]> sigrok.org Git - libsigrok.git/blob - hardware/asix-sigma/asix-sigma.c
acd3acb9db733153bd4ee79257fbd355c65f56c1
[libsigrok.git] / hardware / asix-sigma / asix-sigma.c
1 /*
2  * This file is part of the sigrok project.
3  *
4  * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
5  * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6  * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7  *
8  * This program is free software: you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 3 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21
22 /*
23  * ASIX SIGMA/SIGMA2 logic analyzer driver
24  */
25
26 #include <glib.h>
27 #include <glib/gstdio.h>
28 #include <ftdi.h>
29 #include <string.h>
30 #include "libsigrok.h"
31 #include "libsigrok-internal.h"
32 #include "asix-sigma.h"
33
34 #define USB_VENDOR                      0xa600
35 #define USB_PRODUCT                     0xa000
36 #define USB_DESCRIPTION                 "ASIX SIGMA"
37 #define USB_VENDOR_NAME                 "ASIX"
38 #define USB_MODEL_NAME                  "SIGMA"
39 #define USB_MODEL_VERSION               ""
40 #define TRIGGER_TYPE                    "rf10"
41 #define NUM_PROBES                      16
42
43 SR_PRIV struct sr_dev_driver asix_sigma_driver_info;
44 static struct sr_dev_driver *di = &asix_sigma_driver_info;
45 static int hw_dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data);
46
47 static const uint64_t supported_samplerates[] = {
48         SR_KHZ(200),
49         SR_KHZ(250),
50         SR_KHZ(500),
51         SR_MHZ(1),
52         SR_MHZ(5),
53         SR_MHZ(10),
54         SR_MHZ(25),
55         SR_MHZ(50),
56         SR_MHZ(100),
57         SR_MHZ(200),
58         0,
59 };
60
61 /*
62  * Probe numbers seem to go from 1-16, according to this image:
63  * http://tools.asix.net/img/sigma_sigmacab_pins_720.jpg
64  * (the cable has two additional GND pins, and a TI and TO pin)
65  */
66 static const char *probe_names[NUM_PROBES + 1] = {
67         "1", "2", "3", "4", "5", "6", "7", "8",
68         "9", "10", "11", "12", "13", "14", "15", "16",
69         NULL,
70 };
71
72 static const struct sr_samplerates samplerates = {
73         .low  = 0,
74         .high = 0,
75         .step = 0,
76         .list = supported_samplerates,
77 };
78
79 static const int hwcaps[] = {
80         SR_CONF_LOGIC_ANALYZER,
81         SR_CONF_SAMPLERATE,
82         SR_CONF_CAPTURE_RATIO,
83
84         SR_CONF_LIMIT_MSEC,
85         0,
86 };
87
88 /* Force the FPGA to reboot. */
89 static uint8_t suicide[] = {
90         0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
91 };
92
93 /* Prepare to upload firmware (FPGA specific). */
94 static uint8_t init[] = {
95         0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
96 };
97
98 /* Initialize the logic analyzer mode. */
99 static uint8_t logic_mode_start[] = {
100         0x00, 0x40, 0x0f, 0x25, 0x35, 0x40,
101         0x2a, 0x3a, 0x40, 0x03, 0x20, 0x38,
102 };
103
104 static const char *firmware_files[] = {
105         "asix-sigma-50.fw",     /* 50 MHz, supports 8 bit fractions */
106         "asix-sigma-100.fw",    /* 100 MHz */
107         "asix-sigma-200.fw",    /* 200 MHz */
108         "asix-sigma-50sync.fw", /* Synchronous clock from pin */
109         "asix-sigma-phasor.fw", /* Frequency counter */
110 };
111
112 static int sigma_read(void *buf, size_t size, struct dev_context *devc)
113 {
114         int ret;
115
116         ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
117         if (ret < 0) {
118                 sr_err("ftdi_read_data failed: %s",
119                        ftdi_get_error_string(&devc->ftdic));
120         }
121
122         return ret;
123 }
124
125 static int sigma_write(void *buf, size_t size, struct dev_context *devc)
126 {
127         int ret;
128
129         ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size);
130         if (ret < 0) {
131                 sr_err("ftdi_write_data failed: %s",
132                        ftdi_get_error_string(&devc->ftdic));
133         } else if ((size_t) ret != size) {
134                 sr_err("ftdi_write_data did not complete write.");
135         }
136
137         return ret;
138 }
139
140 static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
141                                 struct dev_context *devc)
142 {
143         size_t i;
144         uint8_t buf[len + 2];
145         int idx = 0;
146
147         buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
148         buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
149
150         for (i = 0; i < len; ++i) {
151                 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
152                 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
153         }
154
155         return sigma_write(buf, idx, devc);
156 }
157
158 static int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc)
159 {
160         return sigma_write_register(reg, &value, 1, devc);
161 }
162
163 static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
164                                struct dev_context *devc)
165 {
166         uint8_t buf[3];
167
168         buf[0] = REG_ADDR_LOW | (reg & 0xf);
169         buf[1] = REG_ADDR_HIGH | (reg >> 4);
170         buf[2] = REG_READ_ADDR;
171
172         sigma_write(buf, sizeof(buf), devc);
173
174         return sigma_read(data, len, devc);
175 }
176
177 static uint8_t sigma_get_register(uint8_t reg, struct dev_context *devc)
178 {
179         uint8_t value;
180
181         if (1 != sigma_read_register(reg, &value, 1, devc)) {
182                 sr_err("sigma_get_register: 1 byte expected");
183                 return 0;
184         }
185
186         return value;
187 }
188
189 static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
190                           struct dev_context *devc)
191 {
192         uint8_t buf[] = {
193                 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
194
195                 REG_READ_ADDR | NEXT_REG,
196                 REG_READ_ADDR | NEXT_REG,
197                 REG_READ_ADDR | NEXT_REG,
198                 REG_READ_ADDR | NEXT_REG,
199                 REG_READ_ADDR | NEXT_REG,
200                 REG_READ_ADDR | NEXT_REG,
201         };
202         uint8_t result[6];
203
204         sigma_write(buf, sizeof(buf), devc);
205
206         sigma_read(result, sizeof(result), devc);
207
208         *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
209         *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
210
211         /* Not really sure why this must be done, but according to spec. */
212         if ((--*stoppos & 0x1ff) == 0x1ff)
213                 stoppos -= 64;
214
215         if ((*--triggerpos & 0x1ff) == 0x1ff)
216                 triggerpos -= 64;
217
218         return 1;
219 }
220
221 static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
222                            uint8_t *data, struct dev_context *devc)
223 {
224         size_t i;
225         uint8_t buf[4096];
226         int idx = 0;
227
228         /* Send the startchunk. Index start with 1. */
229         buf[0] = startchunk >> 8;
230         buf[1] = startchunk & 0xff;
231         sigma_write_register(WRITE_MEMROW, buf, 2, devc);
232
233         /* Read the DRAM. */
234         buf[idx++] = REG_DRAM_BLOCK;
235         buf[idx++] = REG_DRAM_WAIT_ACK;
236
237         for (i = 0; i < numchunks; ++i) {
238                 /* Alternate bit to copy from DRAM to cache. */
239                 if (i != (numchunks - 1))
240                         buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
241
242                 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
243
244                 if (i != (numchunks - 1))
245                         buf[idx++] = REG_DRAM_WAIT_ACK;
246         }
247
248         sigma_write(buf, idx, devc);
249
250         return sigma_read(data, numchunks * CHUNK_SIZE, devc);
251 }
252
253 /* Upload trigger look-up tables to Sigma. */
254 static int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc)
255 {
256         int i;
257         uint8_t tmp[2];
258         uint16_t bit;
259
260         /* Transpose the table and send to Sigma. */
261         for (i = 0; i < 16; ++i) {
262                 bit = 1 << i;
263
264                 tmp[0] = tmp[1] = 0;
265
266                 if (lut->m2d[0] & bit)
267                         tmp[0] |= 0x01;
268                 if (lut->m2d[1] & bit)
269                         tmp[0] |= 0x02;
270                 if (lut->m2d[2] & bit)
271                         tmp[0] |= 0x04;
272                 if (lut->m2d[3] & bit)
273                         tmp[0] |= 0x08;
274
275                 if (lut->m3 & bit)
276                         tmp[0] |= 0x10;
277                 if (lut->m3s & bit)
278                         tmp[0] |= 0x20;
279                 if (lut->m4 & bit)
280                         tmp[0] |= 0x40;
281
282                 if (lut->m0d[0] & bit)
283                         tmp[1] |= 0x01;
284                 if (lut->m0d[1] & bit)
285                         tmp[1] |= 0x02;
286                 if (lut->m0d[2] & bit)
287                         tmp[1] |= 0x04;
288                 if (lut->m0d[3] & bit)
289                         tmp[1] |= 0x08;
290
291                 if (lut->m1d[0] & bit)
292                         tmp[1] |= 0x10;
293                 if (lut->m1d[1] & bit)
294                         tmp[1] |= 0x20;
295                 if (lut->m1d[2] & bit)
296                         tmp[1] |= 0x40;
297                 if (lut->m1d[3] & bit)
298                         tmp[1] |= 0x80;
299
300                 sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
301                                      devc);
302                 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, devc);
303         }
304
305         /* Send the parameters */
306         sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
307                              sizeof(lut->params), devc);
308
309         return SR_OK;
310 }
311
312 /* Generate the bitbang stream for programming the FPGA. */
313 static int bin2bitbang(const char *filename,
314                        unsigned char **buf, size_t *buf_size)
315 {
316         FILE *f;
317         unsigned long file_size;
318         unsigned long offset = 0;
319         unsigned char *p;
320         uint8_t *firmware;
321         unsigned long fwsize = 0;
322         const int buffer_size = 65536;
323         size_t i;
324         int c, bit, v;
325         uint32_t imm = 0x3f6df2ab;
326
327         f = g_fopen(filename, "rb");
328         if (!f) {
329                 sr_err("g_fopen(\"%s\", \"rb\")", filename);
330                 return SR_ERR;
331         }
332
333         if (-1 == fseek(f, 0, SEEK_END)) {
334                 sr_err("fseek on %s failed", filename);
335                 fclose(f);
336                 return SR_ERR;
337         }
338
339         file_size = ftell(f);
340
341         fseek(f, 0, SEEK_SET);
342
343         if (!(firmware = g_try_malloc(buffer_size))) {
344                 sr_err("%s: firmware malloc failed", __func__);
345                 fclose(f);
346                 return SR_ERR_MALLOC;
347         }
348
349         while ((c = getc(f)) != EOF) {
350                 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
351                 firmware[fwsize++] = c ^ imm;
352         }
353         fclose(f);
354
355         if(fwsize != file_size) {
356             sr_err("%s: Error reading firmware", filename);
357             fclose(f);
358             g_free(firmware);
359             return SR_ERR;
360         }
361
362         *buf_size = fwsize * 2 * 8;
363
364         *buf = p = (unsigned char *)g_try_malloc(*buf_size);
365         if (!p) {
366                 sr_err("%s: buf/p malloc failed", __func__);
367                 g_free(firmware);
368                 return SR_ERR_MALLOC;
369         }
370
371         for (i = 0; i < fwsize; ++i) {
372                 for (bit = 7; bit >= 0; --bit) {
373                         v = firmware[i] & 1 << bit ? 0x40 : 0x00;
374                         p[offset++] = v | 0x01;
375                         p[offset++] = v;
376                 }
377         }
378
379         g_free(firmware);
380
381         if (offset != *buf_size) {
382                 g_free(*buf);
383                 sr_err("Error reading firmware %s "
384                        "offset=%ld, file_size=%ld, buf_size=%zd.",
385                        filename, offset, file_size, *buf_size);
386
387                 return SR_ERR;
388         }
389
390         return SR_OK;
391 }
392
393 static int clear_instances(void)
394 {
395         GSList *l;
396         struct sr_dev_inst *sdi;
397         struct drv_context *drvc;
398         struct dev_context *devc;
399
400         drvc = di->priv;
401
402         /* Properly close all devices. */
403         for (l = drvc->instances; l; l = l->next) {
404                 if (!(sdi = l->data)) {
405                         /* Log error, but continue cleaning up the rest. */
406                         sr_err("%s: sdi was NULL, continuing", __func__);
407                         continue;
408                 }
409                 if (sdi->priv) {
410                         devc = sdi->priv;
411                         ftdi_free(&devc->ftdic);
412                 }
413                 sr_dev_inst_free(sdi);
414         }
415         g_slist_free(drvc->instances);
416         drvc->instances = NULL;
417
418         return SR_OK;
419 }
420
421 static int hw_init(struct sr_context *sr_ctx)
422 {
423         return std_hw_init(sr_ctx, di, DRIVER_LOG_DOMAIN);
424 }
425
426 static GSList *hw_scan(GSList *options)
427 {
428         struct sr_dev_inst *sdi;
429         struct sr_probe *probe;
430         struct drv_context *drvc;
431         struct dev_context *devc;
432         GSList *devices;
433         struct ftdi_device_list *devlist;
434         char serial_txt[10];
435         uint32_t serial;
436         int ret, i;
437
438         (void)options;
439
440         drvc = di->priv;
441
442         devices = NULL;
443
444         clear_instances();
445
446         if (!(devc = g_try_malloc(sizeof(struct dev_context)))) {
447                 sr_err("%s: devc malloc failed", __func__);
448                 return NULL;
449         }
450
451         ftdi_init(&devc->ftdic);
452
453         /* Look for SIGMAs. */
454
455         if ((ret = ftdi_usb_find_all(&devc->ftdic, &devlist,
456             USB_VENDOR, USB_PRODUCT)) <= 0) {
457                 if (ret < 0)
458                         sr_err("ftdi_usb_find_all(): %d", ret);
459                 goto free;
460         }
461
462         /* Make sure it's a version 1 or 2 SIGMA. */
463         ftdi_usb_get_strings(&devc->ftdic, devlist->dev, NULL, 0, NULL, 0,
464                              serial_txt, sizeof(serial_txt));
465         sscanf(serial_txt, "%x", &serial);
466
467         if (serial < 0xa6010000 || serial > 0xa602ffff) {
468                 sr_err("Only SIGMA and SIGMA2 are supported "
469                        "in this version of libsigrok.");
470                 goto free;
471         }
472
473         sr_info("Found ASIX SIGMA - Serial: %s", serial_txt);
474
475         devc->cur_samplerate = 0;
476         devc->period_ps = 0;
477         devc->limit_msec = 0;
478         devc->cur_firmware = -1;
479         devc->num_probes = 0;
480         devc->samples_per_event = 0;
481         devc->capture_ratio = 50;
482         devc->use_triggers = 0;
483
484         /* Register SIGMA device. */
485         if (!(sdi = sr_dev_inst_new(0, SR_ST_INITIALIZING, USB_VENDOR_NAME,
486                                     USB_MODEL_NAME, USB_MODEL_VERSION))) {
487                 sr_err("%s: sdi was NULL", __func__);
488                 goto free;
489         }
490         sdi->driver = di;
491
492         for (i = 0; probe_names[i]; i++) {
493                 if (!(probe = sr_probe_new(i, SR_PROBE_LOGIC, TRUE,
494                                 probe_names[i])))
495                         return NULL;
496                 sdi->probes = g_slist_append(sdi->probes, probe);
497         }
498
499         devices = g_slist_append(devices, sdi);
500         drvc->instances = g_slist_append(drvc->instances, sdi);
501         sdi->priv = devc;
502
503         /* We will open the device again when we need it. */
504         ftdi_list_free(&devlist);
505
506         return devices;
507
508 free:
509         ftdi_deinit(&devc->ftdic);
510         g_free(devc);
511         return NULL;
512 }
513
514 static GSList *hw_dev_list(void)
515 {
516         return ((struct drv_context *)(di->priv))->instances;
517 }
518
519 static int upload_firmware(int firmware_idx, struct dev_context *devc)
520 {
521         int ret;
522         unsigned char *buf;
523         unsigned char pins;
524         size_t buf_size;
525         unsigned char result[32];
526         char firmware_path[128];
527
528         /* Make sure it's an ASIX SIGMA. */
529         if ((ret = ftdi_usb_open_desc(&devc->ftdic,
530                 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
531                 sr_err("ftdi_usb_open failed: %s",
532                        ftdi_get_error_string(&devc->ftdic));
533                 return 0;
534         }
535
536         if ((ret = ftdi_set_bitmode(&devc->ftdic, 0xdf, BITMODE_BITBANG)) < 0) {
537                 sr_err("ftdi_set_bitmode failed: %s",
538                        ftdi_get_error_string(&devc->ftdic));
539                 return 0;
540         }
541
542         /* Four times the speed of sigmalogan - Works well. */
543         if ((ret = ftdi_set_baudrate(&devc->ftdic, 750000)) < 0) {
544                 sr_err("ftdi_set_baudrate failed: %s",
545                        ftdi_get_error_string(&devc->ftdic));
546                 return 0;
547         }
548
549         /* Force the FPGA to reboot. */
550         sigma_write(suicide, sizeof(suicide), devc);
551         sigma_write(suicide, sizeof(suicide), devc);
552         sigma_write(suicide, sizeof(suicide), devc);
553         sigma_write(suicide, sizeof(suicide), devc);
554
555         /* Prepare to upload firmware (FPGA specific). */
556         sigma_write(init, sizeof(init), devc);
557
558         ftdi_usb_purge_buffers(&devc->ftdic);
559
560         /* Wait until the FPGA asserts INIT_B. */
561         while (1) {
562                 ret = sigma_read(result, 1, devc);
563                 if (result[0] & 0x20)
564                         break;
565         }
566
567         /* Prepare firmware. */
568         snprintf(firmware_path, sizeof(firmware_path), "%s/%s", FIRMWARE_DIR,
569                  firmware_files[firmware_idx]);
570
571         if ((ret = bin2bitbang(firmware_path, &buf, &buf_size)) != SR_OK) {
572                 sr_err("An error occured while reading the firmware: %s",
573                        firmware_path);
574                 return ret;
575         }
576
577         /* Upload firmare. */
578         sr_info("Uploading firmware file '%s'.", firmware_files[firmware_idx]);
579         sigma_write(buf, buf_size, devc);
580
581         g_free(buf);
582
583         if ((ret = ftdi_set_bitmode(&devc->ftdic, 0x00, BITMODE_RESET)) < 0) {
584                 sr_err("ftdi_set_bitmode failed: %s",
585                        ftdi_get_error_string(&devc->ftdic));
586                 return SR_ERR;
587         }
588
589         ftdi_usb_purge_buffers(&devc->ftdic);
590
591         /* Discard garbage. */
592         while (1 == sigma_read(&pins, 1, devc))
593                 ;
594
595         /* Initialize the logic analyzer mode. */
596         sigma_write(logic_mode_start, sizeof(logic_mode_start), devc);
597
598         /* Expect a 3 byte reply. */
599         ret = sigma_read(result, 3, devc);
600         if (ret != 3 ||
601             result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) {
602                 sr_err("Configuration failed. Invalid reply received.");
603                 return SR_ERR;
604         }
605
606         devc->cur_firmware = firmware_idx;
607
608         sr_info("Firmware uploaded.");
609
610         return SR_OK;
611 }
612
613 static int hw_dev_open(struct sr_dev_inst *sdi)
614 {
615         struct dev_context *devc;
616         int ret;
617
618         devc = sdi->priv;
619
620         /* Make sure it's an ASIX SIGMA. */
621         if ((ret = ftdi_usb_open_desc(&devc->ftdic,
622                 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
623
624                 sr_err("ftdi_usb_open failed: %s",
625                        ftdi_get_error_string(&devc->ftdic));
626
627                 return 0;
628         }
629
630         sdi->status = SR_ST_ACTIVE;
631
632         return SR_OK;
633 }
634
635 static int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
636 {
637         int i, ret;
638         struct dev_context *devc = sdi->priv;
639
640         ret = SR_OK;
641
642         for (i = 0; supported_samplerates[i]; i++) {
643                 if (supported_samplerates[i] == samplerate)
644                         break;
645         }
646         if (supported_samplerates[i] == 0)
647                 return SR_ERR_SAMPLERATE;
648
649         if (samplerate <= SR_MHZ(50)) {
650                 ret = upload_firmware(0, devc);
651                 devc->num_probes = 16;
652         }
653         if (samplerate == SR_MHZ(100)) {
654                 ret = upload_firmware(1, devc);
655                 devc->num_probes = 8;
656         }
657         else if (samplerate == SR_MHZ(200)) {
658                 ret = upload_firmware(2, devc);
659                 devc->num_probes = 4;
660         }
661
662         devc->cur_samplerate = samplerate;
663         devc->period_ps = 1000000000000ULL / samplerate;
664         devc->samples_per_event = 16 / devc->num_probes;
665         devc->state.state = SIGMA_IDLE;
666
667         return ret;
668 }
669
670 /*
671  * In 100 and 200 MHz mode, only a single pin rising/falling can be
672  * set as trigger. In other modes, two rising/falling triggers can be set,
673  * in addition to value/mask trigger for any number of probes.
674  *
675  * The Sigma supports complex triggers using boolean expressions, but this
676  * has not been implemented yet.
677  */
678 static int configure_probes(const struct sr_dev_inst *sdi)
679 {
680         struct dev_context *devc = sdi->priv;
681         const struct sr_probe *probe;
682         const GSList *l;
683         int trigger_set = 0;
684         int probebit;
685
686         memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
687
688         for (l = sdi->probes; l; l = l->next) {
689                 probe = (struct sr_probe *)l->data;
690                 probebit = 1 << (probe->index);
691
692                 if (!probe->enabled || !probe->trigger)
693                         continue;
694
695                 if (devc->cur_samplerate >= SR_MHZ(100)) {
696                         /* Fast trigger support. */
697                         if (trigger_set) {
698                                 sr_err("Only a single pin trigger in 100 and "
699                                        "200MHz mode is supported.");
700                                 return SR_ERR;
701                         }
702                         if (probe->trigger[0] == 'f')
703                                 devc->trigger.fallingmask |= probebit;
704                         else if (probe->trigger[0] == 'r')
705                                 devc->trigger.risingmask |= probebit;
706                         else {
707                                 sr_err("Only rising/falling trigger in 100 "
708                                        "and 200MHz mode is supported.");
709                                 return SR_ERR;
710                         }
711
712                         ++trigger_set;
713                 } else {
714                         /* Simple trigger support (event). */
715                         if (probe->trigger[0] == '1') {
716                                 devc->trigger.simplevalue |= probebit;
717                                 devc->trigger.simplemask |= probebit;
718                         }
719                         else if (probe->trigger[0] == '0') {
720                                 devc->trigger.simplevalue &= ~probebit;
721                                 devc->trigger.simplemask |= probebit;
722                         }
723                         else if (probe->trigger[0] == 'f') {
724                                 devc->trigger.fallingmask |= probebit;
725                                 ++trigger_set;
726                         }
727                         else if (probe->trigger[0] == 'r') {
728                                 devc->trigger.risingmask |= probebit;
729                                 ++trigger_set;
730                         }
731
732                         /*
733                          * Actually, Sigma supports 2 rising/falling triggers,
734                          * but they are ORed and the current trigger syntax
735                          * does not permit ORed triggers.
736                          */
737                         if (trigger_set > 1) {
738                                 sr_err("Only 1 rising/falling trigger "
739                                        "is supported.");
740                                 return SR_ERR;
741                         }
742                 }
743
744                 if (trigger_set)
745                         devc->use_triggers = 1;
746         }
747
748         return SR_OK;
749 }
750
751 static int hw_dev_close(struct sr_dev_inst *sdi)
752 {
753         struct dev_context *devc;
754
755         devc = sdi->priv;
756
757         /* TODO */
758         if (sdi->status == SR_ST_ACTIVE)
759                 ftdi_usb_close(&devc->ftdic);
760
761         sdi->status = SR_ST_INACTIVE;
762
763         return SR_OK;
764 }
765
766 static int hw_cleanup(void)
767 {
768         if (!di->priv)
769                 return SR_OK;
770
771         clear_instances();
772
773         return SR_OK;
774 }
775
776 static int config_get(int id, const void **data, const struct sr_dev_inst *sdi)
777 {
778         struct dev_context *devc;
779
780         switch (id) {
781         case SR_CONF_SAMPLERATE:
782                 if (sdi) {
783                         devc = sdi->priv;
784                         *data = &devc->cur_samplerate;
785                 } else
786                         return SR_ERR;
787                 break;
788         default:
789                 return SR_ERR_ARG;
790         }
791
792         return SR_OK;
793 }
794
795 static int config_set(int id, const void *value, const struct sr_dev_inst *sdi)
796 {
797         struct dev_context *devc;
798         int ret;
799
800         devc = sdi->priv;
801
802         if (id == SR_CONF_SAMPLERATE) {
803                 ret = set_samplerate(sdi, *(const uint64_t *)value);
804         } else if (id == SR_CONF_LIMIT_MSEC) {
805                 devc->limit_msec = *(const uint64_t *)value;
806                 if (devc->limit_msec > 0)
807                         ret = SR_OK;
808                 else
809                         ret = SR_ERR;
810         } else if (id == SR_CONF_CAPTURE_RATIO) {
811                 devc->capture_ratio = *(const uint64_t *)value;
812                 if (devc->capture_ratio < 0 || devc->capture_ratio > 100)
813                         ret = SR_ERR;
814                 else
815                         ret = SR_OK;
816         } else {
817                 ret = SR_ERR;
818         }
819
820         return ret;
821 }
822
823 static int config_list(int key, const void **data, const struct sr_dev_inst *sdi)
824 {
825
826         (void)sdi;
827
828         switch (key) {
829         case SR_CONF_DEVICE_OPTIONS:
830                 *data = hwcaps;
831                 break;
832         case SR_CONF_SAMPLERATE:
833                 *data = &samplerates;
834                 break;
835         case SR_CONF_TRIGGER_TYPE:
836                 *data = (char *)TRIGGER_TYPE;
837                 break;
838         default:
839                 return SR_ERR_ARG;
840         }
841
842         return SR_OK;
843 }
844
845 /* Software trigger to determine exact trigger position. */
846 static int get_trigger_offset(uint16_t *samples, uint16_t last_sample,
847                               struct sigma_trigger *t)
848 {
849         int i;
850
851         for (i = 0; i < 8; ++i) {
852                 if (i > 0)
853                         last_sample = samples[i-1];
854
855                 /* Simple triggers. */
856                 if ((samples[i] & t->simplemask) != t->simplevalue)
857                         continue;
858
859                 /* Rising edge. */
860                 if ((last_sample & t->risingmask) != 0 || (samples[i] &
861                     t->risingmask) != t->risingmask)
862                         continue;
863
864                 /* Falling edge. */
865                 if ((last_sample & t->fallingmask) != t->fallingmask ||
866                     (samples[i] & t->fallingmask) != 0)
867                         continue;
868
869                 break;
870         }
871
872         /* If we did not match, return original trigger pos. */
873         return i & 0x7;
874 }
875
876 /*
877  * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
878  * Each event is 20ns apart, and can contain multiple samples.
879  *
880  * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
881  * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
882  * For 50 MHz and below, events contain one sample for each channel,
883  * spread 20 ns apart.
884  */
885 static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
886                            uint16_t *lastsample, int triggerpos,
887                            uint16_t limit_chunk, void *cb_data)
888 {
889         struct sr_dev_inst *sdi = cb_data;
890         struct dev_context *devc = sdi->priv;
891         uint16_t tsdiff, ts;
892         uint16_t samples[65536 * devc->samples_per_event];
893         struct sr_datafeed_packet packet;
894         struct sr_datafeed_logic logic;
895         int i, j, k, l, numpad, tosend;
896         size_t n = 0, sent = 0;
897         int clustersize = EVENTS_PER_CLUSTER * devc->samples_per_event;
898         uint16_t *event;
899         uint16_t cur_sample;
900         int triggerts = -1;
901
902         /* Check if trigger is in this chunk. */
903         if (triggerpos != -1) {
904                 if (devc->cur_samplerate <= SR_MHZ(50))
905                         triggerpos -= EVENTS_PER_CLUSTER - 1;
906
907                 if (triggerpos < 0)
908                         triggerpos = 0;
909
910                 /* Find in which cluster the trigger occured. */
911                 triggerts = triggerpos / 7;
912         }
913
914         /* For each ts. */
915         for (i = 0; i < 64; ++i) {
916                 ts = *(uint16_t *) &buf[i * 16];
917                 tsdiff = ts - *lastts;
918                 *lastts = ts;
919
920                 /* Decode partial chunk. */
921                 if (limit_chunk && ts > limit_chunk)
922                         return SR_OK;
923
924                 /* Pad last sample up to current point. */
925                 numpad = tsdiff * devc->samples_per_event - clustersize;
926                 if (numpad > 0) {
927                         for (j = 0; j < numpad; ++j)
928                                 samples[j] = *lastsample;
929
930                         n = numpad;
931                 }
932
933                 /* Send samples between previous and this timestamp to sigrok. */
934                 sent = 0;
935                 while (sent < n) {
936                         tosend = MIN(2048, n - sent);
937
938                         packet.type = SR_DF_LOGIC;
939                         packet.payload = &logic;
940                         logic.length = tosend * sizeof(uint16_t);
941                         logic.unitsize = 2;
942                         logic.data = samples + sent;
943                         sr_session_send(devc->session_dev_id, &packet);
944
945                         sent += tosend;
946                 }
947                 n = 0;
948
949                 event = (uint16_t *) &buf[i * 16 + 2];
950                 cur_sample = 0;
951
952                 /* For each event in cluster. */
953                 for (j = 0; j < 7; ++j) {
954
955                         /* For each sample in event. */
956                         for (k = 0; k < devc->samples_per_event; ++k) {
957                                 cur_sample = 0;
958
959                                 /* For each probe. */
960                                 for (l = 0; l < devc->num_probes; ++l)
961                                         cur_sample |= (!!(event[j] & (1 << (l *
962                                            devc->samples_per_event + k)))) << l;
963
964                                 samples[n++] = cur_sample;
965                         }
966                 }
967
968                 /* Send data up to trigger point (if triggered). */
969                 sent = 0;
970                 if (i == triggerts) {
971                         /*
972                          * Trigger is not always accurate to sample because of
973                          * pipeline delay. However, it always triggers before
974                          * the actual event. We therefore look at the next
975                          * samples to pinpoint the exact position of the trigger.
976                          */
977                         tosend = get_trigger_offset(samples, *lastsample,
978                                                     &devc->trigger);
979
980                         if (tosend > 0) {
981                                 packet.type = SR_DF_LOGIC;
982                                 packet.payload = &logic;
983                                 logic.length = tosend * sizeof(uint16_t);
984                                 logic.unitsize = 2;
985                                 logic.data = samples;
986                                 sr_session_send(devc->session_dev_id, &packet);
987
988                                 sent += tosend;
989                         }
990
991                         /* Only send trigger if explicitly enabled. */
992                         if (devc->use_triggers) {
993                                 packet.type = SR_DF_TRIGGER;
994                                 sr_session_send(devc->session_dev_id, &packet);
995                         }
996                 }
997
998                 /* Send rest of the chunk to sigrok. */
999                 tosend = n - sent;
1000
1001                 if (tosend > 0) {
1002                         packet.type = SR_DF_LOGIC;
1003                         packet.payload = &logic;
1004                         logic.length = tosend * sizeof(uint16_t);
1005                         logic.unitsize = 2;
1006                         logic.data = samples + sent;
1007                         sr_session_send(devc->session_dev_id, &packet);
1008                 }
1009
1010                 *lastsample = samples[n - 1];
1011         }
1012
1013         return SR_OK;
1014 }
1015
1016 static int receive_data(int fd, int revents, void *cb_data)
1017 {
1018         struct sr_dev_inst *sdi = cb_data;
1019         struct dev_context *devc = sdi->priv;
1020         struct sr_datafeed_packet packet;
1021         const int chunks_per_read = 32;
1022         unsigned char buf[chunks_per_read * CHUNK_SIZE];
1023         int bufsz, numchunks, i, newchunks;
1024         uint64_t running_msec;
1025         struct timeval tv;
1026
1027         (void)fd;
1028         (void)revents;
1029
1030         /* Get the current position. */
1031         sigma_read_pos(&devc->state.stoppos, &devc->state.triggerpos, devc);
1032
1033         numchunks = (devc->state.stoppos + 511) / 512;
1034
1035         if (devc->state.state == SIGMA_IDLE)
1036                 return TRUE;
1037
1038         if (devc->state.state == SIGMA_CAPTURE) {
1039                 /* Check if the timer has expired, or memory is full. */
1040                 gettimeofday(&tv, 0);
1041                 running_msec = (tv.tv_sec - devc->start_tv.tv_sec) * 1000 +
1042                         (tv.tv_usec - devc->start_tv.tv_usec) / 1000;
1043
1044                 if (running_msec < devc->limit_msec && numchunks < 32767)
1045                         return TRUE; /* While capturing... */
1046                 else
1047                         hw_dev_acquisition_stop(sdi, sdi);
1048
1049         }
1050
1051         if (devc->state.state == SIGMA_DOWNLOAD) {
1052                 if (devc->state.chunks_downloaded >= numchunks) {
1053                         /* End of samples. */
1054                         packet.type = SR_DF_END;
1055                         sr_session_send(devc->session_dev_id, &packet);
1056
1057                         devc->state.state = SIGMA_IDLE;
1058
1059                         return TRUE;
1060                 }
1061
1062                 newchunks = MIN(chunks_per_read,
1063                                 numchunks - devc->state.chunks_downloaded);
1064
1065                 sr_info("Downloading sample data: %.0f %%.",
1066                         100.0 * devc->state.chunks_downloaded / numchunks);
1067
1068                 bufsz = sigma_read_dram(devc->state.chunks_downloaded,
1069                                         newchunks, buf, devc);
1070                 /* TODO: Check bufsz. For now, just avoid compiler warnings. */
1071                 (void)bufsz;
1072
1073                 /* Find first ts. */
1074                 if (devc->state.chunks_downloaded == 0) {
1075                         devc->state.lastts = *(uint16_t *) buf - 1;
1076                         devc->state.lastsample = 0;
1077                 }
1078
1079                 /* Decode chunks and send them to sigrok. */
1080                 for (i = 0; i < newchunks; ++i) {
1081                         int limit_chunk = 0;
1082
1083                         /* The last chunk may potentially be only in part. */
1084                         if (devc->state.chunks_downloaded == numchunks - 1) {
1085                                 /* Find the last valid timestamp */
1086                                 limit_chunk = devc->state.stoppos % 512 + devc->state.lastts;
1087                         }
1088
1089                         if (devc->state.chunks_downloaded + i == devc->state.triggerchunk)
1090                                 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1091                                                 &devc->state.lastts,
1092                                                 &devc->state.lastsample,
1093                                                 devc->state.triggerpos & 0x1ff,
1094                                                 limit_chunk, sdi);
1095                         else
1096                                 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1097                                                 &devc->state.lastts,
1098                                                 &devc->state.lastsample,
1099                                                 -1, limit_chunk, sdi);
1100
1101                         ++devc->state.chunks_downloaded;
1102                 }
1103         }
1104
1105         return TRUE;
1106 }
1107
1108 /* Build a LUT entry used by the trigger functions. */
1109 static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
1110 {
1111         int i, j, k, bit;
1112
1113         /* For each quad probe. */
1114         for (i = 0; i < 4; ++i) {
1115                 entry[i] = 0xffff;
1116
1117                 /* For each bit in LUT. */
1118                 for (j = 0; j < 16; ++j)
1119
1120                         /* For each probe in quad. */
1121                         for (k = 0; k < 4; ++k) {
1122                                 bit = 1 << (i * 4 + k);
1123
1124                                 /* Set bit in entry */
1125                                 if ((mask & bit) &&
1126                                     ((!(value & bit)) !=
1127                                     (!(j & (1 << k)))))
1128                                         entry[i] &= ~(1 << j);
1129                         }
1130         }
1131 }
1132
1133 /* Add a logical function to LUT mask. */
1134 static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1135                                  int index, int neg, uint16_t *mask)
1136 {
1137         int i, j;
1138         int x[2][2], tmp, a, b, aset, bset, rset;
1139
1140         memset(x, 0, 4 * sizeof(int));
1141
1142         /* Trigger detect condition. */
1143         switch (oper) {
1144         case OP_LEVEL:
1145                 x[0][1] = 1;
1146                 x[1][1] = 1;
1147                 break;
1148         case OP_NOT:
1149                 x[0][0] = 1;
1150                 x[1][0] = 1;
1151                 break;
1152         case OP_RISE:
1153                 x[0][1] = 1;
1154                 break;
1155         case OP_FALL:
1156                 x[1][0] = 1;
1157                 break;
1158         case OP_RISEFALL:
1159                 x[0][1] = 1;
1160                 x[1][0] = 1;
1161                 break;
1162         case OP_NOTRISE:
1163                 x[1][1] = 1;
1164                 x[0][0] = 1;
1165                 x[1][0] = 1;
1166                 break;
1167         case OP_NOTFALL:
1168                 x[1][1] = 1;
1169                 x[0][0] = 1;
1170                 x[0][1] = 1;
1171                 break;
1172         case OP_NOTRISEFALL:
1173                 x[1][1] = 1;
1174                 x[0][0] = 1;
1175                 break;
1176         }
1177
1178         /* Transpose if neg is set. */
1179         if (neg) {
1180                 for (i = 0; i < 2; ++i) {
1181                         for (j = 0; j < 2; ++j) {
1182                                 tmp = x[i][j];
1183                                 x[i][j] = x[1-i][1-j];
1184                                 x[1-i][1-j] = tmp;
1185                         }
1186                 }
1187         }
1188
1189         /* Update mask with function. */
1190         for (i = 0; i < 16; ++i) {
1191                 a = (i >> (2 * index + 0)) & 1;
1192                 b = (i >> (2 * index + 1)) & 1;
1193
1194                 aset = (*mask >> i) & 1;
1195                 bset = x[b][a];
1196
1197                 if (func == FUNC_AND || func == FUNC_NAND)
1198                         rset = aset & bset;
1199                 else if (func == FUNC_OR || func == FUNC_NOR)
1200                         rset = aset | bset;
1201                 else if (func == FUNC_XOR || func == FUNC_NXOR)
1202                         rset = aset ^ bset;
1203
1204                 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1205                         rset = !rset;
1206
1207                 *mask &= ~(1 << i);
1208
1209                 if (rset)
1210                         *mask |= 1 << i;
1211         }
1212 }
1213
1214 /*
1215  * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1216  * simple pin change and state triggers. Only two transitions (rise/fall) can be
1217  * set at any time, but a full mask and value can be set (0/1).
1218  */
1219 static int build_basic_trigger(struct triggerlut *lut, struct dev_context *devc)
1220 {
1221         int i,j;
1222         uint16_t masks[2] = { 0, 0 };
1223
1224         memset(lut, 0, sizeof(struct triggerlut));
1225
1226         /* Contant for simple triggers. */
1227         lut->m4 = 0xa000;
1228
1229         /* Value/mask trigger support. */
1230         build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
1231                         lut->m2d);
1232
1233         /* Rise/fall trigger support. */
1234         for (i = 0, j = 0; i < 16; ++i) {
1235                 if (devc->trigger.risingmask & (1 << i) ||
1236                     devc->trigger.fallingmask & (1 << i))
1237                         masks[j++] = 1 << i;
1238         }
1239
1240         build_lut_entry(masks[0], masks[0], lut->m0d);
1241         build_lut_entry(masks[1], masks[1], lut->m1d);
1242
1243         /* Add glue logic */
1244         if (masks[0] || masks[1]) {
1245                 /* Transition trigger. */
1246                 if (masks[0] & devc->trigger.risingmask)
1247                         add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
1248                 if (masks[0] & devc->trigger.fallingmask)
1249                         add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
1250                 if (masks[1] & devc->trigger.risingmask)
1251                         add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
1252                 if (masks[1] & devc->trigger.fallingmask)
1253                         add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1254         } else {
1255                 /* Only value/mask trigger. */
1256                 lut->m3 = 0xffff;
1257         }
1258
1259         /* Triggertype: event. */
1260         lut->params.selres = 3;
1261
1262         return SR_OK;
1263 }
1264
1265 static int hw_dev_acquisition_start(const struct sr_dev_inst *sdi,
1266                 void *cb_data)
1267 {
1268         struct dev_context *devc;
1269         struct sr_datafeed_packet *packet;
1270         struct sr_datafeed_header *header;
1271         struct clockselect_50 clockselect;
1272         int frac, triggerpin, ret;
1273         uint8_t triggerselect = 0;
1274         struct triggerinout triggerinout_conf;
1275         struct triggerlut lut;
1276
1277         devc = sdi->priv;
1278
1279         if (configure_probes(sdi) != SR_OK) {
1280                 sr_err("Failed to configure probes.");
1281                 return SR_ERR;
1282         }
1283
1284         /* If the samplerate has not been set, default to 200 kHz. */
1285         if (devc->cur_firmware == -1) {
1286                 if ((ret = set_samplerate(sdi, SR_KHZ(200))) != SR_OK)
1287                         return ret;
1288         }
1289
1290         /* Enter trigger programming mode. */
1291         sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, devc);
1292
1293         /* 100 and 200 MHz mode. */
1294         if (devc->cur_samplerate >= SR_MHZ(100)) {
1295                 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, devc);
1296
1297                 /* Find which pin to trigger on from mask. */
1298                 for (triggerpin = 0; triggerpin < 8; ++triggerpin)
1299                         if ((devc->trigger.risingmask | devc->trigger.fallingmask) &
1300                             (1 << triggerpin))
1301                                 break;
1302
1303                 /* Set trigger pin and light LED on trigger. */
1304                 triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
1305
1306                 /* Default rising edge. */
1307                 if (devc->trigger.fallingmask)
1308                         triggerselect |= 1 << 3;
1309
1310         /* All other modes. */
1311         } else if (devc->cur_samplerate <= SR_MHZ(50)) {
1312                 build_basic_trigger(&lut, devc);
1313
1314                 sigma_write_trigger_lut(&lut, devc);
1315
1316                 triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
1317         }
1318
1319         /* Setup trigger in and out pins to default values. */
1320         memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
1321         triggerinout_conf.trgout_bytrigger = 1;
1322         triggerinout_conf.trgout_enable = 1;
1323
1324         sigma_write_register(WRITE_TRIGGER_OPTION,
1325                              (uint8_t *) &triggerinout_conf,
1326                              sizeof(struct triggerinout), devc);
1327
1328         /* Go back to normal mode. */
1329         sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, devc);
1330
1331         /* Set clock select register. */
1332         if (devc->cur_samplerate == SR_MHZ(200))
1333                 /* Enable 4 probes. */
1334                 sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, devc);
1335         else if (devc->cur_samplerate == SR_MHZ(100))
1336                 /* Enable 8 probes. */
1337                 sigma_set_register(WRITE_CLOCK_SELECT, 0x00, devc);
1338         else {
1339                 /*
1340                  * 50 MHz mode (or fraction thereof). Any fraction down to
1341                  * 50 MHz / 256 can be used, but is not supported by sigrok API.
1342                  */
1343                 frac = SR_MHZ(50) / devc->cur_samplerate - 1;
1344
1345                 clockselect.async = 0;
1346                 clockselect.fraction = frac;
1347                 clockselect.disabled_probes = 0;
1348
1349                 sigma_write_register(WRITE_CLOCK_SELECT,
1350                                      (uint8_t *) &clockselect,
1351                                      sizeof(clockselect), devc);
1352         }
1353
1354         /* Setup maximum post trigger time. */
1355         sigma_set_register(WRITE_POST_TRIGGER,
1356                            (devc->capture_ratio * 255) / 100, devc);
1357
1358         /* Start acqusition. */
1359         gettimeofday(&devc->start_tv, 0);
1360         sigma_set_register(WRITE_MODE, 0x0d, devc);
1361
1362         devc->session_dev_id = cb_data;
1363
1364         if (!(packet = g_try_malloc(sizeof(struct sr_datafeed_packet)))) {
1365                 sr_err("%s: packet malloc failed.", __func__);
1366                 return SR_ERR_MALLOC;
1367         }
1368
1369         if (!(header = g_try_malloc(sizeof(struct sr_datafeed_header)))) {
1370                 sr_err("%s: header malloc failed.", __func__);
1371                 return SR_ERR_MALLOC;
1372         }
1373
1374         /* Send header packet to the session bus. */
1375         packet->type = SR_DF_HEADER;
1376         packet->payload = header;
1377         header->feed_version = 1;
1378         gettimeofday(&header->starttime, NULL);
1379         sr_session_send(devc->session_dev_id, packet);
1380
1381         /* Add capture source. */
1382         sr_source_add(0, G_IO_IN, 10, receive_data, (void *)sdi);
1383
1384         g_free(header);
1385         g_free(packet);
1386
1387         devc->state.state = SIGMA_CAPTURE;
1388
1389         return SR_OK;
1390 }
1391
1392 static int hw_dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
1393 {
1394         struct dev_context *devc;
1395         uint8_t modestatus;
1396
1397         (void)cb_data;
1398
1399         sr_source_remove(0);
1400
1401         if (!(devc = sdi->priv)) {
1402                 sr_err("%s: sdi->priv was NULL", __func__);
1403                 return SR_ERR_BUG;
1404         }
1405
1406         /* Stop acquisition. */
1407         sigma_set_register(WRITE_MODE, 0x11, devc);
1408
1409         /* Set SDRAM Read Enable. */
1410         sigma_set_register(WRITE_MODE, 0x02, devc);
1411
1412         /* Get the current position. */
1413         sigma_read_pos(&devc->state.stoppos, &devc->state.triggerpos, devc);
1414
1415         /* Check if trigger has fired. */
1416         modestatus = sigma_get_register(READ_MODE, devc);
1417         if (modestatus & 0x20)
1418                 devc->state.triggerchunk = devc->state.triggerpos / 512;
1419         else
1420                 devc->state.triggerchunk = -1;
1421
1422         devc->state.chunks_downloaded = 0;
1423
1424         devc->state.state = SIGMA_DOWNLOAD;
1425
1426         return SR_OK;
1427 }
1428
1429 SR_PRIV struct sr_dev_driver asix_sigma_driver_info = {
1430         .name = "asix-sigma",
1431         .longname = "ASIX SIGMA/SIGMA2",
1432         .api_version = 1,
1433         .init = hw_init,
1434         .cleanup = hw_cleanup,
1435         .scan = hw_scan,
1436         .dev_list = hw_dev_list,
1437         .dev_clear = clear_instances,
1438         .config_get = config_get,
1439         .config_set = config_set,
1440         .config_list = config_list,
1441         .dev_open = hw_dev_open,
1442         .dev_close = hw_dev_close,
1443         .dev_acquisition_start = hw_dev_acquisition_start,
1444         .dev_acquisition_stop = hw_dev_acquisition_stop,
1445         .priv = NULL,
1446 };