]> sigrok.org Git - libsigrok.git/blob - hardware/asix-sigma/asix-sigma.c
All drivers: Drop unneeded comments.
[libsigrok.git] / hardware / asix-sigma / asix-sigma.c
1 /*
2  * This file is part of the sigrok project.
3  *
4  * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
5  * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6  * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7  *
8  * This program is free software: you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 3 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21
22 /*
23  * ASIX SIGMA/SIGMA2 logic analyzer driver
24  */
25
26 #include <glib.h>
27 #include <glib/gstdio.h>
28 #include <ftdi.h>
29 #include <string.h>
30 #include "libsigrok.h"
31 #include "libsigrok-internal.h"
32 #include "asix-sigma.h"
33
34 #define USB_VENDOR                      0xa600
35 #define USB_PRODUCT                     0xa000
36 #define USB_DESCRIPTION                 "ASIX SIGMA"
37 #define USB_VENDOR_NAME                 "ASIX"
38 #define USB_MODEL_NAME                  "SIGMA"
39 #define USB_MODEL_VERSION               ""
40 #define TRIGGER_TYPES                   "rf10"
41 #define NUM_PROBES                      16
42
43 SR_PRIV struct sr_dev_driver asix_sigma_driver_info;
44 static struct sr_dev_driver *adi = &asix_sigma_driver_info;
45 static int hw_dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data);
46
47 static const uint64_t supported_samplerates[] = {
48         SR_KHZ(200),
49         SR_KHZ(250),
50         SR_KHZ(500),
51         SR_MHZ(1),
52         SR_MHZ(5),
53         SR_MHZ(10),
54         SR_MHZ(25),
55         SR_MHZ(50),
56         SR_MHZ(100),
57         SR_MHZ(200),
58         0,
59 };
60
61 /*
62  * Probe numbers seem to go from 1-16, according to this image:
63  * http://tools.asix.net/img/sigma_sigmacab_pins_720.jpg
64  * (the cable has two additional GND pins, and a TI and TO pin)
65  */
66 static const char *probe_names[NUM_PROBES + 1] = {
67         "1",
68         "2",
69         "3",
70         "4",
71         "5",
72         "6",
73         "7",
74         "8",
75         "9",
76         "10",
77         "11",
78         "12",
79         "13",
80         "14",
81         "15",
82         "16",
83         NULL,
84 };
85
86 static const struct sr_samplerates samplerates = {
87         0,
88         0,
89         0,
90         supported_samplerates,
91 };
92
93 static const int hwcaps[] = {
94         SR_HWCAP_LOGIC_ANALYZER,
95         SR_HWCAP_SAMPLERATE,
96         SR_HWCAP_CAPTURE_RATIO,
97
98         SR_HWCAP_LIMIT_MSEC,
99         0,
100 };
101
102 /* Force the FPGA to reboot. */
103 static uint8_t suicide[] = {
104         0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
105 };
106
107 /* Prepare to upload firmware (FPGA specific). */
108 static uint8_t init[] = {
109         0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
110 };
111
112 /* Initialize the logic analyzer mode. */
113 static uint8_t logic_mode_start[] = {
114         0x00, 0x40, 0x0f, 0x25, 0x35, 0x40,
115         0x2a, 0x3a, 0x40, 0x03, 0x20, 0x38,
116 };
117
118 static const char *firmware_files[] = {
119         "asix-sigma-50.fw",     /* 50 MHz, supports 8 bit fractions */
120         "asix-sigma-100.fw",    /* 100 MHz */
121         "asix-sigma-200.fw",    /* 200 MHz */
122         "asix-sigma-50sync.fw", /* Synchronous clock from pin */
123         "asix-sigma-phasor.fw", /* Frequency counter */
124 };
125
126 static int sigma_read(void *buf, size_t size, struct dev_context *devc)
127 {
128         int ret;
129
130         ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
131         if (ret < 0) {
132                 sr_err("ftdi_read_data failed: %s",
133                        ftdi_get_error_string(&devc->ftdic));
134         }
135
136         return ret;
137 }
138
139 static int sigma_write(void *buf, size_t size, struct dev_context *devc)
140 {
141         int ret;
142
143         ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size);
144         if (ret < 0) {
145                 sr_err("ftdi_write_data failed: %s",
146                        ftdi_get_error_string(&devc->ftdic));
147         } else if ((size_t) ret != size) {
148                 sr_err("ftdi_write_data did not complete write.");
149         }
150
151         return ret;
152 }
153
154 static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
155                                 struct dev_context *devc)
156 {
157         size_t i;
158         uint8_t buf[len + 2];
159         int idx = 0;
160
161         buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
162         buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
163
164         for (i = 0; i < len; ++i) {
165                 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
166                 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
167         }
168
169         return sigma_write(buf, idx, devc);
170 }
171
172 static int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc)
173 {
174         return sigma_write_register(reg, &value, 1, devc);
175 }
176
177 static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
178                                struct dev_context *devc)
179 {
180         uint8_t buf[3];
181
182         buf[0] = REG_ADDR_LOW | (reg & 0xf);
183         buf[1] = REG_ADDR_HIGH | (reg >> 4);
184         buf[2] = REG_READ_ADDR;
185
186         sigma_write(buf, sizeof(buf), devc);
187
188         return sigma_read(data, len, devc);
189 }
190
191 static uint8_t sigma_get_register(uint8_t reg, struct dev_context *devc)
192 {
193         uint8_t value;
194
195         if (1 != sigma_read_register(reg, &value, 1, devc)) {
196                 sr_err("sigma_get_register: 1 byte expected");
197                 return 0;
198         }
199
200         return value;
201 }
202
203 static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
204                           struct dev_context *devc)
205 {
206         uint8_t buf[] = {
207                 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
208
209                 REG_READ_ADDR | NEXT_REG,
210                 REG_READ_ADDR | NEXT_REG,
211                 REG_READ_ADDR | NEXT_REG,
212                 REG_READ_ADDR | NEXT_REG,
213                 REG_READ_ADDR | NEXT_REG,
214                 REG_READ_ADDR | NEXT_REG,
215         };
216         uint8_t result[6];
217
218         sigma_write(buf, sizeof(buf), devc);
219
220         sigma_read(result, sizeof(result), devc);
221
222         *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
223         *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
224
225         /* Not really sure why this must be done, but according to spec. */
226         if ((--*stoppos & 0x1ff) == 0x1ff)
227                 stoppos -= 64;
228
229         if ((*--triggerpos & 0x1ff) == 0x1ff)
230                 triggerpos -= 64;
231
232         return 1;
233 }
234
235 static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
236                            uint8_t *data, struct dev_context *devc)
237 {
238         size_t i;
239         uint8_t buf[4096];
240         int idx = 0;
241
242         /* Send the startchunk. Index start with 1. */
243         buf[0] = startchunk >> 8;
244         buf[1] = startchunk & 0xff;
245         sigma_write_register(WRITE_MEMROW, buf, 2, devc);
246
247         /* Read the DRAM. */
248         buf[idx++] = REG_DRAM_BLOCK;
249         buf[idx++] = REG_DRAM_WAIT_ACK;
250
251         for (i = 0; i < numchunks; ++i) {
252                 /* Alternate bit to copy from DRAM to cache. */
253                 if (i != (numchunks - 1))
254                         buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
255
256                 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
257
258                 if (i != (numchunks - 1))
259                         buf[idx++] = REG_DRAM_WAIT_ACK;
260         }
261
262         sigma_write(buf, idx, devc);
263
264         return sigma_read(data, numchunks * CHUNK_SIZE, devc);
265 }
266
267 /* Upload trigger look-up tables to Sigma. */
268 static int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc)
269 {
270         int i;
271         uint8_t tmp[2];
272         uint16_t bit;
273
274         /* Transpose the table and send to Sigma. */
275         for (i = 0; i < 16; ++i) {
276                 bit = 1 << i;
277
278                 tmp[0] = tmp[1] = 0;
279
280                 if (lut->m2d[0] & bit)
281                         tmp[0] |= 0x01;
282                 if (lut->m2d[1] & bit)
283                         tmp[0] |= 0x02;
284                 if (lut->m2d[2] & bit)
285                         tmp[0] |= 0x04;
286                 if (lut->m2d[3] & bit)
287                         tmp[0] |= 0x08;
288
289                 if (lut->m3 & bit)
290                         tmp[0] |= 0x10;
291                 if (lut->m3s & bit)
292                         tmp[0] |= 0x20;
293                 if (lut->m4 & bit)
294                         tmp[0] |= 0x40;
295
296                 if (lut->m0d[0] & bit)
297                         tmp[1] |= 0x01;
298                 if (lut->m0d[1] & bit)
299                         tmp[1] |= 0x02;
300                 if (lut->m0d[2] & bit)
301                         tmp[1] |= 0x04;
302                 if (lut->m0d[3] & bit)
303                         tmp[1] |= 0x08;
304
305                 if (lut->m1d[0] & bit)
306                         tmp[1] |= 0x10;
307                 if (lut->m1d[1] & bit)
308                         tmp[1] |= 0x20;
309                 if (lut->m1d[2] & bit)
310                         tmp[1] |= 0x40;
311                 if (lut->m1d[3] & bit)
312                         tmp[1] |= 0x80;
313
314                 sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
315                                      devc);
316                 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, devc);
317         }
318
319         /* Send the parameters */
320         sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
321                              sizeof(lut->params), devc);
322
323         return SR_OK;
324 }
325
326 /* Generate the bitbang stream for programming the FPGA. */
327 static int bin2bitbang(const char *filename,
328                        unsigned char **buf, size_t *buf_size)
329 {
330         FILE *f;
331         unsigned long file_size;
332         unsigned long offset = 0;
333         unsigned char *p;
334         uint8_t *firmware;
335         unsigned long fwsize = 0;
336         const int buffer_size = 65536;
337         size_t i;
338         int c, bit, v;
339         uint32_t imm = 0x3f6df2ab;
340
341         f = g_fopen(filename, "rb");
342         if (!f) {
343                 sr_err("g_fopen(\"%s\", \"rb\")", filename);
344                 return SR_ERR;
345         }
346
347         if (-1 == fseek(f, 0, SEEK_END)) {
348                 sr_err("fseek on %s failed", filename);
349                 fclose(f);
350                 return SR_ERR;
351         }
352
353         file_size = ftell(f);
354
355         fseek(f, 0, SEEK_SET);
356
357         if (!(firmware = g_try_malloc(buffer_size))) {
358                 sr_err("%s: firmware malloc failed", __func__);
359                 fclose(f);
360                 return SR_ERR_MALLOC;
361         }
362
363         while ((c = getc(f)) != EOF) {
364                 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
365                 firmware[fwsize++] = c ^ imm;
366         }
367         fclose(f);
368
369         if(fwsize != file_size) {
370             sr_err("%s: Error reading firmware", filename);
371             fclose(f);
372             g_free(firmware);
373             return SR_ERR;
374         }
375
376         *buf_size = fwsize * 2 * 8;
377
378         *buf = p = (unsigned char *)g_try_malloc(*buf_size);
379         if (!p) {
380                 sr_err("%s: buf/p malloc failed", __func__);
381                 g_free(firmware);
382                 return SR_ERR_MALLOC;
383         }
384
385         for (i = 0; i < fwsize; ++i) {
386                 for (bit = 7; bit >= 0; --bit) {
387                         v = firmware[i] & 1 << bit ? 0x40 : 0x00;
388                         p[offset++] = v | 0x01;
389                         p[offset++] = v;
390                 }
391         }
392
393         g_free(firmware);
394
395         if (offset != *buf_size) {
396                 g_free(*buf);
397                 sr_err("Error reading firmware %s "
398                        "offset=%ld, file_size=%ld, buf_size=%zd.",
399                        filename, offset, file_size, *buf_size);
400
401                 return SR_ERR;
402         }
403
404         return SR_OK;
405 }
406
407 static int clear_instances(void)
408 {
409         GSList *l;
410         struct sr_dev_inst *sdi;
411         struct drv_context *drvc;
412         struct dev_context *devc;
413
414         drvc = adi->priv;
415
416         /* Properly close all devices. */
417         for (l = drvc->instances; l; l = l->next) {
418                 if (!(sdi = l->data)) {
419                         /* Log error, but continue cleaning up the rest. */
420                         sr_err("%s: sdi was NULL, continuing", __func__);
421                         continue;
422                 }
423                 if (sdi->priv) {
424                         devc = sdi->priv;
425                         ftdi_free(&devc->ftdic);
426                 }
427                 sr_dev_inst_free(sdi);
428         }
429         g_slist_free(drvc->instances);
430         drvc->instances = NULL;
431
432         return SR_OK;
433 }
434
435 static int hw_init(void)
436 {
437         struct drv_context *drvc;
438
439         if (!(drvc = g_try_malloc0(sizeof(struct drv_context)))) {
440                 sr_err("Driver context malloc failed.");
441                 return SR_ERR_MALLOC;
442         }
443         adi->priv = drvc;
444
445         return SR_OK;
446 }
447
448 static GSList *hw_scan(GSList *options)
449 {
450         struct sr_dev_inst *sdi;
451         struct sr_probe *probe;
452         struct drv_context *drvc;
453         struct dev_context *devc;
454         GSList *devices;
455         struct ftdi_device_list *devlist;
456         char serial_txt[10];
457         uint32_t serial;
458         int ret, i;
459
460         (void)options;
461
462         drvc = adi->priv;
463         devices = NULL;
464         clear_instances();
465
466         if (!(devc = g_try_malloc(sizeof(struct dev_context)))) {
467                 sr_err("%s: devc malloc failed", __func__);
468                 return NULL;
469         }
470
471         ftdi_init(&devc->ftdic);
472
473         /* Look for SIGMAs. */
474
475         if ((ret = ftdi_usb_find_all(&devc->ftdic, &devlist,
476             USB_VENDOR, USB_PRODUCT)) <= 0) {
477                 if (ret < 0)
478                         sr_err("ftdi_usb_find_all(): %d", ret);
479                 goto free;
480         }
481
482         /* Make sure it's a version 1 or 2 SIGMA. */
483         ftdi_usb_get_strings(&devc->ftdic, devlist->dev, NULL, 0, NULL, 0,
484                              serial_txt, sizeof(serial_txt));
485         sscanf(serial_txt, "%x", &serial);
486
487         if (serial < 0xa6010000 || serial > 0xa602ffff) {
488                 sr_err("Only SIGMA and SIGMA2 are supported "
489                        "in this version of libsigrok.");
490                 goto free;
491         }
492
493         sr_info("Found ASIX SIGMA - Serial: %s", serial_txt);
494
495         devc->cur_samplerate = 0;
496         devc->period_ps = 0;
497         devc->limit_msec = 0;
498         devc->cur_firmware = -1;
499         devc->num_probes = 0;
500         devc->samples_per_event = 0;
501         devc->capture_ratio = 50;
502         devc->use_triggers = 0;
503
504         /* Register SIGMA device. */
505         if (!(sdi = sr_dev_inst_new(0, SR_ST_INITIALIZING, USB_VENDOR_NAME,
506                                     USB_MODEL_NAME, USB_MODEL_VERSION))) {
507                 sr_err("%s: sdi was NULL", __func__);
508                 goto free;
509         }
510         sdi->driver = adi;
511
512         for (i = 0; probe_names[i]; i++) {
513                 if (!(probe = sr_probe_new(i, SR_PROBE_ANALOG, TRUE,
514                                 probe_names[i])))
515                         return NULL;
516                 sdi->probes = g_slist_append(sdi->probes, probe);
517         }
518
519         devices = g_slist_append(devices, sdi);
520         drvc->instances = g_slist_append(drvc->instances, sdi);
521         sdi->priv = devc;
522
523         /* We will open the device again when we need it. */
524         ftdi_list_free(&devlist);
525
526         return devices;
527
528 free:
529         ftdi_deinit(&devc->ftdic);
530         g_free(devc);
531         return NULL;
532 }
533
534 static GSList *hw_dev_list(void)
535 {
536         struct drv_context *drvc;
537
538         drvc = adi->priv;
539
540         return drvc->instances;
541 }
542
543 static int upload_firmware(int firmware_idx, struct dev_context *devc)
544 {
545         int ret;
546         unsigned char *buf;
547         unsigned char pins;
548         size_t buf_size;
549         unsigned char result[32];
550         char firmware_path[128];
551
552         /* Make sure it's an ASIX SIGMA. */
553         if ((ret = ftdi_usb_open_desc(&devc->ftdic,
554                 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
555                 sr_err("ftdi_usb_open failed: %s",
556                        ftdi_get_error_string(&devc->ftdic));
557                 return 0;
558         }
559
560         if ((ret = ftdi_set_bitmode(&devc->ftdic, 0xdf, BITMODE_BITBANG)) < 0) {
561                 sr_err("ftdi_set_bitmode failed: %s",
562                        ftdi_get_error_string(&devc->ftdic));
563                 return 0;
564         }
565
566         /* Four times the speed of sigmalogan - Works well. */
567         if ((ret = ftdi_set_baudrate(&devc->ftdic, 750000)) < 0) {
568                 sr_err("ftdi_set_baudrate failed: %s",
569                        ftdi_get_error_string(&devc->ftdic));
570                 return 0;
571         }
572
573         /* Force the FPGA to reboot. */
574         sigma_write(suicide, sizeof(suicide), devc);
575         sigma_write(suicide, sizeof(suicide), devc);
576         sigma_write(suicide, sizeof(suicide), devc);
577         sigma_write(suicide, sizeof(suicide), devc);
578
579         /* Prepare to upload firmware (FPGA specific). */
580         sigma_write(init, sizeof(init), devc);
581
582         ftdi_usb_purge_buffers(&devc->ftdic);
583
584         /* Wait until the FPGA asserts INIT_B. */
585         while (1) {
586                 ret = sigma_read(result, 1, devc);
587                 if (result[0] & 0x20)
588                         break;
589         }
590
591         /* Prepare firmware. */
592         snprintf(firmware_path, sizeof(firmware_path), "%s/%s", FIRMWARE_DIR,
593                  firmware_files[firmware_idx]);
594
595         if ((ret = bin2bitbang(firmware_path, &buf, &buf_size)) != SR_OK) {
596                 sr_err("An error occured while reading the firmware: %s",
597                        firmware_path);
598                 return ret;
599         }
600
601         /* Upload firmare. */
602         sr_info("Uploading firmware file '%s'.", firmware_files[firmware_idx]);
603         sigma_write(buf, buf_size, devc);
604
605         g_free(buf);
606
607         if ((ret = ftdi_set_bitmode(&devc->ftdic, 0x00, BITMODE_RESET)) < 0) {
608                 sr_err("ftdi_set_bitmode failed: %s",
609                        ftdi_get_error_string(&devc->ftdic));
610                 return SR_ERR;
611         }
612
613         ftdi_usb_purge_buffers(&devc->ftdic);
614
615         /* Discard garbage. */
616         while (1 == sigma_read(&pins, 1, devc))
617                 ;
618
619         /* Initialize the logic analyzer mode. */
620         sigma_write(logic_mode_start, sizeof(logic_mode_start), devc);
621
622         /* Expect a 3 byte reply. */
623         ret = sigma_read(result, 3, devc);
624         if (ret != 3 ||
625             result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) {
626                 sr_err("Configuration failed. Invalid reply received.");
627                 return SR_ERR;
628         }
629
630         devc->cur_firmware = firmware_idx;
631
632         sr_info("Firmware uploaded.");
633
634         return SR_OK;
635 }
636
637 static int hw_dev_open(struct sr_dev_inst *sdi)
638 {
639         struct dev_context *devc;
640         int ret;
641
642         devc = sdi->priv;
643
644         /* Make sure it's an ASIX SIGMA. */
645         if ((ret = ftdi_usb_open_desc(&devc->ftdic,
646                 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
647
648                 sr_err("ftdi_usb_open failed: %s",
649                        ftdi_get_error_string(&devc->ftdic));
650
651                 return 0;
652         }
653
654         sdi->status = SR_ST_ACTIVE;
655
656         return SR_OK;
657 }
658
659 static int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
660 {
661         int i, ret;
662         struct dev_context *devc = sdi->priv;
663
664         for (i = 0; supported_samplerates[i]; i++) {
665                 if (supported_samplerates[i] == samplerate)
666                         break;
667         }
668         if (supported_samplerates[i] == 0)
669                 return SR_ERR_SAMPLERATE;
670
671         if (samplerate <= SR_MHZ(50)) {
672                 ret = upload_firmware(0, devc);
673                 devc->num_probes = 16;
674         }
675         if (samplerate == SR_MHZ(100)) {
676                 ret = upload_firmware(1, devc);
677                 devc->num_probes = 8;
678         }
679         else if (samplerate == SR_MHZ(200)) {
680                 ret = upload_firmware(2, devc);
681                 devc->num_probes = 4;
682         }
683
684         devc->cur_samplerate = samplerate;
685         devc->period_ps = 1000000000000 / samplerate;
686         devc->samples_per_event = 16 / devc->num_probes;
687         devc->state.state = SIGMA_IDLE;
688
689         return ret;
690 }
691
692 /*
693  * In 100 and 200 MHz mode, only a single pin rising/falling can be
694  * set as trigger. In other modes, two rising/falling triggers can be set,
695  * in addition to value/mask trigger for any number of probes.
696  *
697  * The Sigma supports complex triggers using boolean expressions, but this
698  * has not been implemented yet.
699  */
700 static int configure_probes(const struct sr_dev_inst *sdi)
701 {
702         struct dev_context *devc = sdi->priv;
703         const struct sr_probe *probe;
704         const GSList *l;
705         int trigger_set = 0;
706         int probebit;
707
708         memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
709
710         for (l = sdi->probes; l; l = l->next) {
711                 probe = (struct sr_probe *)l->data;
712                 probebit = 1 << (probe->index);
713
714                 if (!probe->enabled || !probe->trigger)
715                         continue;
716
717                 if (devc->cur_samplerate >= SR_MHZ(100)) {
718                         /* Fast trigger support. */
719                         if (trigger_set) {
720                                 sr_err("Only a single pin trigger in 100 and "
721                                        "200MHz mode is supported.");
722                                 return SR_ERR;
723                         }
724                         if (probe->trigger[0] == 'f')
725                                 devc->trigger.fallingmask |= probebit;
726                         else if (probe->trigger[0] == 'r')
727                                 devc->trigger.risingmask |= probebit;
728                         else {
729                                 sr_err("Only rising/falling trigger in 100 "
730                                        "and 200MHz mode is supported.");
731                                 return SR_ERR;
732                         }
733
734                         ++trigger_set;
735                 } else {
736                         /* Simple trigger support (event). */
737                         if (probe->trigger[0] == '1') {
738                                 devc->trigger.simplevalue |= probebit;
739                                 devc->trigger.simplemask |= probebit;
740                         }
741                         else if (probe->trigger[0] == '0') {
742                                 devc->trigger.simplevalue &= ~probebit;
743                                 devc->trigger.simplemask |= probebit;
744                         }
745                         else if (probe->trigger[0] == 'f') {
746                                 devc->trigger.fallingmask |= probebit;
747                                 ++trigger_set;
748                         }
749                         else if (probe->trigger[0] == 'r') {
750                                 devc->trigger.risingmask |= probebit;
751                                 ++trigger_set;
752                         }
753
754                         /*
755                          * Actually, Sigma supports 2 rising/falling triggers,
756                          * but they are ORed and the current trigger syntax
757                          * does not permit ORed triggers.
758                          */
759                         if (trigger_set > 1) {
760                                 sr_err("Only 1 rising/falling trigger "
761                                        "is supported.");
762                                 return SR_ERR;
763                         }
764                 }
765
766                 if (trigger_set)
767                         devc->use_triggers = 1;
768         }
769
770         return SR_OK;
771 }
772
773 static int hw_dev_close(struct sr_dev_inst *sdi)
774 {
775         struct dev_context *devc;
776
777         if (!(devc = sdi->priv)) {
778                 sr_err("%s: sdi->priv was NULL", __func__);
779                 return SR_ERR_BUG;
780         }
781
782         /* TODO */
783         if (sdi->status == SR_ST_ACTIVE)
784                 ftdi_usb_close(&devc->ftdic);
785
786         sdi->status = SR_ST_INACTIVE;
787
788         return SR_OK;
789 }
790
791 static int hw_cleanup(void)
792 {
793         if (!adi->priv)
794                 return SR_OK;
795
796         clear_instances();
797
798         return SR_OK;
799 }
800
801 static int hw_info_get(int info_id, const void **data,
802                        const struct sr_dev_inst *sdi)
803 {
804         struct dev_context *devc;
805
806         switch (info_id) {
807         case SR_DI_HWCAPS:
808                 *data = hwcaps;
809                 break;
810         case SR_DI_NUM_PROBES:
811                 *data = GINT_TO_POINTER(NUM_PROBES);
812                 break;
813         case SR_DI_PROBE_NAMES:
814                 *data = probe_names;
815                 break;
816         case SR_DI_SAMPLERATES:
817                 *data = &samplerates;
818                 break;
819         case SR_DI_TRIGGER_TYPES:
820                 *data = (char *)TRIGGER_TYPES;
821                 break;
822         case SR_DI_CUR_SAMPLERATE:
823                 if (sdi) {
824                         devc = sdi->priv;
825                         *data = &devc->cur_samplerate;
826                 } else
827                         return SR_ERR;
828                 break;
829         default:
830                 return SR_ERR_ARG;
831         }
832
833         return SR_OK;
834 }
835
836 static int hw_dev_config_set(const struct sr_dev_inst *sdi, int hwcap,
837                              const void *value)
838 {
839         struct dev_context *devc;
840         int ret;
841
842         devc = sdi->priv;
843
844         if (hwcap == SR_HWCAP_SAMPLERATE) {
845                 ret = set_samplerate(sdi, *(const uint64_t *)value);
846         } else if (hwcap == SR_HWCAP_LIMIT_MSEC) {
847                 devc->limit_msec = *(const uint64_t *)value;
848                 if (devc->limit_msec > 0)
849                         ret = SR_OK;
850                 else
851                         ret = SR_ERR;
852         } else if (hwcap == SR_HWCAP_CAPTURE_RATIO) {
853                 devc->capture_ratio = *(const uint64_t *)value;
854                 if (devc->capture_ratio < 0 || devc->capture_ratio > 100)
855                         ret = SR_ERR;
856                 else
857                         ret = SR_OK;
858         } else {
859                 ret = SR_ERR;
860         }
861
862         return ret;
863 }
864
865 /* Software trigger to determine exact trigger position. */
866 static int get_trigger_offset(uint16_t *samples, uint16_t last_sample,
867                               struct sigma_trigger *t)
868 {
869         int i;
870
871         for (i = 0; i < 8; ++i) {
872                 if (i > 0)
873                         last_sample = samples[i-1];
874
875                 /* Simple triggers. */
876                 if ((samples[i] & t->simplemask) != t->simplevalue)
877                         continue;
878
879                 /* Rising edge. */
880                 if ((last_sample & t->risingmask) != 0 || (samples[i] &
881                     t->risingmask) != t->risingmask)
882                         continue;
883
884                 /* Falling edge. */
885                 if ((last_sample & t->fallingmask) != t->fallingmask ||
886                     (samples[i] & t->fallingmask) != 0)
887                         continue;
888
889                 break;
890         }
891
892         /* If we did not match, return original trigger pos. */
893         return i & 0x7;
894 }
895
896 /*
897  * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
898  * Each event is 20ns apart, and can contain multiple samples.
899  *
900  * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
901  * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
902  * For 50 MHz and below, events contain one sample for each channel,
903  * spread 20 ns apart.
904  */
905 static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
906                            uint16_t *lastsample, int triggerpos,
907                            uint16_t limit_chunk, void *cb_data)
908 {
909         struct sr_dev_inst *sdi = cb_data;
910         struct dev_context *devc = sdi->priv;
911         uint16_t tsdiff, ts;
912         uint16_t samples[65536 * devc->samples_per_event];
913         struct sr_datafeed_packet packet;
914         struct sr_datafeed_logic logic;
915         int i, j, k, l, numpad, tosend;
916         size_t n = 0, sent = 0;
917         int clustersize = EVENTS_PER_CLUSTER * devc->samples_per_event;
918         uint16_t *event;
919         uint16_t cur_sample;
920         int triggerts = -1;
921
922         /* Check if trigger is in this chunk. */
923         if (triggerpos != -1) {
924                 if (devc->cur_samplerate <= SR_MHZ(50))
925                         triggerpos -= EVENTS_PER_CLUSTER - 1;
926
927                 if (triggerpos < 0)
928                         triggerpos = 0;
929
930                 /* Find in which cluster the trigger occured. */
931                 triggerts = triggerpos / 7;
932         }
933
934         /* For each ts. */
935         for (i = 0; i < 64; ++i) {
936                 ts = *(uint16_t *) &buf[i * 16];
937                 tsdiff = ts - *lastts;
938                 *lastts = ts;
939
940                 /* Decode partial chunk. */
941                 if (limit_chunk && ts > limit_chunk)
942                         return SR_OK;
943
944                 /* Pad last sample up to current point. */
945                 numpad = tsdiff * devc->samples_per_event - clustersize;
946                 if (numpad > 0) {
947                         for (j = 0; j < numpad; ++j)
948                                 samples[j] = *lastsample;
949
950                         n = numpad;
951                 }
952
953                 /* Send samples between previous and this timestamp to sigrok. */
954                 sent = 0;
955                 while (sent < n) {
956                         tosend = MIN(2048, n - sent);
957
958                         packet.type = SR_DF_LOGIC;
959                         packet.payload = &logic;
960                         logic.length = tosend * sizeof(uint16_t);
961                         logic.unitsize = 2;
962                         logic.data = samples + sent;
963                         sr_session_send(devc->session_dev_id, &packet);
964
965                         sent += tosend;
966                 }
967                 n = 0;
968
969                 event = (uint16_t *) &buf[i * 16 + 2];
970                 cur_sample = 0;
971
972                 /* For each event in cluster. */
973                 for (j = 0; j < 7; ++j) {
974
975                         /* For each sample in event. */
976                         for (k = 0; k < devc->samples_per_event; ++k) {
977                                 cur_sample = 0;
978
979                                 /* For each probe. */
980                                 for (l = 0; l < devc->num_probes; ++l)
981                                         cur_sample |= (!!(event[j] & (1 << (l *
982                                            devc->samples_per_event + k)))) << l;
983
984                                 samples[n++] = cur_sample;
985                         }
986                 }
987
988                 /* Send data up to trigger point (if triggered). */
989                 sent = 0;
990                 if (i == triggerts) {
991                         /*
992                          * Trigger is not always accurate to sample because of
993                          * pipeline delay. However, it always triggers before
994                          * the actual event. We therefore look at the next
995                          * samples to pinpoint the exact position of the trigger.
996                          */
997                         tosend = get_trigger_offset(samples, *lastsample,
998                                                     &devc->trigger);
999
1000                         if (tosend > 0) {
1001                                 packet.type = SR_DF_LOGIC;
1002                                 packet.payload = &logic;
1003                                 logic.length = tosend * sizeof(uint16_t);
1004                                 logic.unitsize = 2;
1005                                 logic.data = samples;
1006                                 sr_session_send(devc->session_dev_id, &packet);
1007
1008                                 sent += tosend;
1009                         }
1010
1011                         /* Only send trigger if explicitly enabled. */
1012                         if (devc->use_triggers) {
1013                                 packet.type = SR_DF_TRIGGER;
1014                                 sr_session_send(devc->session_dev_id, &packet);
1015                         }
1016                 }
1017
1018                 /* Send rest of the chunk to sigrok. */
1019                 tosend = n - sent;
1020
1021                 if (tosend > 0) {
1022                         packet.type = SR_DF_LOGIC;
1023                         packet.payload = &logic;
1024                         logic.length = tosend * sizeof(uint16_t);
1025                         logic.unitsize = 2;
1026                         logic.data = samples + sent;
1027                         sr_session_send(devc->session_dev_id, &packet);
1028                 }
1029
1030                 *lastsample = samples[n - 1];
1031         }
1032
1033         return SR_OK;
1034 }
1035
1036 static int receive_data(int fd, int revents, void *cb_data)
1037 {
1038         struct sr_dev_inst *sdi = cb_data;
1039         struct dev_context *devc = sdi->priv;
1040         struct sr_datafeed_packet packet;
1041         const int chunks_per_read = 32;
1042         unsigned char buf[chunks_per_read * CHUNK_SIZE];
1043         int bufsz, numchunks, i, newchunks;
1044         uint64_t running_msec;
1045         struct timeval tv;
1046
1047         (void)fd;
1048         (void)revents;
1049
1050         /* Get the current position. */
1051         sigma_read_pos(&devc->state.stoppos, &devc->state.triggerpos, devc);
1052
1053         numchunks = (devc->state.stoppos + 511) / 512;
1054
1055         if (devc->state.state == SIGMA_IDLE)
1056                 return TRUE;
1057
1058         if (devc->state.state == SIGMA_CAPTURE) {
1059                 /* Check if the timer has expired, or memory is full. */
1060                 gettimeofday(&tv, 0);
1061                 running_msec = (tv.tv_sec - devc->start_tv.tv_sec) * 1000 +
1062                         (tv.tv_usec - devc->start_tv.tv_usec) / 1000;
1063
1064                 if (running_msec < devc->limit_msec && numchunks < 32767)
1065                         return TRUE; /* While capturing... */
1066                 else
1067                         hw_dev_acquisition_stop(sdi, sdi);
1068
1069         } else if (devc->state.state == SIGMA_DOWNLOAD) {
1070                 if (devc->state.chunks_downloaded >= numchunks) {
1071                         /* End of samples. */
1072                         packet.type = SR_DF_END;
1073                         sr_session_send(devc->session_dev_id, &packet);
1074
1075                         devc->state.state = SIGMA_IDLE;
1076
1077                         return TRUE;
1078                 }
1079
1080                 newchunks = MIN(chunks_per_read,
1081                                 numchunks - devc->state.chunks_downloaded);
1082
1083                 sr_info("Downloading sample data: %.0f %%.",
1084                         100.0 * devc->state.chunks_downloaded / numchunks);
1085
1086                 bufsz = sigma_read_dram(devc->state.chunks_downloaded,
1087                                         newchunks, buf, devc);
1088                 /* TODO: Check bufsz. For now, just avoid compiler warnings. */
1089                 (void)bufsz;
1090
1091                 /* Find first ts. */
1092                 if (devc->state.chunks_downloaded == 0) {
1093                         devc->state.lastts = *(uint16_t *) buf - 1;
1094                         devc->state.lastsample = 0;
1095                 }
1096
1097                 /* Decode chunks and send them to sigrok. */
1098                 for (i = 0; i < newchunks; ++i) {
1099                         int limit_chunk = 0;
1100
1101                         /* The last chunk may potentially be only in part. */
1102                         if (devc->state.chunks_downloaded == numchunks - 1) {
1103                                 /* Find the last valid timestamp */
1104                                 limit_chunk = devc->state.stoppos % 512 + devc->state.lastts;
1105                         }
1106
1107                         if (devc->state.chunks_downloaded + i == devc->state.triggerchunk)
1108                                 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1109                                                 &devc->state.lastts,
1110                                                 &devc->state.lastsample,
1111                                                 devc->state.triggerpos & 0x1ff,
1112                                                 limit_chunk, sdi);
1113                         else
1114                                 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1115                                                 &devc->state.lastts,
1116                                                 &devc->state.lastsample,
1117                                                 -1, limit_chunk, sdi);
1118
1119                         ++devc->state.chunks_downloaded;
1120                 }
1121         }
1122
1123         return TRUE;
1124 }
1125
1126 /* Build a LUT entry used by the trigger functions. */
1127 static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
1128 {
1129         int i, j, k, bit;
1130
1131         /* For each quad probe. */
1132         for (i = 0; i < 4; ++i) {
1133                 entry[i] = 0xffff;
1134
1135                 /* For each bit in LUT. */
1136                 for (j = 0; j < 16; ++j)
1137
1138                         /* For each probe in quad. */
1139                         for (k = 0; k < 4; ++k) {
1140                                 bit = 1 << (i * 4 + k);
1141
1142                                 /* Set bit in entry */
1143                                 if ((mask & bit) &&
1144                                     ((!(value & bit)) !=
1145                                     (!(j & (1 << k)))))
1146                                         entry[i] &= ~(1 << j);
1147                         }
1148         }
1149 }
1150
1151 /* Add a logical function to LUT mask. */
1152 static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1153                                  int index, int neg, uint16_t *mask)
1154 {
1155         int i, j;
1156         int x[2][2], tmp, a, b, aset, bset, rset;
1157
1158         memset(x, 0, 4 * sizeof(int));
1159
1160         /* Trigger detect condition. */
1161         switch (oper) {
1162         case OP_LEVEL:
1163                 x[0][1] = 1;
1164                 x[1][1] = 1;
1165                 break;
1166         case OP_NOT:
1167                 x[0][0] = 1;
1168                 x[1][0] = 1;
1169                 break;
1170         case OP_RISE:
1171                 x[0][1] = 1;
1172                 break;
1173         case OP_FALL:
1174                 x[1][0] = 1;
1175                 break;
1176         case OP_RISEFALL:
1177                 x[0][1] = 1;
1178                 x[1][0] = 1;
1179                 break;
1180         case OP_NOTRISE:
1181                 x[1][1] = 1;
1182                 x[0][0] = 1;
1183                 x[1][0] = 1;
1184                 break;
1185         case OP_NOTFALL:
1186                 x[1][1] = 1;
1187                 x[0][0] = 1;
1188                 x[0][1] = 1;
1189                 break;
1190         case OP_NOTRISEFALL:
1191                 x[1][1] = 1;
1192                 x[0][0] = 1;
1193                 break;
1194         }
1195
1196         /* Transpose if neg is set. */
1197         if (neg) {
1198                 for (i = 0; i < 2; ++i) {
1199                         for (j = 0; j < 2; ++j) {
1200                                 tmp = x[i][j];
1201                                 x[i][j] = x[1-i][1-j];
1202                                 x[1-i][1-j] = tmp;
1203                         }
1204                 }
1205         }
1206
1207         /* Update mask with function. */
1208         for (i = 0; i < 16; ++i) {
1209                 a = (i >> (2 * index + 0)) & 1;
1210                 b = (i >> (2 * index + 1)) & 1;
1211
1212                 aset = (*mask >> i) & 1;
1213                 bset = x[b][a];
1214
1215                 if (func == FUNC_AND || func == FUNC_NAND)
1216                         rset = aset & bset;
1217                 else if (func == FUNC_OR || func == FUNC_NOR)
1218                         rset = aset | bset;
1219                 else if (func == FUNC_XOR || func == FUNC_NXOR)
1220                         rset = aset ^ bset;
1221
1222                 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1223                         rset = !rset;
1224
1225                 *mask &= ~(1 << i);
1226
1227                 if (rset)
1228                         *mask |= 1 << i;
1229         }
1230 }
1231
1232 /*
1233  * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1234  * simple pin change and state triggers. Only two transitions (rise/fall) can be
1235  * set at any time, but a full mask and value can be set (0/1).
1236  */
1237 static int build_basic_trigger(struct triggerlut *lut, struct dev_context *devc)
1238 {
1239         int i,j;
1240         uint16_t masks[2] = { 0, 0 };
1241
1242         memset(lut, 0, sizeof(struct triggerlut));
1243
1244         /* Contant for simple triggers. */
1245         lut->m4 = 0xa000;
1246
1247         /* Value/mask trigger support. */
1248         build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
1249                         lut->m2d);
1250
1251         /* Rise/fall trigger support. */
1252         for (i = 0, j = 0; i < 16; ++i) {
1253                 if (devc->trigger.risingmask & (1 << i) ||
1254                     devc->trigger.fallingmask & (1 << i))
1255                         masks[j++] = 1 << i;
1256         }
1257
1258         build_lut_entry(masks[0], masks[0], lut->m0d);
1259         build_lut_entry(masks[1], masks[1], lut->m1d);
1260
1261         /* Add glue logic */
1262         if (masks[0] || masks[1]) {
1263                 /* Transition trigger. */
1264                 if (masks[0] & devc->trigger.risingmask)
1265                         add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
1266                 if (masks[0] & devc->trigger.fallingmask)
1267                         add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
1268                 if (masks[1] & devc->trigger.risingmask)
1269                         add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
1270                 if (masks[1] & devc->trigger.fallingmask)
1271                         add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1272         } else {
1273                 /* Only value/mask trigger. */
1274                 lut->m3 = 0xffff;
1275         }
1276
1277         /* Triggertype: event. */
1278         lut->params.selres = 3;
1279
1280         return SR_OK;
1281 }
1282
1283 static int hw_dev_acquisition_start(const struct sr_dev_inst *sdi,
1284                 void *cb_data)
1285 {
1286         struct dev_context *devc;
1287         struct sr_datafeed_packet *packet;
1288         struct sr_datafeed_header *header;
1289         struct sr_datafeed_meta_logic meta;
1290         struct clockselect_50 clockselect;
1291         int frac, triggerpin, ret;
1292         uint8_t triggerselect;
1293         struct triggerinout triggerinout_conf;
1294         struct triggerlut lut;
1295
1296         devc = sdi->priv;
1297
1298         if (configure_probes(sdi) != SR_OK) {
1299                 sr_err("Failed to configure probes.");
1300                 return SR_ERR;
1301         }
1302
1303         /* If the samplerate has not been set, default to 200 kHz. */
1304         if (devc->cur_firmware == -1) {
1305                 if ((ret = set_samplerate(sdi, SR_KHZ(200))) != SR_OK)
1306                         return ret;
1307         }
1308
1309         /* Enter trigger programming mode. */
1310         sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, devc);
1311
1312         /* 100 and 200 MHz mode. */
1313         if (devc->cur_samplerate >= SR_MHZ(100)) {
1314                 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, devc);
1315
1316                 /* Find which pin to trigger on from mask. */
1317                 for (triggerpin = 0; triggerpin < 8; ++triggerpin)
1318                         if ((devc->trigger.risingmask | devc->trigger.fallingmask) &
1319                             (1 << triggerpin))
1320                                 break;
1321
1322                 /* Set trigger pin and light LED on trigger. */
1323                 triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
1324
1325                 /* Default rising edge. */
1326                 if (devc->trigger.fallingmask)
1327                         triggerselect |= 1 << 3;
1328
1329         /* All other modes. */
1330         } else if (devc->cur_samplerate <= SR_MHZ(50)) {
1331                 build_basic_trigger(&lut, devc);
1332
1333                 sigma_write_trigger_lut(&lut, devc);
1334
1335                 triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
1336         }
1337
1338         /* Setup trigger in and out pins to default values. */
1339         memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
1340         triggerinout_conf.trgout_bytrigger = 1;
1341         triggerinout_conf.trgout_enable = 1;
1342
1343         sigma_write_register(WRITE_TRIGGER_OPTION,
1344                              (uint8_t *) &triggerinout_conf,
1345                              sizeof(struct triggerinout), devc);
1346
1347         /* Go back to normal mode. */
1348         sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, devc);
1349
1350         /* Set clock select register. */
1351         if (devc->cur_samplerate == SR_MHZ(200))
1352                 /* Enable 4 probes. */
1353                 sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, devc);
1354         else if (devc->cur_samplerate == SR_MHZ(100))
1355                 /* Enable 8 probes. */
1356                 sigma_set_register(WRITE_CLOCK_SELECT, 0x00, devc);
1357         else {
1358                 /*
1359                  * 50 MHz mode (or fraction thereof). Any fraction down to
1360                  * 50 MHz / 256 can be used, but is not supported by sigrok API.
1361                  */
1362                 frac = SR_MHZ(50) / devc->cur_samplerate - 1;
1363
1364                 clockselect.async = 0;
1365                 clockselect.fraction = frac;
1366                 clockselect.disabled_probes = 0;
1367
1368                 sigma_write_register(WRITE_CLOCK_SELECT,
1369                                      (uint8_t *) &clockselect,
1370                                      sizeof(clockselect), devc);
1371         }
1372
1373         /* Setup maximum post trigger time. */
1374         sigma_set_register(WRITE_POST_TRIGGER,
1375                            (devc->capture_ratio * 255) / 100, devc);
1376
1377         /* Start acqusition. */
1378         gettimeofday(&devc->start_tv, 0);
1379         sigma_set_register(WRITE_MODE, 0x0d, devc);
1380
1381         devc->session_dev_id = cb_data;
1382
1383         if (!(packet = g_try_malloc(sizeof(struct sr_datafeed_packet)))) {
1384                 sr_err("%s: packet malloc failed.", __func__);
1385                 return SR_ERR_MALLOC;
1386         }
1387
1388         if (!(header = g_try_malloc(sizeof(struct sr_datafeed_header)))) {
1389                 sr_err("%s: header malloc failed.", __func__);
1390                 return SR_ERR_MALLOC;
1391         }
1392
1393         /* Send header packet to the session bus. */
1394         packet->type = SR_DF_HEADER;
1395         packet->payload = header;
1396         header->feed_version = 1;
1397         gettimeofday(&header->starttime, NULL);
1398         sr_session_send(devc->session_dev_id, packet);
1399
1400         /* Send metadata about the SR_DF_LOGIC packets to come. */
1401         packet->type = SR_DF_META_LOGIC;
1402         packet->payload = &meta;
1403         meta.samplerate = devc->cur_samplerate;
1404         meta.num_probes = devc->num_probes;
1405         sr_session_send(devc->session_dev_id, packet);
1406
1407         /* Add capture source. */
1408         sr_source_add(0, G_IO_IN, 10, receive_data, (void *)sdi);
1409
1410         g_free(header);
1411         g_free(packet);
1412
1413         devc->state.state = SIGMA_CAPTURE;
1414
1415         return SR_OK;
1416 }
1417
1418 static int hw_dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
1419 {
1420         struct dev_context *devc;
1421         uint8_t modestatus;
1422
1423         (void)cb_data;
1424
1425         sr_source_remove(0);
1426
1427         if (!(devc = sdi->priv)) {
1428                 sr_err("%s: sdi->priv was NULL", __func__);
1429                 return SR_ERR_BUG;
1430         }
1431
1432         /* Stop acquisition. */
1433         sigma_set_register(WRITE_MODE, 0x11, devc);
1434
1435         /* Set SDRAM Read Enable. */
1436         sigma_set_register(WRITE_MODE, 0x02, devc);
1437
1438         /* Get the current position. */
1439         sigma_read_pos(&devc->state.stoppos, &devc->state.triggerpos, devc);
1440
1441         /* Check if trigger has fired. */
1442         modestatus = sigma_get_register(READ_MODE, devc);
1443         if (modestatus & 0x20)
1444                 devc->state.triggerchunk = devc->state.triggerpos / 512;
1445         else
1446                 devc->state.triggerchunk = -1;
1447
1448         devc->state.chunks_downloaded = 0;
1449
1450         devc->state.state = SIGMA_DOWNLOAD;
1451
1452         return SR_OK;
1453 }
1454
1455 SR_PRIV struct sr_dev_driver asix_sigma_driver_info = {
1456         .name = "asix-sigma",
1457         .longname = "ASIX SIGMA/SIGMA2",
1458         .api_version = 1,
1459         .init = hw_init,
1460         .cleanup = hw_cleanup,
1461         .scan = hw_scan,
1462         .dev_list = hw_dev_list,
1463         .dev_clear = clear_instances,
1464         .dev_open = hw_dev_open,
1465         .dev_close = hw_dev_close,
1466         .info_get = hw_info_get,
1467         .dev_config_set = hw_dev_config_set,
1468         .dev_acquisition_start = hw_dev_acquisition_start,
1469         .dev_acquisition_stop = hw_dev_acquisition_stop,
1470         .priv = NULL,
1471 };