
262         sigma_write(buf, idx, devc);
263
264         return sigma_read(data, numchunks * CHUNK_SIZE, devc);
265 }
266
267 /* Upload trigger look-up tables to Sigma. */
268 static int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc)
269 {
270         int i;
271         uint8_t tmp[2];
272         uint16_t bit;
273
274         /* Transpose the table and send to Sigma. */
275         for (i = 0; i < 16; ++i) {
276                 bit = 1 << i;
277
278                 tmp[0] = tmp[1] = 0;
279
280                 if (lut->m2d[0] & bit)
281                         tmp[0] |= 0x01;
282                 if (lut->m2d[1] & bit)
283                         tmp[0] |= 0x02;
284                 if (lut->m2d[2] & bit)
285                         tmp[0] |= 0x04;
286                 if (lut->m2d[3] & bit)
287                         tmp[0] |= 0x08;
288
289                 if (lut->m3 & bit)
290                         tmp[0] |= 0x10;
291                 if (lut->m3s & bit)
292                         tmp[0] |= 0x20;
293                 if (lut->m4 & bit)
294                         tmp[0] |= 0x40;
295
296                 if (lut->m0d[0] & bit)
297                         tmp[1] |= 0x01;
298                 if (lut->m0d[1] & bit)
299                         tmp[1] |= 0x02;
300                 if (lut->m0d[2] & bit)
301                         tmp[1] |= 0x04;
302                 if (lut->m0d[3] & bit)
303                         tmp[1] |= 0x08;
304
305                 if (lut->m1d[0] & bit)
306                         tmp[1] |= 0x10;
307                 if (lut->m1d[1] & bit)
308                         tmp[1] |= 0x20;
309                 if (lut->m1d[2] & bit)
310                         tmp[1] |= 0x40;
311                 if (lut->m1d[3] & bit)
312                         tmp[1] |= 0x80;
313
314                 sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
315                                      devc);
316                 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, devc);
317         }
318
319         /* Send the parameters */
320         sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
321                              sizeof(lut->params), devc);
322
323         return SR_OK;
324 }
325
326 /* Generate the bitbang stream for programming the FPGA. */
327 static int bin2bitbang(const char *filename,
328                        unsigned char **buf, size_t *buf_size)
329 {
330         FILE *f;
331         unsigned long file_size;
332         unsigned long offset = 0;
333         unsigned char *p;
334         uint8_t *firmware;
335         unsigned long fwsize = 0;
336         const int buffer_size = 65536;
337         size_t i;
338         int c, bit, v;
339         uint32_t imm = 0x3f6df2ab;
340
341         f = g_fopen(filename, "rb");
342         if (!f) {
343                 sr_err("g_fopen(\"%s\", \"rb\")", filename);
344                 return SR_ERR;
345         }
346
347         if (-1 == fseek(f, 0, SEEK_END)) {
348                 sr_err("fseek on %s failed", filename);
349                 fclose(f);
350                 return SR_ERR;
351         }
352
353         file_size = ftell(f);
354
355         fseek(f, 0, SEEK_SET);
356
357         if (!(firmware = g_try_malloc(buffer_size))) {
358                 sr_err("%s: firmware malloc failed", __func__);
359                 fclose(f);
360                 return SR_ERR_MALLOC;
361         }
362
363         while ((c = getc(f)) != EOF) {
364                 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
365                 firmware[fwsize++] = c ^ imm;
366         }
367         fclose(f);
368
369         if(fwsize != file_size) {
370             sr_err("%s: Error reading firmware", filename);
371             fclose(f);
372             g_free(firmware);
373             return SR_ERR;
374         }
375
376         *buf_size = fwsize * 2 * 8;
377
378         *buf = p = (unsigned char *)g_try_malloc(*buf_size);
379         if (!p) {
380                 sr_err("%s: buf/p malloc failed", __func__);
381                 g_free(firmware);
382                 return SR_ERR_MALLOC;
383         }
384
385         for (i = 0; i < fwsize; ++i) {
386                 for (bit = 7; bit >= 0; --bit) {
387                         v = firmware[i] & 1 << bit ? 0x40 : 0x00;
388                         p[offset++] = v | 0x01;
389                         p[offset++] = v;
390                 }
391         }
392
393         g_free(firmware);
394
395         if (offset != *buf_size) {
396                 g_free(*buf);
397                 sr_err("Error reading firmware %s "
398                        "offset=%ld, file_size=%ld, buf_size=%zd.",
399                        filename, offset, file_size, *buf_size);
400
401                 return SR_ERR;
402         }
403
404         return SR_OK;
405 }
406
407 static int clear_instances(void)
408 {
409         GSList *l;
410         struct sr_dev_inst *sdi;
411         struct drv_context *drvc;
412         struct dev_context *devc;
413
414         drvc = adi->priv;
415
416         /* Properly close all devices. */
417         for (l = drvc->instances; l; l = l->next) {
418                 if (!(sdi = l->data)) {
419                         /* Log error, but continue cleaning up the rest. */
420                         sr_err("%s: sdi was NULL, continuing", __func__);
421                         continue;
422                 }
423                 if (sdi->priv) {
424                         devc = sdi->priv;
425                         ftdi_free(&devc->ftdic);
426                 }
427                 sr_dev_inst_free(sdi);
428         }
429         g_slist_free(drvc->instances);
430         drvc->instances = NULL;
431
432         return SR_OK;
433 }
434
435 static int hw_init(struct sr_context *sr_ctx)
436 {
437         struct drv_context *drvc;
438
439         if (!(drvc = g_try_malloc0(sizeof(struct drv_context)))) {
440                 sr_err("Driver context malloc failed.");
441                 return SR_ERR_MALLOC;
442         }
443         drvc->sr_ctx = sr_ctx;
444         adi->priv = drvc;
445
446         return SR_OK;
447 }
448
449 static GSList *hw_scan(GSList *options)
450 {
451         struct sr_dev_inst *sdi;
452         struct sr_probe *probe;
453         struct drv_context *drvc;
454         struct dev_context *devc;
455         GSList *devices;
456         struct ftdi_device_list *devlist;
457         char serial_txt[10];
458         uint32_t serial;
459         int ret, i;
460
461         (void)options;
462
463         drvc = adi->priv;
464         devices = NULL;
465         clear_instances();
466
467         if (!(devc = g_try_malloc(sizeof(struct dev_context)))) {
468                 sr_err("%s: devc malloc failed", __func__);
469                 return NULL;
470         }
471
472         ftdi_init(&devc->ftdic);
473
474         /* Look for SIGMAs. */
475
476         if ((ret = ftdi_usb_find_all(&devc->ftdic, &devlist,
477             USB_VENDOR, USB_PRODUCT)) <= 0) {
478                 if (ret < 0)
479                         sr_err("ftdi_usb_find_all(): %d", ret);
480                 goto free;
481         }
482
483         /* Make sure it's a version 1 or 2 SIGMA. */
484         ftdi_usb_get_strings(&devc->ftdic, devlist->dev, NULL, 0, NULL, 0,
485                              serial_txt, sizeof(serial_txt));
486         sscanf(serial_txt, "%x", &serial);
487
488         if (serial < 0xa6010000 || serial > 0xa602ffff) {
489                 sr_err("Only SIGMA and SIGMA2 are supported "
490                        "in this version of libsigrok.");
491                 goto free;
492         }
493
494         sr_info("Found ASIX SIGMA - Serial: %s", serial_txt);
495
496         devc->cur_samplerate = 0;
497         devc->period_ps = 0;
498         devc->limit_msec = 0;
499         devc->cur_firmware = -1;
500         devc->num_probes = 0;
501         devc->samples_per_event = 0;
502         devc->capture_ratio = 50;
503         devc->use_triggers = 0;
504
505         /* Register SIGMA device. */
506         if (!(sdi = sr_dev_inst_new(0, SR_ST_INITIALIZING, USB_VENDOR_NAME,
507                                     USB_MODEL_NAME, USB_MODEL_VERSION))) {
508                 sr_err("%s: sdi was NULL", __func__);
509                 goto free;
510         }
511         sdi->driver = adi;
512
513         for (i = 0; probe_names[i]; i++) {
514                 if (!(probe = sr_probe_new(i, SR_PROBE_LOGIC, TRUE,
515                                 probe_names[i])))
516                         return NULL;
517                 sdi->probes = g_slist_append(sdi->probes, probe);
518         }
519
520         devices = g_slist_append(devices, sdi);
521         drvc->instances = g_slist_append(drvc->instances, sdi);
522         sdi->priv = devc;
523
524         /* We will open the device again when we need it. */
525         ftdi_list_free(&devlist);
526
527         return devices;
528
529 free:
530         ftdi_deinit(&devc->ftdic);
531         g_free(devc);
532         return NULL;
533 }
534
535 static GSList *hw_dev_list(void)
536 {
537         struct drv_context *drvc;
538
539         drvc = adi->priv;
540
541         return drvc->instances;
542 }
543
544 static int upload_firmware(int firmware_idx, struct dev_context *devc)
545 {
546         int ret;
547         unsigned char *buf;
548         unsigned char pins;
549         size_t buf_size;
550         unsigned char result[32];
551         char firmware_path[128];
552
553         /* Make sure it's an ASIX SIGMA. */
554         if ((ret = ftdi_usb_open_desc(&devc->ftdic,
555                 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
556                 sr_err("ftdi_usb_open failed: %s",
557                        ftdi_get_error_string(&devc->ftdic));
558                 return 0;
559         }
560
561         if ((ret = ftdi_set_bitmode(&devc->ftdic, 0xdf, BITMODE_BITBANG)) < 0) {
562                 sr_err("ftdi_set_bitmode failed: %s",
563                        ftdi_get_error_string(&devc->ftdic));
564                 return 0;
565         }
566
567         /* Four times the speed of sigmalogan - Works well. */
568         if ((ret = ftdi_set_baudrate(&devc->ftdic, 750000)) < 0) {
569                 sr_err("ftdi_set_baudrate failed: %s",
570                        ftdi_get_error_string(&devc->ftdic));
571                 return 0;
572         }
573
574         /* Force the FPGA to reboot. */
575         sigma_write(suicide, sizeof(suicide), devc);
576         sigma_write(suicide, sizeof(suicide), devc);
577         sigma_write(suicide, sizeof(suicide), devc);
578         sigma_write(suicide, sizeof(suicide), devc);
579
580         /* Prepare to upload firmware (FPGA specific). */
581         sigma_write(init, sizeof(init), devc);
582
583         ftdi_usb_purge_buffers(&devc->ftdic);
584
585         /* Wait until the FPGA asserts INIT_B. */
586         while (1) {
587                 ret = sigma_read(result, 1, devc);
588                 if (result[0] & 0x20)
589                         break;
590         }
591
592         /* Prepare firmware. */
593         snprintf(firmware_path, sizeof(firmware_path), "%s/%s", FIRMWARE_DIR,
594                  firmware_files[firmware_idx]);
595
596         if ((ret = bin2bitbang(firmware_path, &buf, &buf_size)) != SR_OK) {
597                 sr_err("An error occured while reading the firmware: %s",
598                        firmware_path);
599                 return ret;
600         }
601
602         /* Upload firmare. */
603         sr_info("Uploading firmware file '%s'.", firmware_files[firmware_idx]);
604         sigma_write(buf, buf_size, devc);
605
606         g_free(buf);
607
608         if ((ret = ftdi_set_bitmode(&devc->ftdic, 0x00, BITMODE_RESET)) < 0) {
609                 sr_err("ftdi_set_bitmode failed: %s",
610                        ftdi_get_error_string(&devc->ftdic));
611                 return SR_ERR;
612         }
613
614         ftdi_usb_purge_buffers(&devc->ftdic);
615
616         /* Discard garbage. */
617         while (1 == sigma_read(&pins, 1, devc))
618                 ;
619
620         /* Initialize the logic analyzer mode. */
621         sigma_write(logic_mode_start, sizeof(logic_mode_start), devc);
622
623         /* Expect a 3 byte reply. */
624         ret = sigma_read(result, 3, devc);
625         if (ret != 3 ||
626             result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) {
627                 sr_err("Configuration failed. Invalid reply received.");
628                 return SR_ERR;
629         }
630
631         devc->cur_firmware = firmware_idx;
632
633         sr_info("Firmware uploaded.");
634
635         return SR_OK;
636 }
637
638 static int hw_dev_open(struct sr_dev_inst *sdi)
639 {
640         struct dev_context *devc;
641         int ret;
642
643         devc = sdi->priv;
644
645         /* Make sure it's an ASIX SIGMA. */
646         if ((ret = ftdi_usb_open_desc(&devc->ftdic,
647                 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
648
649                 sr_err("ftdi_usb_open failed: %s",
650                        ftdi_get_error_string(&devc->ftdic));
651
652                 return 0;
653         }
654
655         sdi->status = SR_ST_ACTIVE;
656
657         return SR_OK;
658 }
659
660 static int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
661 {
662         int i, ret;
663         struct dev_context *devc = sdi->priv;
664
665         for (i = 0; supported_samplerates[i]; i++) {
666                 if (supported_samplerates[i] == samplerate)
667                         break;
668         }
669         if (supported_samplerates[i] == 0)
670                 return SR_ERR_SAMPLERATE;
671
672         if (samplerate <= SR_MHZ(50)) {
673                 ret = upload_firmware(0, devc);
674                 devc->num_probes = 16;
675         }
676         if (samplerate == SR_MHZ(100)) {
677                 ret = upload_firmware(1, devc);
678                 devc->num_probes = 8;
679         }
680         else if (samplerate == SR_MHZ(200)) {
681                 ret = upload_firmware(2, devc);
682                 devc->num_probes = 4;
683         }
684
685         devc->cur_samplerate = samplerate;
686         devc->period_ps = 1000000000000 / samplerate;
687         devc->samples_per_event = 16 / devc->num_probes;
688         devc->state.state = SIGMA_IDLE;
689
690         return ret;
691 }
692
693 /*
694  * In 100 and 200 MHz mode, only a single pin rising/falling can be
695  * set as trigger. In other modes, two rising/falling triggers can be set,
696  * in addition to value/mask trigger for any number of probes.
697  *
698  * The Sigma supports complex triggers using boolean expressions, but this
699  * has not been implemented yet.
700  */
701 static int configure_probes(const struct sr_dev_inst *sdi)
702 {
703         struct dev_context *devc = sdi->priv;
704         const struct sr_probe *probe;
705         const GSList *l;
706         int trigger_set = 0;
707         int probebit;
708
709         memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
710
711         for (l = sdi->probes; l; l = l->next) {
712                 probe = (struct sr_probe *)l->data;
713                 probebit = 1 << (probe->index);
714
715                 if (!probe->enabled || !probe->trigger)
716                         continue;
717
718                 if (devc->cur_samplerate >= SR_MHZ(100)) {
719                         /* Fast trigger support. */
720                         if (trigger_set) {
721                                 sr_err("Only a single pin trigger in 100 and "
722                                        "200MHz mode is supported.");
723                                 return SR_ERR;
724                         }
725                         if (probe->trigger[0] == 'f')
726                                 devc->trigger.fallingmask |= probebit;
727                         else if (probe->trigger[0] == 'r')
728                                 devc->trigger.risingmask |= probebit;
729                         else {
730                                 sr_err("Only rising/falling trigger in 100 "
731                                        "and 200MHz mode is supported.");
732                                 return SR_ERR;
733                         }
734
735                         ++trigger_set;
736                 } else {
737                         /* Simple trigger support (event). */
738                         if (probe->trigger[0] == '1') {
739                                 devc->trigger.simplevalue |= probebit;
740                                 devc->trigger.simplemask |= probebit;
741                         }
742                         else if (probe->trigger[0] == '0') {
743                                 devc->trigger.simplevalue &= ~probebit;
744                                 devc->trigger.simplemask |= probebit;
745                         }
746                         else if (probe->trigger[0] == 'f') {
747                                 devc->trigger.fallingmask |= probebit;
748                                 ++trigger_set;
749                         }
750                         else if (probe->trigger[0] == 'r') {
751                                 devc->trigger.risingmask |= probebit;
752                                 ++trigger_set;
753                         }
754
755                         /*
756                          * Actually, Sigma supports 2 rising/falling triggers,
757                          * but they are ORed and the current trigger syntax
758                          * does not permit ORed triggers.
759                          */
760                         if (trigger_set > 1) {
761                                 sr_err("Only 1 rising/falling trigger "
762                                        "is supported.");
763                                 return SR_ERR;
764                         }
765                 }
766
767                 if (trigger_set)
768                         devc->use_triggers = 1;
769         }
770
771         return SR_OK;
772 }
773
774 static int hw_dev_close(struct sr_dev_inst *sdi)
775 {
776         struct dev_context *devc;
777
778         if (!(devc = sdi->priv)) {
779                 sr_err("%s: sdi->priv was NULL", __func__);
780                 return SR_ERR_BUG;
781         }
782
783         /* TODO */
784         if (sdi->status == SR_ST_ACTIVE)
785                 ftdi_usb_close(&devc->ftdic);
786
787         sdi->status = SR_ST_INACTIVE;
788
789         return SR_OK;
790 }
791
792 static int hw_cleanup(void)
793 {
794         if (!adi->priv)
795                 return SR_OK;
796
797         clear_instances();
798
799         return SR_OK;
800 }
801
802 static int hw_info_get(int info_id, const void **data,
803                        const struct sr_dev_inst *sdi)
804 {
805         struct dev_context *devc;
806
807         switch (info_id) {
808         case SR_DI_HWCAPS:
809                 *data = hwcaps;
810                 break;
811         case SR_DI_NUM_PROBES:
812                 *data = GINT_TO_POINTER(NUM_PROBES);
813                 break;
814         case SR_DI_PROBE_NAMES:
815                 *data = probe_names;
816                 break;
817         case SR_DI_SAMPLERATES:
818                 *data = &samplerates;
819                 break;
820         case SR_DI_TRIGGER_TYPES:
821                 *data = (char *)TRIGGER_TYPES;
822                 break;
823         case SR_DI_CUR_SAMPLERATE:
824                 if (sdi) {
825                         devc = sdi->priv;
826                         *data = &devc->cur_samplerate;
827                 } else
828                         return SR_ERR;
829                 break;
830         default:
831                 return SR_ERR_ARG;
832         }
833
834         return SR_OK;
835 }
836
837 static int hw_dev_config_set(const struct sr_dev_inst *sdi, int hwcap,
838                              const void *value)
839 {
840         struct dev_context *devc;
841         int ret;
842
843         devc = sdi->priv;
844
845         if (hwcap == SR_HWCAP_SAMPLERATE) {
846                 ret = set_samplerate(sdi, *(const uint64_t *)value);
847         } else if (hwcap == SR_HWCAP_LIMIT_MSEC) {
848                 devc->limit_msec = *(const uint64_t *)value;
849                 if (devc->limit_msec > 0)
850                         ret = SR_OK;
851                 else
852                         ret = SR_ERR;
853         } else if (hwcap == SR_HWCAP_CAPTURE_RATIO) {
854                 devc->capture_ratio = *(const uint64_t *)value;
855                 if (devc->capture_ratio < 0 || devc->capture_ratio > 100)
856                         ret = SR_ERR;
857                 else
858                         ret = SR_OK;
859         } else {
860                 ret = SR_ERR;
861         }
862
863         return ret;
864 }
865
866 /* Software trigger to determine exact trigger position. */
867 static int get_trigger_offset(uint16_t *samples, uint16_t last_sample,
868                               struct sigma_trigger *t)
869 {
870         int i;
871
872         for (i = 0; i < 8; ++i) {
873                 if (i > 0)
874                         last_sample = samples[i-1];
875
876                 /* Simple triggers. */
877                 if ((samples[i] & t->simplemask) != t->simplevalue)
878                         continue;
879
880                 /* Rising edge. */
881                 if ((last_sample & t->risingmask) != 0 || (samples[i] &
882                     t->risingmask) != t->risingmask)
883                         continue;
884
885                 /* Falling edge. */
886                 if ((last_sample & t->fallingmask) != t->fallingmask ||
887                     (samples[i] & t->fallingmask) != 0)
888                         continue;
889
890                 break;
891         }
892
893         /* If we did not match, return original trigger pos. */
894         return i & 0x7;
895 }
896
897 /*
898  * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
899  * Each event is 20ns apart, and can contain multiple samples.
900  *
901  * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
902  * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
903  * For 50 MHz and below, events contain one sample for each channel,
904  * spread 20 ns apart.
905  */
906 static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
907                            uint16_t *lastsample, int triggerpos,
908                            uint16_t limit_chunk, void *cb_data)
909 {
910         struct sr_dev_inst *sdi = cb_data;
911         struct dev_context *devc = sdi->priv;
912         uint16_t tsdiff, ts;
913         uint16_t samples[65536 * devc->samples_per_event];
914         struct sr_datafeed_packet packet;
915         struct sr_datafeed_logic logic;
916         int i, j, k, l, numpad, tosend;
917         size_t n = 0, sent = 0;
918         int clustersize = EVENTS_PER_CLUSTER * devc->samples_per_event;
919         uint16_t *event;
920         uint16_t cur_sample;
921         int triggerts = -1;
922
923         /* Check if trigger is in this chunk. */
924         if (triggerpos != -1) {
925                 if (devc->cur_samplerate <= SR_MHZ(50))
926                         triggerpos -= EVENTS_PER_CLUSTER - 1;
927
928                 if (triggerpos < 0)
929                         triggerpos = 0;
930
931                 /* Find in which cluster the trigger occured. */
932                 triggerts = triggerpos / 7;
933         }
934
935         /* For each ts. */
936         for (i = 0; i < 64; ++i) {
937                 ts = *(uint16_t *) &buf[i * 16];
938                 tsdiff = ts - *lastts;
939                 *lastts = ts;
940
941                 /* Decode partial chunk. */
942                 if (limit_chunk && ts > limit_chunk)
943                         return SR_OK;
944
945                 /* Pad last sample up to current point. */
946                 numpad = tsdiff * devc->samples_per_event - clustersize;
947                 if (numpad > 0) {
948                         for (j = 0; j < numpad; ++j)
949                                 samples[j] = *lastsample;
950
951                         n = numpad;
952                 }
953
954                 /* Send samples between previous and this timestamp to sigrok. */
955                 sent = 0;
956                 while (sent < n) {
957                         tosend = MIN(2048, n - sent);
958
959                         packet.type = SR_DF_LOGIC;
960                         packet.payload = &logic;
961                         logic.length = tosend * sizeof(uint16_t);
962                         logic.unitsize = 2;
963                         logic.data = samples + sent;
964                         sr_session_send(devc->session_dev_id, &packet);
965
966                         sent += tosend;
967                 }
968                 n = 0;
969
970                 event = (uint16_t *) &buf[i * 16 + 2];
971                 cur_sample = 0;
972
973                 /* For each event in cluster. */
974                 for (j = 0; j < 7; ++j) {
975
976                         /* For each sample in event. */
977                         for (k = 0; k < devc->samples_per_event; ++k) {
978                                 cur_sample = 0;
979
980                                 /* For each probe. */
981                                 for (l = 0; l < devc->num_probes; ++l)
982                                         cur_sample |= (!!(event[j] & (1 << (l *
983                                            devc->samples_per_event + k)))) << l;
984
985                                 samples[n++] = cur_sample;
986                         }
987                 }
988
989                 /* Send data up to trigger point (if triggered). */
990                 sent = 0;
991                 if (i == triggerts) {
992                         /*
993                          * Trigger is not always accurate to sample because of
994                          * pipeline delay. However, it always triggers before
995                          * the actual event. We therefore look at the next
996                          * samples to pinpoint the exact position of the trigger.
997                          */
998                         tosend = get_trigger_offset(samples, *lastsample,
999                                                     &devc->trigger);
1000
1001                         if (tosend > 0) {
1002                                 packet.type = SR_DF_LOGIC;
1003                                 packet.payload = &logic;
1004                                 logic.length = tosend * sizeof(uint16_t);
1005                                 logic.unitsize = 2;
1006                                 logic.data = samples;
1007                                 sr_session_send(devc->session_dev_id, &packet);
1008
1009                                 sent += tosend;
1010                         }
1011
1012                         /* Only send trigger if explicitly enabled. */
1013                         if (devc->use_triggers) {
1014                                 packet.type = SR_DF_TRIGGER;
1015                                 sr_session_send(devc->session_dev_id, &packet);
1016                         }
1017                 }
1018
1019                 /* Send rest of the chunk to sigrok. */
1020                 tosend = n - sent;
1021
1022                 if (tosend > 0) {
1023                         packet.type = SR_DF_LOGIC;
1024                         packet.payload = &logic;
1025                         logic.length = tosend * sizeof(uint16_t);
1026                         logic.unitsize = 2;
1027                         logic.data = samples + sent;
1028                         sr_session_send(devc->session_dev_id, &packet);
1029                 }
1030
1031                 *lastsample = samples[n - 1];
1032         }
1033
1034         return SR_OK;
1035 }
1036
1037 static int receive_data(int fd, int revents, void *cb_data)
1038 {
1039         struct sr_dev_inst *sdi = cb_data;
1040         struct dev_context *devc = sdi->priv;
1041         struct sr_datafeed_packet packet;
1042         const int chunks_per_read = 32;
1043         unsigned char buf[chunks_per_read * CHUNK_SIZE];
1044         int bufsz, numchunks, i, newchunks;
1045         uint64_t running_msec;
1046         struct timeval tv;
1047
1048         (void)fd;
1049         (void)revents;
1050
1051         /* Get the current position. */
1052         sigma_read_pos(&devc->state.stoppos, &devc->state.triggerpos, devc);
1053
1054         numchunks = (devc->state.stoppos + 511) / 512;
1055
1056         if (devc->state.state == SIGMA_IDLE)
1057                 return TRUE;
1058
1059         if (devc->state.state == SIGMA_CAPTURE) {
1060                 /* Check if the timer has expired, or memory is full. */
1061                 gettimeofday(&tv, 0);
1062                 running_msec = (tv.tv_sec - devc->start_tv.tv_sec) * 1000 +
1063                         (tv.tv_usec - devc->start_tv.tv_usec) / 1000;
1064
1065                 if (running_msec < devc->limit_msec && numchunks < 32767)
1066                         return TRUE; /* While capturing... */
1067                 else
1068                         hw_dev_acquisition_stop(sdi, sdi);
1069
1070         } else if (devc->state.state == SIGMA_DOWNLOAD) {
1071                 if (devc->state.chunks_downloaded >= numchunks) {
1072                         /* End of samples. */
1073                         packet.type = SR_DF_END;
1074                         sr_session_send(devc->session_dev_id, &packet);
1075
1076                         devc->state.state = SIGMA_IDLE;
1077
1078                         return TRUE;
1079                 }
1080
1081                 newchunks = MIN(chunks_per_read,
1082                                 numchunks - devc->state.chunks_downloaded);
1083
1084                 sr_info("Downloading sample data: %.0f %%.",
1085                         100.0 * devc->state.chunks_downloaded / numchunks);
1086
1087                 bufsz = sigma_read_dram(devc->state.chunks_downloaded,
1088                                         newchunks, buf, devc);
1089                 /* TODO: Check bufsz. For now, just avoid compiler warnings. */
1090                 (void)bufsz;
1091
1092                 /* Find first ts. */
1093                 if (devc->state.chunks_downloaded == 0) {
1094                         devc->state.lastts = *(uint16_t *) buf - 1;
1095                         devc->state.lastsample = 0;
1096                 }
1097
1098                 /* Decode chunks and send them to sigrok. */
1099                 for (i = 0; i < newchunks; ++i) {
1100                         int limit_chunk = 0;
1101
1102                         /* The last chunk may potentially be only in part. */
1103                         if (devc->state.chunks_downloaded == numchunks - 1) {
1104                                 /* Find the last valid timestamp */
1105                                 limit_chunk = devc->state.stoppos % 512 + devc->state.lastts;
1106                         }
1107
1108                         if (devc->state.chunks_downloaded + i == devc->state.triggerchunk)
1109                                 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1110                                                 &devc->state.lastts,
1111                                                 &devc->state.lastsample,
1112                                                 devc->state.triggerpos & 0x1ff,
1113                                                 limit_chunk, sdi);
1114                         else
1115                                 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1116                                                 &devc->state.lastts,
1117                                                 &devc->state.lastsample,
1118                                                 -1, limit_chunk, sdi);
1119
1120                         ++devc->state.chunks_downloaded;
1121                 }
1122         }
1123
1124         return TRUE;
1125 }
1126
1127 /* Build a LUT entry used by the trigger functions. */
1128 static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
1129 {
1130         int i, j, k, bit;
1131
1132         /* For each quad probe. */
1133         for (i = 0; i < 4; ++i) {
1134                 entry[i] = 0xffff;
1135
1136                 /* For each bit in LUT. */
1137                 for (j = 0; j < 16; ++j)
1138
1139                         /* For each probe in quad. */
1140                         for (k = 0; k < 4; ++k) {
1141                                 bit = 1 << (i * 4 + k);
1142
1143                                 /* Set bit in entry */
1144                                 if ((mask & bit) &&
1145                                     ((!(value & bit)) !=
1146                                     (!(j & (1 << k)))))
1147                                         entry[i] &= ~(1 << j);
1148                         }
1149         }
1150 }
1151
1152 /* Add a logical function to LUT mask. */
1153 static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1154                                  int index, int neg, uint16_t *mask)
1155 {
1156         int i, j;
1157         int x[2][2], tmp, a, b, aset, bset, rset;
1158
1159         memset(x, 0, 4 * sizeof(int));
1160
1161         /* Trigger detect condition. */
1162         switch (oper) {
1163         case OP_LEVEL:
1164                 x[0][1] = 1;
1165                 x[1][1] = 1;
1166                 break;
1167         case OP_NOT:
1168                 x[0][0] = 1;
1169                 x[1][0] = 1;
1170                 break;
1171         case OP_RISE:
1172                 x[0][1] = 1;
1173                 break;
1174         case OP_FALL:
1175                 x[1][0] = 1;
1176                 break;
1177         case OP_RISEFALL:
1178                 x[0][1] = 1;
1179                 x[1][0] = 1;
1180                 break;
1181         case OP_NOTRISE:
1182                 x[1][1] = 1;
1183                 x[0][0] = 1;
1184                 x[1][0] = 1;
1185                 break;
1186         case OP_NOTFALL:
1187                 x[1][1] = 1;
1188                 x[0][0] = 1;
1189                 x[0][1] = 1;
1190                 break;
1191         case OP_NOTRISEFALL:
1192                 x[1][1] = 1;
1193                 x[0][0] = 1;
1194                 break;
1195         }
1196
1197         /* Transpose if neg is set. */
1198         if (neg) {
1199                 for (i = 0; i < 2; ++i) {
1200                         for (j = 0; j < 2; ++j) {
1201                                 tmp = x[i][j];
1202                                 x[i][j] = x[1-i][1-j];
1203                                 x[1-i][1-j] = tmp;
1204                         }
1205                 }
1206         }
1207
1208         /* Update mask with function. */
1209         for (i = 0; i < 16; ++i) {
1210                 a = (i >> (2 * index + 0)) & 1;
1211                 b = (i >> (2 * index + 1)) & 1;
1212
1213                 aset = (*mask >> i) & 1;
1214                 bset = x[b][a];
1215
1216                 if (func == FUNC_AND || func == FUNC_NAND)
1217                         rset = aset & bset;
1218                 else if (func == FUNC_OR || func == FUNC_NOR)
1219                         rset = aset | bset;
1220                 else if (func == FUNC_XOR || func == FUNC_NXOR)
1221                         rset = aset ^ bset;
1222
1223                 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1224                         rset = !rset;
1225
1226                 *mask &= ~(1 << i);
1227
1228                 if (rset)
1229                         *mask |= 1 << i;
1230         }
1231 }
1232
1233 /*
1234  * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1235  * simple pin change and state triggers. Only two transitions (rise/fall) can be
1236  * set at any time, but a full mask and value can be set (0/1).
1237  */
1238 static int build_basic_trigger(struct triggerlut *lut, struct dev_context *devc)
1239 {
1240         int i,j;
1241         uint16_t masks[2] = { 0, 0 };
1242
1243         memset(lut, 0, sizeof(struct triggerlut));
1244
1245         /* Contant for simple triggers. */
1246         lut->m4 = 0xa000;
1247
1248         /* Value/mask trigger support. */
1249         build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
1250                         lut->m2d);
1251
1252         /* Rise/fall trigger support. */
1253         for (i = 0, j = 0; i < 16; ++i) {
1254                 if (devc->trigger.risingmask & (1 << i) ||
1255                     devc->trigger.fallingmask & (1 << i))
1256                         masks[j++] = 1 << i;
1257         }
1258
1259         build_lut_entry(masks[0], masks[0], lut->m0d);
1260         build_lut_entry(masks[1], masks[1], lut->m1d);
1261
1262         /* Add glue logic */
1263         if (masks[0] || masks[1]) {
1264                 /* Transition trigger. */
1265                 if (masks[0] & devc->trigger.risingmask)
1266                         add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
1267                 if (masks[0] & devc->trigger.fallingmask)
1268                         add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
1269                 if (masks[1] & devc->trigger.risingmask)
1270                         add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
1271                 if (masks[1] & devc->trigger.fallingmask)
1272                         add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1273         } else {
1274                 /* Only value/mask trigger. */
1275                 lut->m3 = 0xffff;
1276         }
1277
1278         /* Triggertype: event. */
1279         lut->params.selres = 3;
1280
1281         return SR_OK;
1282 }
1283
1284 static int hw_dev_acquisition_start(const struct sr_dev_inst *sdi,
1285                 void *cb_data)
1286 {
1287         struct dev_context *devc;
1288         struct sr_datafeed_packet *packet;
1289         struct sr_datafeed_header *header;
1290         struct sr_datafeed_meta_logic meta;
1291         struct clockselect_50 clockselect;
1292         int frac, triggerpin, ret;
1293         uint8_t triggerselect;
1294         struct triggerinout triggerinout_conf;
1295         struct triggerlut lut;
1296
1297         devc = sdi->priv;
1298
1299         if (configure_probes(sdi) != SR_OK) {
1300                 sr_err("Failed to configure probes.");
1301                 return SR_ERR;
1302         }
1303
1304         /* If the samplerate has not been set, default to 200 kHz. */
1305         if (devc->cur_firmware == -1) {
1306                 if ((ret = set_samplerate(sdi, SR_KHZ(200))) != SR_OK)
1307                         return ret;
1308         }
1309
1310         /* Enter trigger programming mode. */
1311         sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, devc);
1312
1313         /* 100 and 200 MHz mode. */
1314         if (devc->cur_samplerate >= SR_MHZ(100)) {
1315                 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, devc);
1316
1317                 /* Find which pin to trigger on from mask. */
1318                 for (triggerpin = 0; triggerpin < 8; ++triggerpin)
1319                         if ((devc->trigger.risingmask | devc->trigger.fallingmask) &
1320                             (1 << triggerpin))
1321                                 break;
1322
1323                 /* Set trigger pin and light LED on trigger. */
1324                 triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
1325
1326                 /* Default rising edge. */
1327                 if (devc->trigger.fallingmask)
1328                         triggerselect |= 1 << 3;
1329
1330         /* All other modes. */
1331         } else if (devc->cur_samplerate <= SR_MHZ(50)) {
1332                 build_basic_trigger(&lut, devc);
1333
1334                 sigma_write_trigger_lut(&lut, devc);
1335
1336                 triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
1337         }
1338
1339         /* Setup trigger in and out pins to default values. */
1340         memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
1341         triggerinout_conf.trgout_bytrigger = 1;
1342         triggerinout_conf.trgout_enable = 1;
1343
1344         sigma_write_register(WRITE_TRIGGER_OPTION,
1345                              (uint8_t *) &triggerinout_conf,
1346                              sizeof(struct triggerinout), devc);
1347
1348         /* Go back to normal mode. */
1349         sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, devc);
1350
1351         /* Set clock select register. */
1352         if (devc->cur_samplerate == SR_MHZ(200))
1353                 /* Enable 4 probes. */
1354                 sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, devc);
1355         else if (devc->cur_samplerate == SR_MHZ(100))
1356                 /* Enable 8 probes. */
1357                 sigma_set_register(WRITE_CLOCK_SELECT, 0x00, devc);
1358         else {
1359                 /*
1360                  * 50 MHz mode (or fraction thereof). Any fraction down to
1361                  * 50 MHz / 256 can be used, but is not supported by sigrok API.
1362                  */
1363                 frac = SR_MHZ(50) / devc->cur_samplerate - 1;
1364
1365                 clockselect.async = 0;
1366                 clockselect.fraction = frac;
1367                 clockselect.disabled_probes = 0;
1368
1369                 sigma_write_register(WRITE_CLOCK_SELECT,
1370                                      (uint8_t *) &clockselect,
1371                                      sizeof(clockselect), devc);
1372         }
1373
1374         /* Setup maximum post trigger time. */
1375         sigma_set_register(WRITE_POST_TRIGGER,
1376                            (devc->capture_ratio * 255) / 100, devc);
1377
1378         /* Start acqusition. */
1379         gettimeofday(&devc->start_tv, 0);
1380         sigma_set_register(WRITE_MODE, 0x0d, devc);
1381
1382         devc->session_dev_id = cb_data;
1383
1384         if (!(packet = g_try_malloc(sizeof(struct sr_datafeed_packet)))) {
1385                 sr_err("%s: packet malloc failed.", __func__);
1386                 return SR_ERR_MALLOC;
1387         }
1388
1389         if (!(header = g_try_malloc(sizeof(struct sr_datafeed_header)))) {
1390                 sr_err("%s: header malloc failed.", __func__);
1391                 return SR_ERR_MALLOC;
1392         }
1393
1394         /* Send header packet to the session bus. */
1395         packet->type = SR_DF_HEADER;
1396         packet->payload = header;
1397         header->feed_version = 1;
1398         gettimeofday(&header->starttime, NULL);
1399         sr_session_send(devc->session_dev_id, packet);
1400
1401         /* Send metadata about the SR_DF_LOGIC packets to come. */
1402         packet->type = SR_DF_META_LOGIC;
1403         packet->payload = &meta;
1404         meta.samplerate = devc->cur_samplerate;
1405         meta.num_probes = devc->num_probes;
1406         sr_session_send(devc->session_dev_id, packet);
1407
1408         /* Add capture source. */
1409         sr_source_add(0, G_IO_IN, 10, receive_data, (void *)sdi);
1410
1411         g_free(header);
1412         g_free(packet);
1413
1414         devc->state.state = SIGMA_CAPTURE;
1415
1416         return SR_OK;
1417 }
1418
1419 static int hw_dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
1420 {
1421         struct dev_context *devc;
1422         uint8_t modestatus;
1423
1424         (void)cb_data;
1425
1426         sr_source_remove(0);
1427
1428         if (!(devc = sdi->priv)) {
1429                 sr_err("%s: sdi->priv was NULL", __func__);
1430                 return SR_ERR_BUG;
1431         }
1432
1433         /* Stop acquisition. */
1434         sigma_set_register(WRITE_MODE, 0x11, devc);
1435
1436         /* Set SDRAM Read Enable. */
1437         sigma_set_register(WRITE_MODE, 0x02, devc);
1438
1439         /* Get the current position. */
1440         sigma_read_pos(&devc->state.stoppos, &devc->state.triggerpos, devc);
1441
1442         /* Check if trigger has fired. */
1443         modestatus = sigma_get_register(READ_MODE, devc);
1444         if (modestatus & 0x20)
1445                 devc->state.triggerchunk = devc->state.triggerpos / 512;
1446         else
1447                 devc->state.triggerchunk = -1;
1448
1449         devc->state.chunks_downloaded = 0;
1450
1451         devc->state.state = SIGMA_DOWNLOAD;
1452
1453         return SR_OK;
1454 }
1455
1456 SR_PRIV struct sr_dev_driver asix_sigma_driver_info = {
1457         .name = "asix-sigma",
1458         .longname = "ASIX SIGMA/SIGMA2",
1459         .api_version = 1,
1460         .init = hw_init,
1461         .cleanup = hw_cleanup,
1462         .scan = hw_scan,
1463         .dev_list = hw_dev_list,
1464         .dev_clear = clear_instances,
1465         .dev_open = hw_dev_open,
1466         .dev_close = hw_dev_close,
1467         .info_get = hw_info_get,
1468         .dev_config_set = hw_dev_config_set,
1469         .dev_acquisition_start = hw_dev_acquisition_start,
1470         .dev_acquisition_stop = hw_dev_acquisition_stop,
1471         .priv = NULL,
1472 };