]> sigrok.org Git - libsigrok.git/blob - hardware/asix-sigma/asix-sigma.c
ec50a2b257ee734ee84804f4519fc6784c76d089
[libsigrok.git] / hardware / asix-sigma / asix-sigma.c
1 /*
2  * This file is part of the sigrok project.
3  *
4  * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
5  * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6  * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7  *
8  * This program is free software: you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 3 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21
22 /*
23  * ASIX SIGMA/SIGMA2 logic analyzer driver
24  */
25
26 #include <glib.h>
27 #include <glib/gstdio.h>
28 #include <ftdi.h>
29 #include <string.h>
30 #include "libsigrok.h"
31 #include "libsigrok-internal.h"
32 #include "asix-sigma.h"
33
34 #define USB_VENDOR                      0xa600
35 #define USB_PRODUCT                     0xa000
36 #define USB_DESCRIPTION                 "ASIX SIGMA"
37 #define USB_VENDOR_NAME                 "ASIX"
38 #define USB_MODEL_NAME                  "SIGMA"
39 #define USB_MODEL_VERSION               ""
40 #define TRIGGER_TYPE                    "rf10"
41 #define NUM_PROBES                      16
42
43 SR_PRIV struct sr_dev_driver asix_sigma_driver_info;
44 static struct sr_dev_driver *di = &asix_sigma_driver_info;
45 static int hw_dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data);
46
47 static const uint64_t supported_samplerates[] = {
48         SR_KHZ(200),
49         SR_KHZ(250),
50         SR_KHZ(500),
51         SR_MHZ(1),
52         SR_MHZ(5),
53         SR_MHZ(10),
54         SR_MHZ(25),
55         SR_MHZ(50),
56         SR_MHZ(100),
57         SR_MHZ(200),
58         0,
59 };
60
61 /*
62  * Probe numbers seem to go from 1-16, according to this image:
63  * http://tools.asix.net/img/sigma_sigmacab_pins_720.jpg
64  * (the cable has two additional GND pins, and a TI and TO pin)
65  */
66 static const char *probe_names[NUM_PROBES + 1] = {
67         "1", "2", "3", "4", "5", "6", "7", "8",
68         "9", "10", "11", "12", "13", "14", "15", "16",
69         NULL,
70 };
71
72 static const struct sr_samplerates samplerates = {
73         0,
74         0,
75         0,
76         supported_samplerates,
77 };
78
79 static const int hwcaps[] = {
80         SR_CONF_LOGIC_ANALYZER,
81         SR_CONF_SAMPLERATE,
82         SR_CONF_CAPTURE_RATIO,
83
84         SR_CONF_LIMIT_MSEC,
85         0,
86 };
87
88 /* Force the FPGA to reboot. */
89 static uint8_t suicide[] = {
90         0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
91 };
92
93 /* Prepare to upload firmware (FPGA specific). */
94 static uint8_t init[] = {
95         0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
96 };
97
98 /* Initialize the logic analyzer mode. */
99 static uint8_t logic_mode_start[] = {
100         0x00, 0x40, 0x0f, 0x25, 0x35, 0x40,
101         0x2a, 0x3a, 0x40, 0x03, 0x20, 0x38,
102 };
103
104 static const char *firmware_files[] = {
105         "asix-sigma-50.fw",     /* 50 MHz, supports 8 bit fractions */
106         "asix-sigma-100.fw",    /* 100 MHz */
107         "asix-sigma-200.fw",    /* 200 MHz */
108         "asix-sigma-50sync.fw", /* Synchronous clock from pin */
109         "asix-sigma-phasor.fw", /* Frequency counter */
110 };
111
112 static int sigma_read(void *buf, size_t size, struct dev_context *devc)
113 {
114         int ret;
115
116         ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
117         if (ret < 0) {
118                 sr_err("ftdi_read_data failed: %s",
119                        ftdi_get_error_string(&devc->ftdic));
120         }
121
122         return ret;
123 }
124
125 static int sigma_write(void *buf, size_t size, struct dev_context *devc)
126 {
127         int ret;
128
129         ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size);
130         if (ret < 0) {
131                 sr_err("ftdi_write_data failed: %s",
132                        ftdi_get_error_string(&devc->ftdic));
133         } else if ((size_t) ret != size) {
134                 sr_err("ftdi_write_data did not complete write.");
135         }
136
137         return ret;
138 }
139
140 static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
141                                 struct dev_context *devc)
142 {
143         size_t i;
144         uint8_t buf[len + 2];
145         int idx = 0;
146
147         buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
148         buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
149
150         for (i = 0; i < len; ++i) {
151                 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
152                 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
153         }
154
155         return sigma_write(buf, idx, devc);
156 }
157
158 static int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc)
159 {
160         return sigma_write_register(reg, &value, 1, devc);
161 }
162
163 static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
164                                struct dev_context *devc)
165 {
166         uint8_t buf[3];
167
168         buf[0] = REG_ADDR_LOW | (reg & 0xf);
169         buf[1] = REG_ADDR_HIGH | (reg >> 4);
170         buf[2] = REG_READ_ADDR;
171
172         sigma_write(buf, sizeof(buf), devc);
173
174         return sigma_read(data, len, devc);
175 }
176
177 static uint8_t sigma_get_register(uint8_t reg, struct dev_context *devc)
178 {
179         uint8_t value;
180
181         if (1 != sigma_read_register(reg, &value, 1, devc)) {
182                 sr_err("sigma_get_register: 1 byte expected");
183                 return 0;
184         }
185
186         return value;
187 }
188
189 static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
190                           struct dev_context *devc)
191 {
192         uint8_t buf[] = {
193                 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
194
195                 REG_READ_ADDR | NEXT_REG,
196                 REG_READ_ADDR | NEXT_REG,
197                 REG_READ_ADDR | NEXT_REG,
198                 REG_READ_ADDR | NEXT_REG,
199                 REG_READ_ADDR | NEXT_REG,
200                 REG_READ_ADDR | NEXT_REG,
201         };
202         uint8_t result[6];
203
204         sigma_write(buf, sizeof(buf), devc);
205
206         sigma_read(result, sizeof(result), devc);
207
208         *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
209         *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
210
211         /* Not really sure why this must be done, but according to spec. */
212         if ((--*stoppos & 0x1ff) == 0x1ff)
213                 stoppos -= 64;
214
215         if ((*--triggerpos & 0x1ff) == 0x1ff)
216                 triggerpos -= 64;
217
218         return 1;
219 }
220
221 static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
222                            uint8_t *data, struct dev_context *devc)
223 {
224         size_t i;
225         uint8_t buf[4096];
226         int idx = 0;
227
228         /* Send the startchunk. Index start with 1. */
229         buf[0] = startchunk >> 8;
230         buf[1] = startchunk & 0xff;
231         sigma_write_register(WRITE_MEMROW, buf, 2, devc);
232
233         /* Read the DRAM. */
234         buf[idx++] = REG_DRAM_BLOCK;
235         buf[idx++] = REG_DRAM_WAIT_ACK;
236
237         for (i = 0; i < numchunks; ++i) {
238                 /* Alternate bit to copy from DRAM to cache. */
239                 if (i != (numchunks - 1))
240                         buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
241
242                 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
243
244                 if (i != (numchunks - 1))
245                         buf[idx++] = REG_DRAM_WAIT_ACK;
246         }
247
248         sigma_write(buf, idx, devc);
249
250         return sigma_read(data, numchunks * CHUNK_SIZE, devc);
251 }
252
253 /* Upload trigger look-up tables to Sigma. */
254 static int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc)
255 {
256         int i;
257         uint8_t tmp[2];
258         uint16_t bit;
259
260         /* Transpose the table and send to Sigma. */
261         for (i = 0; i < 16; ++i) {
262                 bit = 1 << i;
263
264                 tmp[0] = tmp[1] = 0;
265
266                 if (lut->m2d[0] & bit)
267                         tmp[0] |= 0x01;
268                 if (lut->m2d[1] & bit)
269                         tmp[0] |= 0x02;
270                 if (lut->m2d[2] & bit)
271                         tmp[0] |= 0x04;
272                 if (lut->m2d[3] & bit)
273                         tmp[0] |= 0x08;
274
275                 if (lut->m3 & bit)
276                         tmp[0] |= 0x10;
277                 if (lut->m3s & bit)
278                         tmp[0] |= 0x20;
279                 if (lut->m4 & bit)
280                         tmp[0] |= 0x40;
281
282                 if (lut->m0d[0] & bit)
283                         tmp[1] |= 0x01;
284                 if (lut->m0d[1] & bit)
285                         tmp[1] |= 0x02;
286                 if (lut->m0d[2] & bit)
287                         tmp[1] |= 0x04;
288                 if (lut->m0d[3] & bit)
289                         tmp[1] |= 0x08;
290
291                 if (lut->m1d[0] & bit)
292                         tmp[1] |= 0x10;
293                 if (lut->m1d[1] & bit)
294                         tmp[1] |= 0x20;
295                 if (lut->m1d[2] & bit)
296                         tmp[1] |= 0x40;
297                 if (lut->m1d[3] & bit)
298                         tmp[1] |= 0x80;
299
300                 sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
301                                      devc);
302                 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, devc);
303         }
304
305         /* Send the parameters */
306         sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
307                              sizeof(lut->params), devc);
308
309         return SR_OK;
310 }
311
312 /* Generate the bitbang stream for programming the FPGA. */
313 static int bin2bitbang(const char *filename,
314                        unsigned char **buf, size_t *buf_size)
315 {
316         FILE *f;
317         unsigned long file_size;
318         unsigned long offset = 0;
319         unsigned char *p;
320         uint8_t *firmware;
321         unsigned long fwsize = 0;
322         const int buffer_size = 65536;
323         size_t i;
324         int c, bit, v;
325         uint32_t imm = 0x3f6df2ab;
326
327         f = g_fopen(filename, "rb");
328         if (!f) {
329                 sr_err("g_fopen(\"%s\", \"rb\")", filename);
330                 return SR_ERR;
331         }
332
333         if (-1 == fseek(f, 0, SEEK_END)) {
334                 sr_err("fseek on %s failed", filename);
335                 fclose(f);
336                 return SR_ERR;
337         }
338
339         file_size = ftell(f);
340
341         fseek(f, 0, SEEK_SET);
342
343         if (!(firmware = g_try_malloc(buffer_size))) {
344                 sr_err("%s: firmware malloc failed", __func__);
345                 fclose(f);
346                 return SR_ERR_MALLOC;
347         }
348
349         while ((c = getc(f)) != EOF) {
350                 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
351                 firmware[fwsize++] = c ^ imm;
352         }
353         fclose(f);
354
355         if(fwsize != file_size) {
356             sr_err("%s: Error reading firmware", filename);
357             fclose(f);
358             g_free(firmware);
359             return SR_ERR;
360         }
361
362         *buf_size = fwsize * 2 * 8;
363
364         *buf = p = (unsigned char *)g_try_malloc(*buf_size);
365         if (!p) {
366                 sr_err("%s: buf/p malloc failed", __func__);
367                 g_free(firmware);
368                 return SR_ERR_MALLOC;
369         }
370
371         for (i = 0; i < fwsize; ++i) {
372                 for (bit = 7; bit >= 0; --bit) {
373                         v = firmware[i] & 1 << bit ? 0x40 : 0x00;
374                         p[offset++] = v | 0x01;
375                         p[offset++] = v;
376                 }
377         }
378
379         g_free(firmware);
380
381         if (offset != *buf_size) {
382                 g_free(*buf);
383                 sr_err("Error reading firmware %s "
384                        "offset=%ld, file_size=%ld, buf_size=%zd.",
385                        filename, offset, file_size, *buf_size);
386
387                 return SR_ERR;
388         }
389
390         return SR_OK;
391 }
392
393 static int clear_instances(void)
394 {
395         GSList *l;
396         struct sr_dev_inst *sdi;
397         struct drv_context *drvc;
398         struct dev_context *devc;
399
400         drvc = di->priv;
401
402         /* Properly close all devices. */
403         for (l = drvc->instances; l; l = l->next) {
404                 if (!(sdi = l->data)) {
405                         /* Log error, but continue cleaning up the rest. */
406                         sr_err("%s: sdi was NULL, continuing", __func__);
407                         continue;
408                 }
409                 if (sdi->priv) {
410                         devc = sdi->priv;
411                         ftdi_free(&devc->ftdic);
412                 }
413                 sr_dev_inst_free(sdi);
414         }
415         g_slist_free(drvc->instances);
416         drvc->instances = NULL;
417
418         return SR_OK;
419 }
420
421 static int hw_init(struct sr_context *sr_ctx)
422 {
423         struct drv_context *drvc;
424
425         if (!(drvc = g_try_malloc0(sizeof(struct drv_context)))) {
426                 sr_err("Driver context malloc failed.");
427                 return SR_ERR_MALLOC;
428         }
429
430         drvc->sr_ctx = sr_ctx;
431         di->priv = drvc;
432
433         return SR_OK;
434 }
435
436 static GSList *hw_scan(GSList *options)
437 {
438         struct sr_dev_inst *sdi;
439         struct sr_probe *probe;
440         struct drv_context *drvc;
441         struct dev_context *devc;
442         GSList *devices;
443         struct ftdi_device_list *devlist;
444         char serial_txt[10];
445         uint32_t serial;
446         int ret, i;
447
448         (void)options;
449
450         drvc = di->priv;
451         devices = NULL;
452         clear_instances();
453
454         if (!(devc = g_try_malloc(sizeof(struct dev_context)))) {
455                 sr_err("%s: devc malloc failed", __func__);
456                 return NULL;
457         }
458
459         ftdi_init(&devc->ftdic);
460
461         /* Look for SIGMAs. */
462
463         if ((ret = ftdi_usb_find_all(&devc->ftdic, &devlist,
464             USB_VENDOR, USB_PRODUCT)) <= 0) {
465                 if (ret < 0)
466                         sr_err("ftdi_usb_find_all(): %d", ret);
467                 goto free;
468         }
469
470         /* Make sure it's a version 1 or 2 SIGMA. */
471         ftdi_usb_get_strings(&devc->ftdic, devlist->dev, NULL, 0, NULL, 0,
472                              serial_txt, sizeof(serial_txt));
473         sscanf(serial_txt, "%x", &serial);
474
475         if (serial < 0xa6010000 || serial > 0xa602ffff) {
476                 sr_err("Only SIGMA and SIGMA2 are supported "
477                        "in this version of libsigrok.");
478                 goto free;
479         }
480
481         sr_info("Found ASIX SIGMA - Serial: %s", serial_txt);
482
483         devc->cur_samplerate = 0;
484         devc->period_ps = 0;
485         devc->limit_msec = 0;
486         devc->cur_firmware = -1;
487         devc->num_probes = 0;
488         devc->samples_per_event = 0;
489         devc->capture_ratio = 50;
490         devc->use_triggers = 0;
491
492         /* Register SIGMA device. */
493         if (!(sdi = sr_dev_inst_new(0, SR_ST_INITIALIZING, USB_VENDOR_NAME,
494                                     USB_MODEL_NAME, USB_MODEL_VERSION))) {
495                 sr_err("%s: sdi was NULL", __func__);
496                 goto free;
497         }
498         sdi->driver = di;
499
500         for (i = 0; probe_names[i]; i++) {
501                 if (!(probe = sr_probe_new(i, SR_PROBE_LOGIC, TRUE,
502                                 probe_names[i])))
503                         return NULL;
504                 sdi->probes = g_slist_append(sdi->probes, probe);
505         }
506
507         devices = g_slist_append(devices, sdi);
508         drvc->instances = g_slist_append(drvc->instances, sdi);
509         sdi->priv = devc;
510
511         /* We will open the device again when we need it. */
512         ftdi_list_free(&devlist);
513
514         return devices;
515
516 free:
517         ftdi_deinit(&devc->ftdic);
518         g_free(devc);
519         return NULL;
520 }
521
522 static GSList *hw_dev_list(void)
523 {
524         struct drv_context *drvc;
525
526         drvc = di->priv;
527
528         return drvc->instances;
529 }
530
531 static int upload_firmware(int firmware_idx, struct dev_context *devc)
532 {
533         int ret;
534         unsigned char *buf;
535         unsigned char pins;
536         size_t buf_size;
537         unsigned char result[32];
538         char firmware_path[128];
539
540         /* Make sure it's an ASIX SIGMA. */
541         if ((ret = ftdi_usb_open_desc(&devc->ftdic,
542                 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
543                 sr_err("ftdi_usb_open failed: %s",
544                        ftdi_get_error_string(&devc->ftdic));
545                 return 0;
546         }
547
548         if ((ret = ftdi_set_bitmode(&devc->ftdic, 0xdf, BITMODE_BITBANG)) < 0) {
549                 sr_err("ftdi_set_bitmode failed: %s",
550                        ftdi_get_error_string(&devc->ftdic));
551                 return 0;
552         }
553
554         /* Four times the speed of sigmalogan - Works well. */
555         if ((ret = ftdi_set_baudrate(&devc->ftdic, 750000)) < 0) {
556                 sr_err("ftdi_set_baudrate failed: %s",
557                        ftdi_get_error_string(&devc->ftdic));
558                 return 0;
559         }
560
561         /* Force the FPGA to reboot. */
562         sigma_write(suicide, sizeof(suicide), devc);
563         sigma_write(suicide, sizeof(suicide), devc);
564         sigma_write(suicide, sizeof(suicide), devc);
565         sigma_write(suicide, sizeof(suicide), devc);
566
567         /* Prepare to upload firmware (FPGA specific). */
568         sigma_write(init, sizeof(init), devc);
569
570         ftdi_usb_purge_buffers(&devc->ftdic);
571
572         /* Wait until the FPGA asserts INIT_B. */
573         while (1) {
574                 ret = sigma_read(result, 1, devc);
575                 if (result[0] & 0x20)
576                         break;
577         }
578
579         /* Prepare firmware. */
580         snprintf(firmware_path, sizeof(firmware_path), "%s/%s", FIRMWARE_DIR,
581                  firmware_files[firmware_idx]);
582
583         if ((ret = bin2bitbang(firmware_path, &buf, &buf_size)) != SR_OK) {
584                 sr_err("An error occured while reading the firmware: %s",
585                        firmware_path);
586                 return ret;
587         }
588
589         /* Upload firmare. */
590         sr_info("Uploading firmware file '%s'.", firmware_files[firmware_idx]);
591         sigma_write(buf, buf_size, devc);
592
593         g_free(buf);
594
595         if ((ret = ftdi_set_bitmode(&devc->ftdic, 0x00, BITMODE_RESET)) < 0) {
596                 sr_err("ftdi_set_bitmode failed: %s",
597                        ftdi_get_error_string(&devc->ftdic));
598                 return SR_ERR;
599         }
600
601         ftdi_usb_purge_buffers(&devc->ftdic);
602
603         /* Discard garbage. */
604         while (1 == sigma_read(&pins, 1, devc))
605                 ;
606
607         /* Initialize the logic analyzer mode. */
608         sigma_write(logic_mode_start, sizeof(logic_mode_start), devc);
609
610         /* Expect a 3 byte reply. */
611         ret = sigma_read(result, 3, devc);
612         if (ret != 3 ||
613             result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) {
614                 sr_err("Configuration failed. Invalid reply received.");
615                 return SR_ERR;
616         }
617
618         devc->cur_firmware = firmware_idx;
619
620         sr_info("Firmware uploaded.");
621
622         return SR_OK;
623 }
624
625 static int hw_dev_open(struct sr_dev_inst *sdi)
626 {
627         struct dev_context *devc;
628         int ret;
629
630         devc = sdi->priv;
631
632         /* Make sure it's an ASIX SIGMA. */
633         if ((ret = ftdi_usb_open_desc(&devc->ftdic,
634                 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
635
636                 sr_err("ftdi_usb_open failed: %s",
637                        ftdi_get_error_string(&devc->ftdic));
638
639                 return 0;
640         }
641
642         sdi->status = SR_ST_ACTIVE;
643
644         return SR_OK;
645 }
646
647 static int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
648 {
649         int i, ret;
650         struct dev_context *devc = sdi->priv;
651
652         ret = SR_OK;
653
654         for (i = 0; supported_samplerates[i]; i++) {
655                 if (supported_samplerates[i] == samplerate)
656                         break;
657         }
658         if (supported_samplerates[i] == 0)
659                 return SR_ERR_SAMPLERATE;
660
661         if (samplerate <= SR_MHZ(50)) {
662                 ret = upload_firmware(0, devc);
663                 devc->num_probes = 16;
664         }
665         if (samplerate == SR_MHZ(100)) {
666                 ret = upload_firmware(1, devc);
667                 devc->num_probes = 8;
668         }
669         else if (samplerate == SR_MHZ(200)) {
670                 ret = upload_firmware(2, devc);
671                 devc->num_probes = 4;
672         }
673
674         devc->cur_samplerate = samplerate;
675         devc->period_ps = 1000000000000ULL / samplerate;
676         devc->samples_per_event = 16 / devc->num_probes;
677         devc->state.state = SIGMA_IDLE;
678
679         return ret;
680 }
681
682 /*
683  * In 100 and 200 MHz mode, only a single pin rising/falling can be
684  * set as trigger. In other modes, two rising/falling triggers can be set,
685  * in addition to value/mask trigger for any number of probes.
686  *
687  * The Sigma supports complex triggers using boolean expressions, but this
688  * has not been implemented yet.
689  */
690 static int configure_probes(const struct sr_dev_inst *sdi)
691 {
692         struct dev_context *devc = sdi->priv;
693         const struct sr_probe *probe;
694         const GSList *l;
695         int trigger_set = 0;
696         int probebit;
697
698         memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
699
700         for (l = sdi->probes; l; l = l->next) {
701                 probe = (struct sr_probe *)l->data;
702                 probebit = 1 << (probe->index);
703
704                 if (!probe->enabled || !probe->trigger)
705                         continue;
706
707                 if (devc->cur_samplerate >= SR_MHZ(100)) {
708                         /* Fast trigger support. */
709                         if (trigger_set) {
710                                 sr_err("Only a single pin trigger in 100 and "
711                                        "200MHz mode is supported.");
712                                 return SR_ERR;
713                         }
714                         if (probe->trigger[0] == 'f')
715                                 devc->trigger.fallingmask |= probebit;
716                         else if (probe->trigger[0] == 'r')
717                                 devc->trigger.risingmask |= probebit;
718                         else {
719                                 sr_err("Only rising/falling trigger in 100 "
720                                        "and 200MHz mode is supported.");
721                                 return SR_ERR;
722                         }
723
724                         ++trigger_set;
725                 } else {
726                         /* Simple trigger support (event). */
727                         if (probe->trigger[0] == '1') {
728                                 devc->trigger.simplevalue |= probebit;
729                                 devc->trigger.simplemask |= probebit;
730                         }
731                         else if (probe->trigger[0] == '0') {
732                                 devc->trigger.simplevalue &= ~probebit;
733                                 devc->trigger.simplemask |= probebit;
734                         }
735                         else if (probe->trigger[0] == 'f') {
736                                 devc->trigger.fallingmask |= probebit;
737                                 ++trigger_set;
738                         }
739                         else if (probe->trigger[0] == 'r') {
740                                 devc->trigger.risingmask |= probebit;
741                                 ++trigger_set;
742                         }
743
744                         /*
745                          * Actually, Sigma supports 2 rising/falling triggers,
746                          * but they are ORed and the current trigger syntax
747                          * does not permit ORed triggers.
748                          */
749                         if (trigger_set > 1) {
750                                 sr_err("Only 1 rising/falling trigger "
751                                        "is supported.");
752                                 return SR_ERR;
753                         }
754                 }
755
756                 if (trigger_set)
757                         devc->use_triggers = 1;
758         }
759
760         return SR_OK;
761 }
762
763 static int hw_dev_close(struct sr_dev_inst *sdi)
764 {
765         struct dev_context *devc;
766
767         if (!(devc = sdi->priv)) {
768                 sr_err("%s: sdi->priv was NULL", __func__);
769                 return SR_ERR_BUG;
770         }
771
772         /* TODO */
773         if (sdi->status == SR_ST_ACTIVE)
774                 ftdi_usb_close(&devc->ftdic);
775
776         sdi->status = SR_ST_INACTIVE;
777
778         return SR_OK;
779 }
780
781 static int hw_cleanup(void)
782 {
783         if (!di->priv)
784                 return SR_OK;
785
786         clear_instances();
787
788         return SR_OK;
789 }
790
791 static int config_get(int id, const void **data, const struct sr_dev_inst *sdi)
792 {
793         struct dev_context *devc;
794
795         switch (id) {
796         case SR_CONF_SAMPLERATE:
797                 if (sdi) {
798                         devc = sdi->priv;
799                         *data = &devc->cur_samplerate;
800                 } else
801                         return SR_ERR;
802                 break;
803         default:
804                 return SR_ERR_ARG;
805         }
806
807         return SR_OK;
808 }
809
810 static int config_set(int id, const void *value, const struct sr_dev_inst *sdi)
811 {
812         struct dev_context *devc;
813         int ret;
814
815         devc = sdi->priv;
816
817         if (id == SR_CONF_SAMPLERATE) {
818                 ret = set_samplerate(sdi, *(const uint64_t *)value);
819         } else if (id == SR_CONF_LIMIT_MSEC) {
820                 devc->limit_msec = *(const uint64_t *)value;
821                 if (devc->limit_msec > 0)
822                         ret = SR_OK;
823                 else
824                         ret = SR_ERR;
825         } else if (id == SR_CONF_CAPTURE_RATIO) {
826                 devc->capture_ratio = *(const uint64_t *)value;
827                 if (devc->capture_ratio < 0 || devc->capture_ratio > 100)
828                         ret = SR_ERR;
829                 else
830                         ret = SR_OK;
831         } else {
832                 ret = SR_ERR;
833         }
834
835         return ret;
836 }
837
838 static int config_list(int key, const void **data, const struct sr_dev_inst *sdi)
839 {
840
841         (void)sdi;
842
843         switch (key) {
844         case SR_CONF_DEVICE_OPTIONS:
845                 *data = hwcaps;
846                 break;
847         case SR_CONF_SAMPLERATE:
848                 *data = &samplerates;
849                 break;
850         case SR_CONF_TRIGGER_TYPE:
851                 *data = (char *)TRIGGER_TYPE;
852                 break;
853         default:
854                 return SR_ERR_ARG;
855         }
856
857         return SR_OK;
858 }
859
860 /* Software trigger to determine exact trigger position. */
861 static int get_trigger_offset(uint16_t *samples, uint16_t last_sample,
862                               struct sigma_trigger *t)
863 {
864         int i;
865
866         for (i = 0; i < 8; ++i) {
867                 if (i > 0)
868                         last_sample = samples[i-1];
869
870                 /* Simple triggers. */
871                 if ((samples[i] & t->simplemask) != t->simplevalue)
872                         continue;
873
874                 /* Rising edge. */
875                 if ((last_sample & t->risingmask) != 0 || (samples[i] &
876                     t->risingmask) != t->risingmask)
877                         continue;
878
879                 /* Falling edge. */
880                 if ((last_sample & t->fallingmask) != t->fallingmask ||
881                     (samples[i] & t->fallingmask) != 0)
882                         continue;
883
884                 break;
885         }
886
887         /* If we did not match, return original trigger pos. */
888         return i & 0x7;
889 }
890
891 /*
892  * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
893  * Each event is 20ns apart, and can contain multiple samples.
894  *
895  * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
896  * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
897  * For 50 MHz and below, events contain one sample for each channel,
898  * spread 20 ns apart.
899  */
900 static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
901                            uint16_t *lastsample, int triggerpos,
902                            uint16_t limit_chunk, void *cb_data)
903 {
904         struct sr_dev_inst *sdi = cb_data;
905         struct dev_context *devc = sdi->priv;
906         uint16_t tsdiff, ts;
907         uint16_t samples[65536 * devc->samples_per_event];
908         struct sr_datafeed_packet packet;
909         struct sr_datafeed_logic logic;
910         int i, j, k, l, numpad, tosend;
911         size_t n = 0, sent = 0;
912         int clustersize = EVENTS_PER_CLUSTER * devc->samples_per_event;
913         uint16_t *event;
914         uint16_t cur_sample;
915         int triggerts = -1;
916
917         /* Check if trigger is in this chunk. */
918         if (triggerpos != -1) {
919                 if (devc->cur_samplerate <= SR_MHZ(50))
920                         triggerpos -= EVENTS_PER_CLUSTER - 1;
921
922                 if (triggerpos < 0)
923                         triggerpos = 0;
924
925                 /* Find in which cluster the trigger occured. */
926                 triggerts = triggerpos / 7;
927         }
928
929         /* For each ts. */
930         for (i = 0; i < 64; ++i) {
931                 ts = *(uint16_t *) &buf[i * 16];
932                 tsdiff = ts - *lastts;
933                 *lastts = ts;
934
935                 /* Decode partial chunk. */
936                 if (limit_chunk && ts > limit_chunk)
937                         return SR_OK;
938
939                 /* Pad last sample up to current point. */
940                 numpad = tsdiff * devc->samples_per_event - clustersize;
941                 if (numpad > 0) {
942                         for (j = 0; j < numpad; ++j)
943                                 samples[j] = *lastsample;
944
945                         n = numpad;
946                 }
947
948                 /* Send samples between previous and this timestamp to sigrok. */
949                 sent = 0;
950                 while (sent < n) {
951                         tosend = MIN(2048, n - sent);
952
953                         packet.type = SR_DF_LOGIC;
954                         packet.payload = &logic;
955                         logic.length = tosend * sizeof(uint16_t);
956                         logic.unitsize = 2;
957                         logic.data = samples + sent;
958                         sr_session_send(devc->session_dev_id, &packet);
959
960                         sent += tosend;
961                 }
962                 n = 0;
963
964                 event = (uint16_t *) &buf[i * 16 + 2];
965                 cur_sample = 0;
966
967                 /* For each event in cluster. */
968                 for (j = 0; j < 7; ++j) {
969
970                         /* For each sample in event. */
971                         for (k = 0; k < devc->samples_per_event; ++k) {
972                                 cur_sample = 0;
973
974                                 /* For each probe. */
975                                 for (l = 0; l < devc->num_probes; ++l)
976                                         cur_sample |= (!!(event[j] & (1 << (l *
977                                            devc->samples_per_event + k)))) << l;
978
979                                 samples[n++] = cur_sample;
980                         }
981                 }
982
983                 /* Send data up to trigger point (if triggered). */
984                 sent = 0;
985                 if (i == triggerts) {
986                         /*
987                          * Trigger is not always accurate to sample because of
988                          * pipeline delay. However, it always triggers before
989                          * the actual event. We therefore look at the next
990                          * samples to pinpoint the exact position of the trigger.
991                          */
992                         tosend = get_trigger_offset(samples, *lastsample,
993                                                     &devc->trigger);
994
995                         if (tosend > 0) {
996                                 packet.type = SR_DF_LOGIC;
997                                 packet.payload = &logic;
998                                 logic.length = tosend * sizeof(uint16_t);
999                                 logic.unitsize = 2;
1000                                 logic.data = samples;
1001                                 sr_session_send(devc->session_dev_id, &packet);
1002
1003                                 sent += tosend;
1004                         }
1005
1006                         /* Only send trigger if explicitly enabled. */
1007                         if (devc->use_triggers) {
1008                                 packet.type = SR_DF_TRIGGER;
1009                                 sr_session_send(devc->session_dev_id, &packet);
1010                         }
1011                 }
1012
1013                 /* Send rest of the chunk to sigrok. */
1014                 tosend = n - sent;
1015
1016                 if (tosend > 0) {
1017                         packet.type = SR_DF_LOGIC;
1018                         packet.payload = &logic;
1019                         logic.length = tosend * sizeof(uint16_t);
1020                         logic.unitsize = 2;
1021                         logic.data = samples + sent;
1022                         sr_session_send(devc->session_dev_id, &packet);
1023                 }
1024
1025                 *lastsample = samples[n - 1];
1026         }
1027
1028         return SR_OK;
1029 }
1030
1031 static int receive_data(int fd, int revents, void *cb_data)
1032 {
1033         struct sr_dev_inst *sdi = cb_data;
1034         struct dev_context *devc = sdi->priv;
1035         struct sr_datafeed_packet packet;
1036         const int chunks_per_read = 32;
1037         unsigned char buf[chunks_per_read * CHUNK_SIZE];
1038         int bufsz, numchunks, i, newchunks;
1039         uint64_t running_msec;
1040         struct timeval tv;
1041
1042         (void)fd;
1043         (void)revents;
1044
1045         /* Get the current position. */
1046         sigma_read_pos(&devc->state.stoppos, &devc->state.triggerpos, devc);
1047
1048         numchunks = (devc->state.stoppos + 511) / 512;
1049
1050         if (devc->state.state == SIGMA_IDLE)
1051                 return TRUE;
1052
1053         if (devc->state.state == SIGMA_CAPTURE) {
1054                 /* Check if the timer has expired, or memory is full. */
1055                 gettimeofday(&tv, 0);
1056                 running_msec = (tv.tv_sec - devc->start_tv.tv_sec) * 1000 +
1057                         (tv.tv_usec - devc->start_tv.tv_usec) / 1000;
1058
1059                 if (running_msec < devc->limit_msec && numchunks < 32767)
1060                         return TRUE; /* While capturing... */
1061                 else
1062                         hw_dev_acquisition_stop(sdi, sdi);
1063
1064         }
1065
1066         if (devc->state.state == SIGMA_DOWNLOAD) {
1067                 if (devc->state.chunks_downloaded >= numchunks) {
1068                         /* End of samples. */
1069                         packet.type = SR_DF_END;
1070                         sr_session_send(devc->session_dev_id, &packet);
1071
1072                         devc->state.state = SIGMA_IDLE;
1073
1074                         return TRUE;
1075                 }
1076
1077                 newchunks = MIN(chunks_per_read,
1078                                 numchunks - devc->state.chunks_downloaded);
1079
1080                 sr_info("Downloading sample data: %.0f %%.",
1081                         100.0 * devc->state.chunks_downloaded / numchunks);
1082
1083                 bufsz = sigma_read_dram(devc->state.chunks_downloaded,
1084                                         newchunks, buf, devc);
1085                 /* TODO: Check bufsz. For now, just avoid compiler warnings. */
1086                 (void)bufsz;
1087
1088                 /* Find first ts. */
1089                 if (devc->state.chunks_downloaded == 0) {
1090                         devc->state.lastts = *(uint16_t *) buf - 1;
1091                         devc->state.lastsample = 0;
1092                 }
1093
1094                 /* Decode chunks and send them to sigrok. */
1095                 for (i = 0; i < newchunks; ++i) {
1096                         int limit_chunk = 0;
1097
1098                         /* The last chunk may potentially be only in part. */
1099                         if (devc->state.chunks_downloaded == numchunks - 1) {
1100                                 /* Find the last valid timestamp */
1101                                 limit_chunk = devc->state.stoppos % 512 + devc->state.lastts;
1102                         }
1103
1104                         if (devc->state.chunks_downloaded + i == devc->state.triggerchunk)
1105                                 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1106                                                 &devc->state.lastts,
1107                                                 &devc->state.lastsample,
1108                                                 devc->state.triggerpos & 0x1ff,
1109                                                 limit_chunk, sdi);
1110                         else
1111                                 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1112                                                 &devc->state.lastts,
1113                                                 &devc->state.lastsample,
1114                                                 -1, limit_chunk, sdi);
1115
1116                         ++devc->state.chunks_downloaded;
1117                 }
1118         }
1119
1120         return TRUE;
1121 }
1122
1123 /* Build a LUT entry used by the trigger functions. */
1124 static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
1125 {
1126         int i, j, k, bit;
1127
1128         /* For each quad probe. */
1129         for (i = 0; i < 4; ++i) {
1130                 entry[i] = 0xffff;
1131
1132                 /* For each bit in LUT. */
1133                 for (j = 0; j < 16; ++j)
1134
1135                         /* For each probe in quad. */
1136                         for (k = 0; k < 4; ++k) {
1137                                 bit = 1 << (i * 4 + k);
1138
1139                                 /* Set bit in entry */
1140                                 if ((mask & bit) &&
1141                                     ((!(value & bit)) !=
1142                                     (!(j & (1 << k)))))
1143                                         entry[i] &= ~(1 << j);
1144                         }
1145         }
1146 }
1147
1148 /* Add a logical function to LUT mask. */
1149 static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1150                                  int index, int neg, uint16_t *mask)
1151 {
1152         int i, j;
1153         int x[2][2], tmp, a, b, aset, bset, rset;
1154
1155         memset(x, 0, 4 * sizeof(int));
1156
1157         /* Trigger detect condition. */
1158         switch (oper) {
1159         case OP_LEVEL:
1160                 x[0][1] = 1;
1161                 x[1][1] = 1;
1162                 break;
1163         case OP_NOT:
1164                 x[0][0] = 1;
1165                 x[1][0] = 1;
1166                 break;
1167         case OP_RISE:
1168                 x[0][1] = 1;
1169                 break;
1170         case OP_FALL:
1171                 x[1][0] = 1;
1172                 break;
1173         case OP_RISEFALL:
1174                 x[0][1] = 1;
1175                 x[1][0] = 1;
1176                 break;
1177         case OP_NOTRISE:
1178                 x[1][1] = 1;
1179                 x[0][0] = 1;
1180                 x[1][0] = 1;
1181                 break;
1182         case OP_NOTFALL:
1183                 x[1][1] = 1;
1184                 x[0][0] = 1;
1185                 x[0][1] = 1;
1186                 break;
1187         case OP_NOTRISEFALL:
1188                 x[1][1] = 1;
1189                 x[0][0] = 1;
1190                 break;
1191         }
1192
1193         /* Transpose if neg is set. */
1194         if (neg) {
1195                 for (i = 0; i < 2; ++i) {
1196                         for (j = 0; j < 2; ++j) {
1197                                 tmp = x[i][j];
1198                                 x[i][j] = x[1-i][1-j];
1199                                 x[1-i][1-j] = tmp;
1200                         }
1201                 }
1202         }
1203
1204         /* Update mask with function. */
1205         for (i = 0; i < 16; ++i) {
1206                 a = (i >> (2 * index + 0)) & 1;
1207                 b = (i >> (2 * index + 1)) & 1;
1208
1209                 aset = (*mask >> i) & 1;
1210                 bset = x[b][a];
1211
1212                 if (func == FUNC_AND || func == FUNC_NAND)
1213                         rset = aset & bset;
1214                 else if (func == FUNC_OR || func == FUNC_NOR)
1215                         rset = aset | bset;
1216                 else if (func == FUNC_XOR || func == FUNC_NXOR)
1217                         rset = aset ^ bset;
1218
1219                 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1220                         rset = !rset;
1221
1222                 *mask &= ~(1 << i);
1223
1224                 if (rset)
1225                         *mask |= 1 << i;
1226         }
1227 }
1228
1229 /*
1230  * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1231  * simple pin change and state triggers. Only two transitions (rise/fall) can be
1232  * set at any time, but a full mask and value can be set (0/1).
1233  */
1234 static int build_basic_trigger(struct triggerlut *lut, struct dev_context *devc)
1235 {
1236         int i,j;
1237         uint16_t masks[2] = { 0, 0 };
1238
1239         memset(lut, 0, sizeof(struct triggerlut));
1240
1241         /* Contant for simple triggers. */
1242         lut->m4 = 0xa000;
1243
1244         /* Value/mask trigger support. */
1245         build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
1246                         lut->m2d);
1247
1248         /* Rise/fall trigger support. */
1249         for (i = 0, j = 0; i < 16; ++i) {
1250                 if (devc->trigger.risingmask & (1 << i) ||
1251                     devc->trigger.fallingmask & (1 << i))
1252                         masks[j++] = 1 << i;
1253         }
1254
1255         build_lut_entry(masks[0], masks[0], lut->m0d);
1256         build_lut_entry(masks[1], masks[1], lut->m1d);
1257
1258         /* Add glue logic */
1259         if (masks[0] || masks[1]) {
1260                 /* Transition trigger. */
1261                 if (masks[0] & devc->trigger.risingmask)
1262                         add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
1263                 if (masks[0] & devc->trigger.fallingmask)
1264                         add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
1265                 if (masks[1] & devc->trigger.risingmask)
1266                         add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
1267                 if (masks[1] & devc->trigger.fallingmask)
1268                         add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1269         } else {
1270                 /* Only value/mask trigger. */
1271                 lut->m3 = 0xffff;
1272         }
1273
1274         /* Triggertype: event. */
1275         lut->params.selres = 3;
1276
1277         return SR_OK;
1278 }
1279
1280 static int hw_dev_acquisition_start(const struct sr_dev_inst *sdi,
1281                 void *cb_data)
1282 {
1283         struct dev_context *devc;
1284         struct sr_datafeed_packet *packet;
1285         struct sr_datafeed_header *header;
1286         struct clockselect_50 clockselect;
1287         int frac, triggerpin, ret;
1288         uint8_t triggerselect = 0;
1289         struct triggerinout triggerinout_conf;
1290         struct triggerlut lut;
1291
1292         devc = sdi->priv;
1293
1294         if (configure_probes(sdi) != SR_OK) {
1295                 sr_err("Failed to configure probes.");
1296                 return SR_ERR;
1297         }
1298
1299         /* If the samplerate has not been set, default to 200 kHz. */
1300         if (devc->cur_firmware == -1) {
1301                 if ((ret = set_samplerate(sdi, SR_KHZ(200))) != SR_OK)
1302                         return ret;
1303         }
1304
1305         /* Enter trigger programming mode. */
1306         sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, devc);
1307
1308         /* 100 and 200 MHz mode. */
1309         if (devc->cur_samplerate >= SR_MHZ(100)) {
1310                 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, devc);
1311
1312                 /* Find which pin to trigger on from mask. */
1313                 for (triggerpin = 0; triggerpin < 8; ++triggerpin)
1314                         if ((devc->trigger.risingmask | devc->trigger.fallingmask) &
1315                             (1 << triggerpin))
1316                                 break;
1317
1318                 /* Set trigger pin and light LED on trigger. */
1319                 triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
1320
1321                 /* Default rising edge. */
1322                 if (devc->trigger.fallingmask)
1323                         triggerselect |= 1 << 3;
1324
1325         /* All other modes. */
1326         } else if (devc->cur_samplerate <= SR_MHZ(50)) {
1327                 build_basic_trigger(&lut, devc);
1328
1329                 sigma_write_trigger_lut(&lut, devc);
1330
1331                 triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
1332         }
1333
1334         /* Setup trigger in and out pins to default values. */
1335         memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
1336         triggerinout_conf.trgout_bytrigger = 1;
1337         triggerinout_conf.trgout_enable = 1;
1338
1339         sigma_write_register(WRITE_TRIGGER_OPTION,
1340                              (uint8_t *) &triggerinout_conf,
1341                              sizeof(struct triggerinout), devc);
1342
1343         /* Go back to normal mode. */
1344         sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, devc);
1345
1346         /* Set clock select register. */
1347         if (devc->cur_samplerate == SR_MHZ(200))
1348                 /* Enable 4 probes. */
1349                 sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, devc);
1350         else if (devc->cur_samplerate == SR_MHZ(100))
1351                 /* Enable 8 probes. */
1352                 sigma_set_register(WRITE_CLOCK_SELECT, 0x00, devc);
1353         else {
1354                 /*
1355                  * 50 MHz mode (or fraction thereof). Any fraction down to
1356                  * 50 MHz / 256 can be used, but is not supported by sigrok API.
1357                  */
1358                 frac = SR_MHZ(50) / devc->cur_samplerate - 1;
1359
1360                 clockselect.async = 0;
1361                 clockselect.fraction = frac;
1362                 clockselect.disabled_probes = 0;
1363
1364                 sigma_write_register(WRITE_CLOCK_SELECT,
1365                                      (uint8_t *) &clockselect,
1366                                      sizeof(clockselect), devc);
1367         }
1368
1369         /* Setup maximum post trigger time. */
1370         sigma_set_register(WRITE_POST_TRIGGER,
1371                            (devc->capture_ratio * 255) / 100, devc);
1372
1373         /* Start acqusition. */
1374         gettimeofday(&devc->start_tv, 0);
1375         sigma_set_register(WRITE_MODE, 0x0d, devc);
1376
1377         devc->session_dev_id = cb_data;
1378
1379         if (!(packet = g_try_malloc(sizeof(struct sr_datafeed_packet)))) {
1380                 sr_err("%s: packet malloc failed.", __func__);
1381                 return SR_ERR_MALLOC;
1382         }
1383
1384         if (!(header = g_try_malloc(sizeof(struct sr_datafeed_header)))) {
1385                 sr_err("%s: header malloc failed.", __func__);
1386                 return SR_ERR_MALLOC;
1387         }
1388
1389         /* Send header packet to the session bus. */
1390         packet->type = SR_DF_HEADER;
1391         packet->payload = header;
1392         header->feed_version = 1;
1393         gettimeofday(&header->starttime, NULL);
1394         sr_session_send(devc->session_dev_id, packet);
1395
1396         /* Add capture source. */
1397         sr_source_add(0, G_IO_IN, 10, receive_data, (void *)sdi);
1398
1399         g_free(header);
1400         g_free(packet);
1401
1402         devc->state.state = SIGMA_CAPTURE;
1403
1404         return SR_OK;
1405 }
1406
1407 static int hw_dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
1408 {
1409         struct dev_context *devc;
1410         uint8_t modestatus;
1411
1412         (void)cb_data;
1413
1414         sr_source_remove(0);
1415
1416         if (!(devc = sdi->priv)) {
1417                 sr_err("%s: sdi->priv was NULL", __func__);
1418                 return SR_ERR_BUG;
1419         }
1420
1421         /* Stop acquisition. */
1422         sigma_set_register(WRITE_MODE, 0x11, devc);
1423
1424         /* Set SDRAM Read Enable. */
1425         sigma_set_register(WRITE_MODE, 0x02, devc);
1426
1427         /* Get the current position. */
1428         sigma_read_pos(&devc->state.stoppos, &devc->state.triggerpos, devc);
1429
1430         /* Check if trigger has fired. */
1431         modestatus = sigma_get_register(READ_MODE, devc);
1432         if (modestatus & 0x20)
1433                 devc->state.triggerchunk = devc->state.triggerpos / 512;
1434         else
1435                 devc->state.triggerchunk = -1;
1436
1437         devc->state.chunks_downloaded = 0;
1438
1439         devc->state.state = SIGMA_DOWNLOAD;
1440
1441         return SR_OK;
1442 }
1443
1444 SR_PRIV struct sr_dev_driver asix_sigma_driver_info = {
1445         .name = "asix-sigma",
1446         .longname = "ASIX SIGMA/SIGMA2",
1447         .api_version = 1,
1448         .init = hw_init,
1449         .cleanup = hw_cleanup,
1450         .scan = hw_scan,
1451         .dev_list = hw_dev_list,
1452         .dev_clear = clear_instances,
1453         .config_get = config_get,
1454         .config_set = config_set,
1455         .config_list = config_list,
1456         .dev_open = hw_dev_open,
1457         .dev_close = hw_dev_close,
1458         .dev_acquisition_start = hw_dev_acquisition_start,
1459         .dev_acquisition_stop = hw_dev_acquisition_stop,
1460         .priv = NULL,
1461 };