]> sigrok.org Git - libsigrok.git/blob - hardware/asix-sigma/asix-sigma.c
afbf51deb2b3113bff88f2ac72a8afde1c5910ec
[libsigrok.git] / hardware / asix-sigma / asix-sigma.c
1 /*
2  * This file is part of the sigrok project.
3  *
4  * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
5  * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6  * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7  *
8  * This program is free software: you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 3 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21
22 /*
23  * ASIX SIGMA/SIGMA2 logic analyzer driver
24  */
25
26 #include <glib.h>
27 #include <glib/gstdio.h>
28 #include <ftdi.h>
29 #include <string.h>
30 #include "libsigrok.h"
31 #include "libsigrok-internal.h"
32 #include "asix-sigma.h"
33
34 #define USB_VENDOR                      0xa600
35 #define USB_PRODUCT                     0xa000
36 #define USB_DESCRIPTION                 "ASIX SIGMA"
37 #define USB_VENDOR_NAME                 "ASIX"
38 #define USB_MODEL_NAME                  "SIGMA"
39 #define USB_MODEL_VERSION               ""
40 #define TRIGGER_TYPE                    "rf10"
41 #define NUM_PROBES                      16
42
43 SR_PRIV struct sr_dev_driver asix_sigma_driver_info;
44 static struct sr_dev_driver *di = &asix_sigma_driver_info;
45 static int hw_dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data);
46
47 static const uint64_t supported_samplerates[] = {
48         SR_KHZ(200),
49         SR_KHZ(250),
50         SR_KHZ(500),
51         SR_MHZ(1),
52         SR_MHZ(5),
53         SR_MHZ(10),
54         SR_MHZ(25),
55         SR_MHZ(50),
56         SR_MHZ(100),
57         SR_MHZ(200),
58         0,
59 };
60
61 /*
62  * Probe numbers seem to go from 1-16, according to this image:
63  * http://tools.asix.net/img/sigma_sigmacab_pins_720.jpg
64  * (the cable has two additional GND pins, and a TI and TO pin)
65  */
66 static const char *probe_names[NUM_PROBES + 1] = {
67         "1", "2", "3", "4", "5", "6", "7", "8",
68         "9", "10", "11", "12", "13", "14", "15", "16",
69         NULL,
70 };
71
72 static const struct sr_samplerates samplerates = {
73         .low  = 0,
74         .high = 0,
75         .step = 0,
76         .list = supported_samplerates,
77 };
78
79 static const int hwcaps[] = {
80         SR_CONF_LOGIC_ANALYZER,
81         SR_CONF_SAMPLERATE,
82         SR_CONF_CAPTURE_RATIO,
83
84         SR_CONF_LIMIT_MSEC,
85         0,
86 };
87
88 /* Force the FPGA to reboot. */
89 static uint8_t suicide[] = {
90         0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
91 };
92
93 /* Prepare to upload firmware (FPGA specific). */
94 static uint8_t init[] = {
95         0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
96 };
97
98 /* Initialize the logic analyzer mode. */
99 static uint8_t logic_mode_start[] = {
100         0x00, 0x40, 0x0f, 0x25, 0x35, 0x40,
101         0x2a, 0x3a, 0x40, 0x03, 0x20, 0x38,
102 };
103
104 static const char *firmware_files[] = {
105         "asix-sigma-50.fw",     /* 50 MHz, supports 8 bit fractions */
106         "asix-sigma-100.fw",    /* 100 MHz */
107         "asix-sigma-200.fw",    /* 200 MHz */
108         "asix-sigma-50sync.fw", /* Synchronous clock from pin */
109         "asix-sigma-phasor.fw", /* Frequency counter */
110 };
111
112 static int sigma_read(void *buf, size_t size, struct dev_context *devc)
113 {
114         int ret;
115
116         ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
117         if (ret < 0) {
118                 sr_err("ftdi_read_data failed: %s",
119                        ftdi_get_error_string(&devc->ftdic));
120         }
121
122         return ret;
123 }
124
125 static int sigma_write(void *buf, size_t size, struct dev_context *devc)
126 {
127         int ret;
128
129         ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size);
130         if (ret < 0) {
131                 sr_err("ftdi_write_data failed: %s",
132                        ftdi_get_error_string(&devc->ftdic));
133         } else if ((size_t) ret != size) {
134                 sr_err("ftdi_write_data did not complete write.");
135         }
136
137         return ret;
138 }
139
140 static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
141                                 struct dev_context *devc)
142 {
143         size_t i;
144         uint8_t buf[len + 2];
145         int idx = 0;
146
147         buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
148         buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
149
150         for (i = 0; i < len; ++i) {
151                 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
152                 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
153         }
154
155         return sigma_write(buf, idx, devc);
156 }
157
158 static int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc)
159 {
160         return sigma_write_register(reg, &value, 1, devc);
161 }
162
163 static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
164                                struct dev_context *devc)
165 {
166         uint8_t buf[3];
167
168         buf[0] = REG_ADDR_LOW | (reg & 0xf);
169         buf[1] = REG_ADDR_HIGH | (reg >> 4);
170         buf[2] = REG_READ_ADDR;
171
172         sigma_write(buf, sizeof(buf), devc);
173
174         return sigma_read(data, len, devc);
175 }
176
177 static uint8_t sigma_get_register(uint8_t reg, struct dev_context *devc)
178 {
179         uint8_t value;
180
181         if (1 != sigma_read_register(reg, &value, 1, devc)) {
182                 sr_err("sigma_get_register: 1 byte expected");
183                 return 0;
184         }
185
186         return value;
187 }
188
189 static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
190                           struct dev_context *devc)
191 {
192         uint8_t buf[] = {
193                 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
194
195                 REG_READ_ADDR | NEXT_REG,
196                 REG_READ_ADDR | NEXT_REG,
197                 REG_READ_ADDR | NEXT_REG,
198                 REG_READ_ADDR | NEXT_REG,
199                 REG_READ_ADDR | NEXT_REG,
200                 REG_READ_ADDR | NEXT_REG,
201         };
202         uint8_t result[6];
203
204         sigma_write(buf, sizeof(buf), devc);
205
206         sigma_read(result, sizeof(result), devc);
207
208         *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
209         *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
210
211         /* Not really sure why this must be done, but according to spec. */
212         if ((--*stoppos & 0x1ff) == 0x1ff)
213                 stoppos -= 64;
214
215         if ((*--triggerpos & 0x1ff) == 0x1ff)
216                 triggerpos -= 64;
217
218         return 1;
219 }
220
221 static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
222                            uint8_t *data, struct dev_context *devc)
223 {
224         size_t i;
225         uint8_t buf[4096];
226         int idx = 0;
227
228         /* Send the startchunk. Index start with 1. */
229         buf[0] = startchunk >> 8;
230         buf[1] = startchunk & 0xff;
231         sigma_write_register(WRITE_MEMROW, buf, 2, devc);
232
233         /* Read the DRAM. */
234         buf[idx++] = REG_DRAM_BLOCK;
235         buf[idx++] = REG_DRAM_WAIT_ACK;
236
237         for (i = 0; i < numchunks; ++i) {
238                 /* Alternate bit to copy from DRAM to cache. */
239                 if (i != (numchunks - 1))
240                         buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
241
242                 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
243
244                 if (i != (numchunks - 1))
245                         buf[idx++] = REG_DRAM_WAIT_ACK;
246         }
247
248         sigma_write(buf, idx, devc);
249
250         return sigma_read(data, numchunks * CHUNK_SIZE, devc);
251 }
252
253 /* Upload trigger look-up tables to Sigma. */
254 static int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc)
255 {
256         int i;
257         uint8_t tmp[2];
258         uint16_t bit;
259
260         /* Transpose the table and send to Sigma. */
261         for (i = 0; i < 16; ++i) {
262                 bit = 1 << i;
263
264                 tmp[0] = tmp[1] = 0;
265
266                 if (lut->m2d[0] & bit)
267                         tmp[0] |= 0x01;
268                 if (lut->m2d[1] & bit)
269                         tmp[0] |= 0x02;
270                 if (lut->m2d[2] & bit)
271                         tmp[0] |= 0x04;
272                 if (lut->m2d[3] & bit)
273                         tmp[0] |= 0x08;
274
275                 if (lut->m3 & bit)
276                         tmp[0] |= 0x10;
277                 if (lut->m3s & bit)
278                         tmp[0] |= 0x20;
279                 if (lut->m4 & bit)
280                         tmp[0] |= 0x40;
281
282                 if (lut->m0d[0] & bit)
283                         tmp[1] |= 0x01;
284                 if (lut->m0d[1] & bit)
285                         tmp[1] |= 0x02;
286                 if (lut->m0d[2] & bit)
287                         tmp[1] |= 0x04;
288                 if (lut->m0d[3] & bit)
289                         tmp[1] |= 0x08;
290
291                 if (lut->m1d[0] & bit)
292                         tmp[1] |= 0x10;
293                 if (lut->m1d[1] & bit)
294                         tmp[1] |= 0x20;
295                 if (lut->m1d[2] & bit)
296                         tmp[1] |= 0x40;
297                 if (lut->m1d[3] & bit)
298                         tmp[1] |= 0x80;
299
300                 sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
301                                      devc);
302                 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, devc);
303         }
304
305         /* Send the parameters */
306         sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
307                              sizeof(lut->params), devc);
308
309         return SR_OK;
310 }
311
312 /* Generate the bitbang stream for programming the FPGA. */
313 static int bin2bitbang(const char *filename,
314                        unsigned char **buf, size_t *buf_size)
315 {
316         FILE *f;
317         unsigned long file_size;
318         unsigned long offset = 0;
319         unsigned char *p;
320         uint8_t *firmware;
321         unsigned long fwsize = 0;
322         const int buffer_size = 65536;
323         size_t i;
324         int c, bit, v;
325         uint32_t imm = 0x3f6df2ab;
326
327         f = g_fopen(filename, "rb");
328         if (!f) {
329                 sr_err("g_fopen(\"%s\", \"rb\")", filename);
330                 return SR_ERR;
331         }
332
333         if (-1 == fseek(f, 0, SEEK_END)) {
334                 sr_err("fseek on %s failed", filename);
335                 fclose(f);
336                 return SR_ERR;
337         }
338
339         file_size = ftell(f);
340
341         fseek(f, 0, SEEK_SET);
342
343         if (!(firmware = g_try_malloc(buffer_size))) {
344                 sr_err("%s: firmware malloc failed", __func__);
345                 fclose(f);
346                 return SR_ERR_MALLOC;
347         }
348
349         while ((c = getc(f)) != EOF) {
350                 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
351                 firmware[fwsize++] = c ^ imm;
352         }
353         fclose(f);
354
355         if(fwsize != file_size) {
356             sr_err("%s: Error reading firmware", filename);
357             fclose(f);
358             g_free(firmware);
359             return SR_ERR;
360         }
361
362         *buf_size = fwsize * 2 * 8;
363
364         *buf = p = (unsigned char *)g_try_malloc(*buf_size);
365         if (!p) {
366                 sr_err("%s: buf/p malloc failed", __func__);
367                 g_free(firmware);
368                 return SR_ERR_MALLOC;
369         }
370
371         for (i = 0; i < fwsize; ++i) {
372                 for (bit = 7; bit >= 0; --bit) {
373                         v = firmware[i] & 1 << bit ? 0x40 : 0x00;
374                         p[offset++] = v | 0x01;
375                         p[offset++] = v;
376                 }
377         }
378
379         g_free(firmware);
380
381         if (offset != *buf_size) {
382                 g_free(*buf);
383                 sr_err("Error reading firmware %s "
384                        "offset=%ld, file_size=%ld, buf_size=%zd.",
385                        filename, offset, file_size, *buf_size);
386
387                 return SR_ERR;
388         }
389
390         return SR_OK;
391 }
392
393 static int clear_instances(void)
394 {
395         GSList *l;
396         struct sr_dev_inst *sdi;
397         struct drv_context *drvc;
398         struct dev_context *devc;
399
400         drvc = di->priv;
401
402         /* Properly close all devices. */
403         for (l = drvc->instances; l; l = l->next) {
404                 if (!(sdi = l->data)) {
405                         /* Log error, but continue cleaning up the rest. */
406                         sr_err("%s: sdi was NULL, continuing", __func__);
407                         continue;
408                 }
409                 if (sdi->priv) {
410                         devc = sdi->priv;
411                         ftdi_free(&devc->ftdic);
412                 }
413                 sr_dev_inst_free(sdi);
414         }
415         g_slist_free(drvc->instances);
416         drvc->instances = NULL;
417
418         return SR_OK;
419 }
420
421 static int hw_init(struct sr_context *sr_ctx)
422 {
423         return std_hw_init(sr_ctx, di, DRIVER_LOG_DOMAIN);
424 }
425
426 static GSList *hw_scan(GSList *options)
427 {
428         struct sr_dev_inst *sdi;
429         struct sr_probe *probe;
430         struct drv_context *drvc;
431         struct dev_context *devc;
432         GSList *devices;
433         struct ftdi_device_list *devlist;
434         char serial_txt[10];
435         uint32_t serial;
436         int ret, i;
437
438         (void)options;
439
440         drvc = di->priv;
441
442         devices = NULL;
443
444         clear_instances();
445
446         if (!(devc = g_try_malloc(sizeof(struct dev_context)))) {
447                 sr_err("%s: devc malloc failed", __func__);
448                 return NULL;
449         }
450
451         ftdi_init(&devc->ftdic);
452
453         /* Look for SIGMAs. */
454
455         if ((ret = ftdi_usb_find_all(&devc->ftdic, &devlist,
456             USB_VENDOR, USB_PRODUCT)) <= 0) {
457                 if (ret < 0)
458                         sr_err("ftdi_usb_find_all(): %d", ret);
459                 goto free;
460         }
461
462         /* Make sure it's a version 1 or 2 SIGMA. */
463         ftdi_usb_get_strings(&devc->ftdic, devlist->dev, NULL, 0, NULL, 0,
464                              serial_txt, sizeof(serial_txt));
465         sscanf(serial_txt, "%x", &serial);
466
467         if (serial < 0xa6010000 || serial > 0xa602ffff) {
468                 sr_err("Only SIGMA and SIGMA2 are supported "
469                        "in this version of libsigrok.");
470                 goto free;
471         }
472
473         sr_info("Found ASIX SIGMA - Serial: %s", serial_txt);
474
475         devc->cur_samplerate = 0;
476         devc->period_ps = 0;
477         devc->limit_msec = 0;
478         devc->cur_firmware = -1;
479         devc->num_probes = 0;
480         devc->samples_per_event = 0;
481         devc->capture_ratio = 50;
482         devc->use_triggers = 0;
483
484         /* Register SIGMA device. */
485         if (!(sdi = sr_dev_inst_new(0, SR_ST_INITIALIZING, USB_VENDOR_NAME,
486                                     USB_MODEL_NAME, USB_MODEL_VERSION))) {
487                 sr_err("%s: sdi was NULL", __func__);
488                 goto free;
489         }
490         sdi->driver = di;
491
492         for (i = 0; probe_names[i]; i++) {
493                 if (!(probe = sr_probe_new(i, SR_PROBE_LOGIC, TRUE,
494                                 probe_names[i])))
495                         return NULL;
496                 sdi->probes = g_slist_append(sdi->probes, probe);
497         }
498
499         devices = g_slist_append(devices, sdi);
500         drvc->instances = g_slist_append(drvc->instances, sdi);
501         sdi->priv = devc;
502
503         /* We will open the device again when we need it. */
504         ftdi_list_free(&devlist);
505
506         return devices;
507
508 free:
509         ftdi_deinit(&devc->ftdic);
510         g_free(devc);
511         return NULL;
512 }
513
514 static GSList *hw_dev_list(void)
515 {
516         struct drv_context *drvc;
517
518         drvc = di->priv;
519
520         return drvc->instances;
521 }
522
523 static int upload_firmware(int firmware_idx, struct dev_context *devc)
524 {
525         int ret;
526         unsigned char *buf;
527         unsigned char pins;
528         size_t buf_size;
529         unsigned char result[32];
530         char firmware_path[128];
531
532         /* Make sure it's an ASIX SIGMA. */
533         if ((ret = ftdi_usb_open_desc(&devc->ftdic,
534                 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
535                 sr_err("ftdi_usb_open failed: %s",
536                        ftdi_get_error_string(&devc->ftdic));
537                 return 0;
538         }
539
540         if ((ret = ftdi_set_bitmode(&devc->ftdic, 0xdf, BITMODE_BITBANG)) < 0) {
541                 sr_err("ftdi_set_bitmode failed: %s",
542                        ftdi_get_error_string(&devc->ftdic));
543                 return 0;
544         }
545
546         /* Four times the speed of sigmalogan - Works well. */
547         if ((ret = ftdi_set_baudrate(&devc->ftdic, 750000)) < 0) {
548                 sr_err("ftdi_set_baudrate failed: %s",
549                        ftdi_get_error_string(&devc->ftdic));
550                 return 0;
551         }
552
553         /* Force the FPGA to reboot. */
554         sigma_write(suicide, sizeof(suicide), devc);
555         sigma_write(suicide, sizeof(suicide), devc);
556         sigma_write(suicide, sizeof(suicide), devc);
557         sigma_write(suicide, sizeof(suicide), devc);
558
559         /* Prepare to upload firmware (FPGA specific). */
560         sigma_write(init, sizeof(init), devc);
561
562         ftdi_usb_purge_buffers(&devc->ftdic);
563
564         /* Wait until the FPGA asserts INIT_B. */
565         while (1) {
566                 ret = sigma_read(result, 1, devc);
567                 if (result[0] & 0x20)
568                         break;
569         }
570
571         /* Prepare firmware. */
572         snprintf(firmware_path, sizeof(firmware_path), "%s/%s", FIRMWARE_DIR,
573                  firmware_files[firmware_idx]);
574
575         if ((ret = bin2bitbang(firmware_path, &buf, &buf_size)) != SR_OK) {
576                 sr_err("An error occured while reading the firmware: %s",
577                        firmware_path);
578                 return ret;
579         }
580
581         /* Upload firmare. */
582         sr_info("Uploading firmware file '%s'.", firmware_files[firmware_idx]);
583         sigma_write(buf, buf_size, devc);
584
585         g_free(buf);
586
587         if ((ret = ftdi_set_bitmode(&devc->ftdic, 0x00, BITMODE_RESET)) < 0) {
588                 sr_err("ftdi_set_bitmode failed: %s",
589                        ftdi_get_error_string(&devc->ftdic));
590                 return SR_ERR;
591         }
592
593         ftdi_usb_purge_buffers(&devc->ftdic);
594
595         /* Discard garbage. */
596         while (1 == sigma_read(&pins, 1, devc))
597                 ;
598
599         /* Initialize the logic analyzer mode. */
600         sigma_write(logic_mode_start, sizeof(logic_mode_start), devc);
601
602         /* Expect a 3 byte reply. */
603         ret = sigma_read(result, 3, devc);
604         if (ret != 3 ||
605             result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) {
606                 sr_err("Configuration failed. Invalid reply received.");
607                 return SR_ERR;
608         }
609
610         devc->cur_firmware = firmware_idx;
611
612         sr_info("Firmware uploaded.");
613
614         return SR_OK;
615 }
616
617 static int hw_dev_open(struct sr_dev_inst *sdi)
618 {
619         struct dev_context *devc;
620         int ret;
621
622         devc = sdi->priv;
623
624         /* Make sure it's an ASIX SIGMA. */
625         if ((ret = ftdi_usb_open_desc(&devc->ftdic,
626                 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
627
628                 sr_err("ftdi_usb_open failed: %s",
629                        ftdi_get_error_string(&devc->ftdic));
630
631                 return 0;
632         }
633
634         sdi->status = SR_ST_ACTIVE;
635
636         return SR_OK;
637 }
638
639 static int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
640 {
641         int i, ret;
642         struct dev_context *devc = sdi->priv;
643
644         ret = SR_OK;
645
646         for (i = 0; supported_samplerates[i]; i++) {
647                 if (supported_samplerates[i] == samplerate)
648                         break;
649         }
650         if (supported_samplerates[i] == 0)
651                 return SR_ERR_SAMPLERATE;
652
653         if (samplerate <= SR_MHZ(50)) {
654                 ret = upload_firmware(0, devc);
655                 devc->num_probes = 16;
656         }
657         if (samplerate == SR_MHZ(100)) {
658                 ret = upload_firmware(1, devc);
659                 devc->num_probes = 8;
660         }
661         else if (samplerate == SR_MHZ(200)) {
662                 ret = upload_firmware(2, devc);
663                 devc->num_probes = 4;
664         }
665
666         devc->cur_samplerate = samplerate;
667         devc->period_ps = 1000000000000ULL / samplerate;
668         devc->samples_per_event = 16 / devc->num_probes;
669         devc->state.state = SIGMA_IDLE;
670
671         return ret;
672 }
673
674 /*
675  * In 100 and 200 MHz mode, only a single pin rising/falling can be
676  * set as trigger. In other modes, two rising/falling triggers can be set,
677  * in addition to value/mask trigger for any number of probes.
678  *
679  * The Sigma supports complex triggers using boolean expressions, but this
680  * has not been implemented yet.
681  */
682 static int configure_probes(const struct sr_dev_inst *sdi)
683 {
684         struct dev_context *devc = sdi->priv;
685         const struct sr_probe *probe;
686         const GSList *l;
687         int trigger_set = 0;
688         int probebit;
689
690         memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
691
692         for (l = sdi->probes; l; l = l->next) {
693                 probe = (struct sr_probe *)l->data;
694                 probebit = 1 << (probe->index);
695
696                 if (!probe->enabled || !probe->trigger)
697                         continue;
698
699                 if (devc->cur_samplerate >= SR_MHZ(100)) {
700                         /* Fast trigger support. */
701                         if (trigger_set) {
702                                 sr_err("Only a single pin trigger in 100 and "
703                                        "200MHz mode is supported.");
704                                 return SR_ERR;
705                         }
706                         if (probe->trigger[0] == 'f')
707                                 devc->trigger.fallingmask |= probebit;
708                         else if (probe->trigger[0] == 'r')
709                                 devc->trigger.risingmask |= probebit;
710                         else {
711                                 sr_err("Only rising/falling trigger in 100 "
712                                        "and 200MHz mode is supported.");
713                                 return SR_ERR;
714                         }
715
716                         ++trigger_set;
717                 } else {
718                         /* Simple trigger support (event). */
719                         if (probe->trigger[0] == '1') {
720                                 devc->trigger.simplevalue |= probebit;
721                                 devc->trigger.simplemask |= probebit;
722                         }
723                         else if (probe->trigger[0] == '0') {
724                                 devc->trigger.simplevalue &= ~probebit;
725                                 devc->trigger.simplemask |= probebit;
726                         }
727                         else if (probe->trigger[0] == 'f') {
728                                 devc->trigger.fallingmask |= probebit;
729                                 ++trigger_set;
730                         }
731                         else if (probe->trigger[0] == 'r') {
732                                 devc->trigger.risingmask |= probebit;
733                                 ++trigger_set;
734                         }
735
736                         /*
737                          * Actually, Sigma supports 2 rising/falling triggers,
738                          * but they are ORed and the current trigger syntax
739                          * does not permit ORed triggers.
740                          */
741                         if (trigger_set > 1) {
742                                 sr_err("Only 1 rising/falling trigger "
743                                        "is supported.");
744                                 return SR_ERR;
745                         }
746                 }
747
748                 if (trigger_set)
749                         devc->use_triggers = 1;
750         }
751
752         return SR_OK;
753 }
754
755 static int hw_dev_close(struct sr_dev_inst *sdi)
756 {
757         struct dev_context *devc;
758
759         if (!(devc = sdi->priv)) {
760                 sr_err("%s: sdi->priv was NULL", __func__);
761                 return SR_ERR_BUG;
762         }
763
764         /* TODO */
765         if (sdi->status == SR_ST_ACTIVE)
766                 ftdi_usb_close(&devc->ftdic);
767
768         sdi->status = SR_ST_INACTIVE;
769
770         return SR_OK;
771 }
772
773 static int hw_cleanup(void)
774 {
775         if (!di->priv)
776                 return SR_OK;
777
778         clear_instances();
779
780         return SR_OK;
781 }
782
783 static int config_get(int id, const void **data, const struct sr_dev_inst *sdi)
784 {
785         struct dev_context *devc;
786
787         switch (id) {
788         case SR_CONF_SAMPLERATE:
789                 if (sdi) {
790                         devc = sdi->priv;
791                         *data = &devc->cur_samplerate;
792                 } else
793                         return SR_ERR;
794                 break;
795         default:
796                 return SR_ERR_ARG;
797         }
798
799         return SR_OK;
800 }
801
802 static int config_set(int id, const void *value, const struct sr_dev_inst *sdi)
803 {
804         struct dev_context *devc;
805         int ret;
806
807         devc = sdi->priv;
808
809         if (id == SR_CONF_SAMPLERATE) {
810                 ret = set_samplerate(sdi, *(const uint64_t *)value);
811         } else if (id == SR_CONF_LIMIT_MSEC) {
812                 devc->limit_msec = *(const uint64_t *)value;
813                 if (devc->limit_msec > 0)
814                         ret = SR_OK;
815                 else
816                         ret = SR_ERR;
817         } else if (id == SR_CONF_CAPTURE_RATIO) {
818                 devc->capture_ratio = *(const uint64_t *)value;
819                 if (devc->capture_ratio < 0 || devc->capture_ratio > 100)
820                         ret = SR_ERR;
821                 else
822                         ret = SR_OK;
823         } else {
824                 ret = SR_ERR;
825         }
826
827         return ret;
828 }
829
830 static int config_list(int key, const void **data, const struct sr_dev_inst *sdi)
831 {
832
833         (void)sdi;
834
835         switch (key) {
836         case SR_CONF_DEVICE_OPTIONS:
837                 *data = hwcaps;
838                 break;
839         case SR_CONF_SAMPLERATE:
840                 *data = &samplerates;
841                 break;
842         case SR_CONF_TRIGGER_TYPE:
843                 *data = (char *)TRIGGER_TYPE;
844                 break;
845         default:
846                 return SR_ERR_ARG;
847         }
848
849         return SR_OK;
850 }
851
852 /* Software trigger to determine exact trigger position. */
853 static int get_trigger_offset(uint16_t *samples, uint16_t last_sample,
854                               struct sigma_trigger *t)
855 {
856         int i;
857
858         for (i = 0; i < 8; ++i) {
859                 if (i > 0)
860                         last_sample = samples[i-1];
861
862                 /* Simple triggers. */
863                 if ((samples[i] & t->simplemask) != t->simplevalue)
864                         continue;
865
866                 /* Rising edge. */
867                 if ((last_sample & t->risingmask) != 0 || (samples[i] &
868                     t->risingmask) != t->risingmask)
869                         continue;
870
871                 /* Falling edge. */
872                 if ((last_sample & t->fallingmask) != t->fallingmask ||
873                     (samples[i] & t->fallingmask) != 0)
874                         continue;
875
876                 break;
877         }
878
879         /* If we did not match, return original trigger pos. */
880         return i & 0x7;
881 }
882
883 /*
884  * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
885  * Each event is 20ns apart, and can contain multiple samples.
886  *
887  * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
888  * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
889  * For 50 MHz and below, events contain one sample for each channel,
890  * spread 20 ns apart.
891  */
892 static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
893                            uint16_t *lastsample, int triggerpos,
894                            uint16_t limit_chunk, void *cb_data)
895 {
896         struct sr_dev_inst *sdi = cb_data;
897         struct dev_context *devc = sdi->priv;
898         uint16_t tsdiff, ts;
899         uint16_t samples[65536 * devc->samples_per_event];
900         struct sr_datafeed_packet packet;
901         struct sr_datafeed_logic logic;
902         int i, j, k, l, numpad, tosend;
903         size_t n = 0, sent = 0;
904         int clustersize = EVENTS_PER_CLUSTER * devc->samples_per_event;
905         uint16_t *event;
906         uint16_t cur_sample;
907         int triggerts = -1;
908
909         /* Check if trigger is in this chunk. */
910         if (triggerpos != -1) {
911                 if (devc->cur_samplerate <= SR_MHZ(50))
912                         triggerpos -= EVENTS_PER_CLUSTER - 1;
913
914                 if (triggerpos < 0)
915                         triggerpos = 0;
916
917                 /* Find in which cluster the trigger occured. */
918                 triggerts = triggerpos / 7;
919         }
920
921         /* For each ts. */
922         for (i = 0; i < 64; ++i) {
923                 ts = *(uint16_t *) &buf[i * 16];
924                 tsdiff = ts - *lastts;
925                 *lastts = ts;
926
927                 /* Decode partial chunk. */
928                 if (limit_chunk && ts > limit_chunk)
929                         return SR_OK;
930
931                 /* Pad last sample up to current point. */
932                 numpad = tsdiff * devc->samples_per_event - clustersize;
933                 if (numpad > 0) {
934                         for (j = 0; j < numpad; ++j)
935                                 samples[j] = *lastsample;
936
937                         n = numpad;
938                 }
939
940                 /* Send samples between previous and this timestamp to sigrok. */
941                 sent = 0;
942                 while (sent < n) {
943                         tosend = MIN(2048, n - sent);
944
945                         packet.type = SR_DF_LOGIC;
946                         packet.payload = &logic;
947                         logic.length = tosend * sizeof(uint16_t);
948                         logic.unitsize = 2;
949                         logic.data = samples + sent;
950                         sr_session_send(devc->session_dev_id, &packet);
951
952                         sent += tosend;
953                 }
954                 n = 0;
955
956                 event = (uint16_t *) &buf[i * 16 + 2];
957                 cur_sample = 0;
958
959                 /* For each event in cluster. */
960                 for (j = 0; j < 7; ++j) {
961
962                         /* For each sample in event. */
963                         for (k = 0; k < devc->samples_per_event; ++k) {
964                                 cur_sample = 0;
965
966                                 /* For each probe. */
967                                 for (l = 0; l < devc->num_probes; ++l)
968                                         cur_sample |= (!!(event[j] & (1 << (l *
969                                            devc->samples_per_event + k)))) << l;
970
971                                 samples[n++] = cur_sample;
972                         }
973                 }
974
975                 /* Send data up to trigger point (if triggered). */
976                 sent = 0;
977                 if (i == triggerts) {
978                         /*
979                          * Trigger is not always accurate to sample because of
980                          * pipeline delay. However, it always triggers before
981                          * the actual event. We therefore look at the next
982                          * samples to pinpoint the exact position of the trigger.
983                          */
984                         tosend = get_trigger_offset(samples, *lastsample,
985                                                     &devc->trigger);
986
987                         if (tosend > 0) {
988                                 packet.type = SR_DF_LOGIC;
989                                 packet.payload = &logic;
990                                 logic.length = tosend * sizeof(uint16_t);
991                                 logic.unitsize = 2;
992                                 logic.data = samples;
993                                 sr_session_send(devc->session_dev_id, &packet);
994
995                                 sent += tosend;
996                         }
997
998                         /* Only send trigger if explicitly enabled. */
999                         if (devc->use_triggers) {
1000                                 packet.type = SR_DF_TRIGGER;
1001                                 sr_session_send(devc->session_dev_id, &packet);
1002                         }
1003                 }
1004
1005                 /* Send rest of the chunk to sigrok. */
1006                 tosend = n - sent;
1007
1008                 if (tosend > 0) {
1009                         packet.type = SR_DF_LOGIC;
1010                         packet.payload = &logic;
1011                         logic.length = tosend * sizeof(uint16_t);
1012                         logic.unitsize = 2;
1013                         logic.data = samples + sent;
1014                         sr_session_send(devc->session_dev_id, &packet);
1015                 }
1016
1017                 *lastsample = samples[n - 1];
1018         }
1019
1020         return SR_OK;
1021 }
1022
1023 static int receive_data(int fd, int revents, void *cb_data)
1024 {
1025         struct sr_dev_inst *sdi = cb_data;
1026         struct dev_context *devc = sdi->priv;
1027         struct sr_datafeed_packet packet;
1028         const int chunks_per_read = 32;
1029         unsigned char buf[chunks_per_read * CHUNK_SIZE];
1030         int bufsz, numchunks, i, newchunks;
1031         uint64_t running_msec;
1032         struct timeval tv;
1033
1034         (void)fd;
1035         (void)revents;
1036
1037         /* Get the current position. */
1038         sigma_read_pos(&devc->state.stoppos, &devc->state.triggerpos, devc);
1039
1040         numchunks = (devc->state.stoppos + 511) / 512;
1041
1042         if (devc->state.state == SIGMA_IDLE)
1043                 return TRUE;
1044
1045         if (devc->state.state == SIGMA_CAPTURE) {
1046                 /* Check if the timer has expired, or memory is full. */
1047                 gettimeofday(&tv, 0);
1048                 running_msec = (tv.tv_sec - devc->start_tv.tv_sec) * 1000 +
1049                         (tv.tv_usec - devc->start_tv.tv_usec) / 1000;
1050
1051                 if (running_msec < devc->limit_msec && numchunks < 32767)
1052                         return TRUE; /* While capturing... */
1053                 else
1054                         hw_dev_acquisition_stop(sdi, sdi);
1055
1056         }
1057
1058         if (devc->state.state == SIGMA_DOWNLOAD) {
1059                 if (devc->state.chunks_downloaded >= numchunks) {
1060                         /* End of samples. */
1061                         packet.type = SR_DF_END;
1062                         sr_session_send(devc->session_dev_id, &packet);
1063
1064                         devc->state.state = SIGMA_IDLE;
1065
1066                         return TRUE;
1067                 }
1068
1069                 newchunks = MIN(chunks_per_read,
1070                                 numchunks - devc->state.chunks_downloaded);
1071
1072                 sr_info("Downloading sample data: %.0f %%.",
1073                         100.0 * devc->state.chunks_downloaded / numchunks);
1074
1075                 bufsz = sigma_read_dram(devc->state.chunks_downloaded,
1076                                         newchunks, buf, devc);
1077                 /* TODO: Check bufsz. For now, just avoid compiler warnings. */
1078                 (void)bufsz;
1079
1080                 /* Find first ts. */
1081                 if (devc->state.chunks_downloaded == 0) {
1082                         devc->state.lastts = *(uint16_t *) buf - 1;
1083                         devc->state.lastsample = 0;
1084                 }
1085
1086                 /* Decode chunks and send them to sigrok. */
1087                 for (i = 0; i < newchunks; ++i) {
1088                         int limit_chunk = 0;
1089
1090                         /* The last chunk may potentially be only in part. */
1091                         if (devc->state.chunks_downloaded == numchunks - 1) {
1092                                 /* Find the last valid timestamp */
1093                                 limit_chunk = devc->state.stoppos % 512 + devc->state.lastts;
1094                         }
1095
1096                         if (devc->state.chunks_downloaded + i == devc->state.triggerchunk)
1097                                 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1098                                                 &devc->state.lastts,
1099                                                 &devc->state.lastsample,
1100                                                 devc->state.triggerpos & 0x1ff,
1101                                                 limit_chunk, sdi);
1102                         else
1103                                 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1104                                                 &devc->state.lastts,
1105                                                 &devc->state.lastsample,
1106                                                 -1, limit_chunk, sdi);
1107
1108                         ++devc->state.chunks_downloaded;
1109                 }
1110         }
1111
1112         return TRUE;
1113 }
1114
1115 /* Build a LUT entry used by the trigger functions. */
1116 static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
1117 {
1118         int i, j, k, bit;
1119
1120         /* For each quad probe. */
1121         for (i = 0; i < 4; ++i) {
1122                 entry[i] = 0xffff;
1123
1124                 /* For each bit in LUT. */
1125                 for (j = 0; j < 16; ++j)
1126
1127                         /* For each probe in quad. */
1128                         for (k = 0; k < 4; ++k) {
1129                                 bit = 1 << (i * 4 + k);
1130
1131                                 /* Set bit in entry */
1132                                 if ((mask & bit) &&
1133                                     ((!(value & bit)) !=
1134                                     (!(j & (1 << k)))))
1135                                         entry[i] &= ~(1 << j);
1136                         }
1137         }
1138 }
1139
1140 /* Add a logical function to LUT mask. */
1141 static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1142                                  int index, int neg, uint16_t *mask)
1143 {
1144         int i, j;
1145         int x[2][2], tmp, a, b, aset, bset, rset;
1146
1147         memset(x, 0, 4 * sizeof(int));
1148
1149         /* Trigger detect condition. */
1150         switch (oper) {
1151         case OP_LEVEL:
1152                 x[0][1] = 1;
1153                 x[1][1] = 1;
1154                 break;
1155         case OP_NOT:
1156                 x[0][0] = 1;
1157                 x[1][0] = 1;
1158                 break;
1159         case OP_RISE:
1160                 x[0][1] = 1;
1161                 break;
1162         case OP_FALL:
1163                 x[1][0] = 1;
1164                 break;
1165         case OP_RISEFALL:
1166                 x[0][1] = 1;
1167                 x[1][0] = 1;
1168                 break;
1169         case OP_NOTRISE:
1170                 x[1][1] = 1;
1171                 x[0][0] = 1;
1172                 x[1][0] = 1;
1173                 break;
1174         case OP_NOTFALL:
1175                 x[1][1] = 1;
1176                 x[0][0] = 1;
1177                 x[0][1] = 1;
1178                 break;
1179         case OP_NOTRISEFALL:
1180                 x[1][1] = 1;
1181                 x[0][0] = 1;
1182                 break;
1183         }
1184
1185         /* Transpose if neg is set. */
1186         if (neg) {
1187                 for (i = 0; i < 2; ++i) {
1188                         for (j = 0; j < 2; ++j) {
1189                                 tmp = x[i][j];
1190                                 x[i][j] = x[1-i][1-j];
1191                                 x[1-i][1-j] = tmp;
1192                         }
1193                 }
1194         }
1195
1196         /* Update mask with function. */
1197         for (i = 0; i < 16; ++i) {
1198                 a = (i >> (2 * index + 0)) & 1;
1199                 b = (i >> (2 * index + 1)) & 1;
1200
1201                 aset = (*mask >> i) & 1;
1202                 bset = x[b][a];
1203
1204                 if (func == FUNC_AND || func == FUNC_NAND)
1205                         rset = aset & bset;
1206                 else if (func == FUNC_OR || func == FUNC_NOR)
1207                         rset = aset | bset;
1208                 else if (func == FUNC_XOR || func == FUNC_NXOR)
1209                         rset = aset ^ bset;
1210
1211                 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1212                         rset = !rset;
1213
1214                 *mask &= ~(1 << i);
1215
1216                 if (rset)
1217                         *mask |= 1 << i;
1218         }
1219 }
1220
1221 /*
1222  * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1223  * simple pin change and state triggers. Only two transitions (rise/fall) can be
1224  * set at any time, but a full mask and value can be set (0/1).
1225  */
1226 static int build_basic_trigger(struct triggerlut *lut, struct dev_context *devc)
1227 {
1228         int i,j;
1229         uint16_t masks[2] = { 0, 0 };
1230
1231         memset(lut, 0, sizeof(struct triggerlut));
1232
1233         /* Contant for simple triggers. */
1234         lut->m4 = 0xa000;
1235
1236         /* Value/mask trigger support. */
1237         build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
1238                         lut->m2d);
1239
1240         /* Rise/fall trigger support. */
1241         for (i = 0, j = 0; i < 16; ++i) {
1242                 if (devc->trigger.risingmask & (1 << i) ||
1243                     devc->trigger.fallingmask & (1 << i))
1244                         masks[j++] = 1 << i;
1245         }
1246
1247         build_lut_entry(masks[0], masks[0], lut->m0d);
1248         build_lut_entry(masks[1], masks[1], lut->m1d);
1249
1250         /* Add glue logic */
1251         if (masks[0] || masks[1]) {
1252                 /* Transition trigger. */
1253                 if (masks[0] & devc->trigger.risingmask)
1254                         add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
1255                 if (masks[0] & devc->trigger.fallingmask)
1256                         add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
1257                 if (masks[1] & devc->trigger.risingmask)
1258                         add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
1259                 if (masks[1] & devc->trigger.fallingmask)
1260                         add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1261         } else {
1262                 /* Only value/mask trigger. */
1263                 lut->m3 = 0xffff;
1264         }
1265
1266         /* Triggertype: event. */
1267         lut->params.selres = 3;
1268
1269         return SR_OK;
1270 }
1271
1272 static int hw_dev_acquisition_start(const struct sr_dev_inst *sdi,
1273                 void *cb_data)
1274 {
1275         struct dev_context *devc;
1276         struct sr_datafeed_packet *packet;
1277         struct sr_datafeed_header *header;
1278         struct clockselect_50 clockselect;
1279         int frac, triggerpin, ret;
1280         uint8_t triggerselect = 0;
1281         struct triggerinout triggerinout_conf;
1282         struct triggerlut lut;
1283
1284         devc = sdi->priv;
1285
1286         if (configure_probes(sdi) != SR_OK) {
1287                 sr_err("Failed to configure probes.");
1288                 return SR_ERR;
1289         }
1290
1291         /* If the samplerate has not been set, default to 200 kHz. */
1292         if (devc->cur_firmware == -1) {
1293                 if ((ret = set_samplerate(sdi, SR_KHZ(200))) != SR_OK)
1294                         return ret;
1295         }
1296
1297         /* Enter trigger programming mode. */
1298         sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, devc);
1299
1300         /* 100 and 200 MHz mode. */
1301         if (devc->cur_samplerate >= SR_MHZ(100)) {
1302                 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, devc);
1303
1304                 /* Find which pin to trigger on from mask. */
1305                 for (triggerpin = 0; triggerpin < 8; ++triggerpin)
1306                         if ((devc->trigger.risingmask | devc->trigger.fallingmask) &
1307                             (1 << triggerpin))
1308                                 break;
1309
1310                 /* Set trigger pin and light LED on trigger. */
1311                 triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
1312
1313                 /* Default rising edge. */
1314                 if (devc->trigger.fallingmask)
1315                         triggerselect |= 1 << 3;
1316
1317         /* All other modes. */
1318         } else if (devc->cur_samplerate <= SR_MHZ(50)) {
1319                 build_basic_trigger(&lut, devc);
1320
1321                 sigma_write_trigger_lut(&lut, devc);
1322
1323                 triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
1324         }
1325
1326         /* Setup trigger in and out pins to default values. */
1327         memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
1328         triggerinout_conf.trgout_bytrigger = 1;
1329         triggerinout_conf.trgout_enable = 1;
1330
1331         sigma_write_register(WRITE_TRIGGER_OPTION,
1332                              (uint8_t *) &triggerinout_conf,
1333                              sizeof(struct triggerinout), devc);
1334
1335         /* Go back to normal mode. */
1336         sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, devc);
1337
1338         /* Set clock select register. */
1339         if (devc->cur_samplerate == SR_MHZ(200))
1340                 /* Enable 4 probes. */
1341                 sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, devc);
1342         else if (devc->cur_samplerate == SR_MHZ(100))
1343                 /* Enable 8 probes. */
1344                 sigma_set_register(WRITE_CLOCK_SELECT, 0x00, devc);
1345         else {
1346                 /*
1347                  * 50 MHz mode (or fraction thereof). Any fraction down to
1348                  * 50 MHz / 256 can be used, but is not supported by sigrok API.
1349                  */
1350                 frac = SR_MHZ(50) / devc->cur_samplerate - 1;
1351
1352                 clockselect.async = 0;
1353                 clockselect.fraction = frac;
1354                 clockselect.disabled_probes = 0;
1355
1356                 sigma_write_register(WRITE_CLOCK_SELECT,
1357                                      (uint8_t *) &clockselect,
1358                                      sizeof(clockselect), devc);
1359         }
1360
1361         /* Setup maximum post trigger time. */
1362         sigma_set_register(WRITE_POST_TRIGGER,
1363                            (devc->capture_ratio * 255) / 100, devc);
1364
1365         /* Start acqusition. */
1366         gettimeofday(&devc->start_tv, 0);
1367         sigma_set_register(WRITE_MODE, 0x0d, devc);
1368
1369         devc->session_dev_id = cb_data;
1370
1371         if (!(packet = g_try_malloc(sizeof(struct sr_datafeed_packet)))) {
1372                 sr_err("%s: packet malloc failed.", __func__);
1373                 return SR_ERR_MALLOC;
1374         }
1375
1376         if (!(header = g_try_malloc(sizeof(struct sr_datafeed_header)))) {
1377                 sr_err("%s: header malloc failed.", __func__);
1378                 return SR_ERR_MALLOC;
1379         }
1380
1381         /* Send header packet to the session bus. */
1382         packet->type = SR_DF_HEADER;
1383         packet->payload = header;
1384         header->feed_version = 1;
1385         gettimeofday(&header->starttime, NULL);
1386         sr_session_send(devc->session_dev_id, packet);
1387
1388         /* Add capture source. */
1389         sr_source_add(0, G_IO_IN, 10, receive_data, (void *)sdi);
1390
1391         g_free(header);
1392         g_free(packet);
1393
1394         devc->state.state = SIGMA_CAPTURE;
1395
1396         return SR_OK;
1397 }
1398
1399 static int hw_dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
1400 {
1401         struct dev_context *devc;
1402         uint8_t modestatus;
1403
1404         (void)cb_data;
1405
1406         sr_source_remove(0);
1407
1408         if (!(devc = sdi->priv)) {
1409                 sr_err("%s: sdi->priv was NULL", __func__);
1410                 return SR_ERR_BUG;
1411         }
1412
1413         /* Stop acquisition. */
1414         sigma_set_register(WRITE_MODE, 0x11, devc);
1415
1416         /* Set SDRAM Read Enable. */
1417         sigma_set_register(WRITE_MODE, 0x02, devc);
1418
1419         /* Get the current position. */
1420         sigma_read_pos(&devc->state.stoppos, &devc->state.triggerpos, devc);
1421
1422         /* Check if trigger has fired. */
1423         modestatus = sigma_get_register(READ_MODE, devc);
1424         if (modestatus & 0x20)
1425                 devc->state.triggerchunk = devc->state.triggerpos / 512;
1426         else
1427                 devc->state.triggerchunk = -1;
1428
1429         devc->state.chunks_downloaded = 0;
1430
1431         devc->state.state = SIGMA_DOWNLOAD;
1432
1433         return SR_OK;
1434 }
1435
1436 SR_PRIV struct sr_dev_driver asix_sigma_driver_info = {
1437         .name = "asix-sigma",
1438         .longname = "ASIX SIGMA/SIGMA2",
1439         .api_version = 1,
1440         .init = hw_init,
1441         .cleanup = hw_cleanup,
1442         .scan = hw_scan,
1443         .dev_list = hw_dev_list,
1444         .dev_clear = clear_instances,
1445         .config_get = config_get,
1446         .config_set = config_set,
1447         .config_list = config_list,
1448         .dev_open = hw_dev_open,
1449         .dev_close = hw_dev_close,
1450         .dev_acquisition_start = hw_dev_acquisition_start,
1451         .dev_acquisition_stop = hw_dev_acquisition_stop,
1452         .priv = NULL,
1453 };