]> sigrok.org Git - libsigrok.git/blob - hardware/asix-sigma/asix-sigma.c
Get rid of obsolete SR_DI_NUM_PROBES and SR_DI_PROBE_NAMES.
[libsigrok.git] / hardware / asix-sigma / asix-sigma.c
1 /*
2  * This file is part of the sigrok project.
3  *
4  * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
5  * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6  * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7  *
8  * This program is free software: you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 3 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21
22 /*
23  * ASIX SIGMA/SIGMA2 logic analyzer driver
24  */
25
26 #include <glib.h>
27 #include <glib/gstdio.h>
28 #include <ftdi.h>
29 #include <string.h>
30 #include "libsigrok.h"
31 #include "libsigrok-internal.h"
32 #include "asix-sigma.h"
33
34 #define USB_VENDOR                      0xa600
35 #define USB_PRODUCT                     0xa000
36 #define USB_DESCRIPTION                 "ASIX SIGMA"
37 #define USB_VENDOR_NAME                 "ASIX"
38 #define USB_MODEL_NAME                  "SIGMA"
39 #define USB_MODEL_VERSION               ""
40 #define TRIGGER_TYPES                   "rf10"
41 #define NUM_PROBES                      16
42
43 SR_PRIV struct sr_dev_driver asix_sigma_driver_info;
44 static struct sr_dev_driver *di = &asix_sigma_driver_info;
45 static int hw_dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data);
46
47 static const uint64_t supported_samplerates[] = {
48         SR_KHZ(200),
49         SR_KHZ(250),
50         SR_KHZ(500),
51         SR_MHZ(1),
52         SR_MHZ(5),
53         SR_MHZ(10),
54         SR_MHZ(25),
55         SR_MHZ(50),
56         SR_MHZ(100),
57         SR_MHZ(200),
58         0,
59 };
60
61 /*
62  * Probe numbers seem to go from 1-16, according to this image:
63  * http://tools.asix.net/img/sigma_sigmacab_pins_720.jpg
64  * (the cable has two additional GND pins, and a TI and TO pin)
65  */
66 static const char *probe_names[NUM_PROBES + 1] = {
67         "1", "2", "3", "4", "5", "6", "7", "8",
68         "9", "10", "11", "12", "13", "14", "15", "16",
69         NULL,
70 };
71
72 static const struct sr_samplerates samplerates = {
73         0,
74         0,
75         0,
76         supported_samplerates,
77 };
78
79 static const int hwcaps[] = {
80         SR_HWCAP_LOGIC_ANALYZER,
81         SR_HWCAP_SAMPLERATE,
82         SR_HWCAP_CAPTURE_RATIO,
83
84         SR_HWCAP_LIMIT_MSEC,
85         0,
86 };
87
88 /* Force the FPGA to reboot. */
89 static uint8_t suicide[] = {
90         0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
91 };
92
93 /* Prepare to upload firmware (FPGA specific). */
94 static uint8_t init[] = {
95         0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
96 };
97
98 /* Initialize the logic analyzer mode. */
99 static uint8_t logic_mode_start[] = {
100         0x00, 0x40, 0x0f, 0x25, 0x35, 0x40,
101         0x2a, 0x3a, 0x40, 0x03, 0x20, 0x38,
102 };
103
104 static const char *firmware_files[] = {
105         "asix-sigma-50.fw",     /* 50 MHz, supports 8 bit fractions */
106         "asix-sigma-100.fw",    /* 100 MHz */
107         "asix-sigma-200.fw",    /* 200 MHz */
108         "asix-sigma-50sync.fw", /* Synchronous clock from pin */
109         "asix-sigma-phasor.fw", /* Frequency counter */
110 };
111
112 static int sigma_read(void *buf, size_t size, struct dev_context *devc)
113 {
114         int ret;
115
116         ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
117         if (ret < 0) {
118                 sr_err("ftdi_read_data failed: %s",
119                        ftdi_get_error_string(&devc->ftdic));
120         }
121
122         return ret;
123 }
124
125 static int sigma_write(void *buf, size_t size, struct dev_context *devc)
126 {
127         int ret;
128
129         ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size);
130         if (ret < 0) {
131                 sr_err("ftdi_write_data failed: %s",
132                        ftdi_get_error_string(&devc->ftdic));
133         } else if ((size_t) ret != size) {
134                 sr_err("ftdi_write_data did not complete write.");
135         }
136
137         return ret;
138 }
139
140 static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
141                                 struct dev_context *devc)
142 {
143         size_t i;
144         uint8_t buf[len + 2];
145         int idx = 0;
146
147         buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
148         buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
149
150         for (i = 0; i < len; ++i) {
151                 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
152                 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
153         }
154
155         return sigma_write(buf, idx, devc);
156 }
157
158 static int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc)
159 {
160         return sigma_write_register(reg, &value, 1, devc);
161 }
162
163 static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
164                                struct dev_context *devc)
165 {
166         uint8_t buf[3];
167
168         buf[0] = REG_ADDR_LOW | (reg & 0xf);
169         buf[1] = REG_ADDR_HIGH | (reg >> 4);
170         buf[2] = REG_READ_ADDR;
171
172         sigma_write(buf, sizeof(buf), devc);
173
174         return sigma_read(data, len, devc);
175 }
176
177 static uint8_t sigma_get_register(uint8_t reg, struct dev_context *devc)
178 {
179         uint8_t value;
180
181         if (1 != sigma_read_register(reg, &value, 1, devc)) {
182                 sr_err("sigma_get_register: 1 byte expected");
183                 return 0;
184         }
185
186         return value;
187 }
188
189 static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
190                           struct dev_context *devc)
191 {
192         uint8_t buf[] = {
193                 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
194
195                 REG_READ_ADDR | NEXT_REG,
196                 REG_READ_ADDR | NEXT_REG,
197                 REG_READ_ADDR | NEXT_REG,
198                 REG_READ_ADDR | NEXT_REG,
199                 REG_READ_ADDR | NEXT_REG,
200                 REG_READ_ADDR | NEXT_REG,
201         };
202         uint8_t result[6];
203
204         sigma_write(buf, sizeof(buf), devc);
205
206         sigma_read(result, sizeof(result), devc);
207
208         *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
209         *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
210
211         /* Not really sure why this must be done, but according to spec. */
212         if ((--*stoppos & 0x1ff) == 0x1ff)
213                 stoppos -= 64;
214
215         if ((*--triggerpos & 0x1ff) == 0x1ff)
216                 triggerpos -= 64;
217
218         return 1;
219 }
220
221 static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
222                            uint8_t *data, struct dev_context *devc)
223 {
224         size_t i;
225         uint8_t buf[4096];
226         int idx = 0;
227
228         /* Send the startchunk. Index start with 1. */
229         buf[0] = startchunk >> 8;
230         buf[1] = startchunk & 0xff;
231         sigma_write_register(WRITE_MEMROW, buf, 2, devc);
232
233         /* Read the DRAM. */
234         buf[idx++] = REG_DRAM_BLOCK;
235         buf[idx++] = REG_DRAM_WAIT_ACK;
236
237         for (i = 0; i < numchunks; ++i) {
238                 /* Alternate bit to copy from DRAM to cache. */
239                 if (i != (numchunks - 1))
240                         buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
241
242                 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
243
244                 if (i != (numchunks - 1))
245                         buf[idx++] = REG_DRAM_WAIT_ACK;
246         }
247
248         sigma_write(buf, idx, devc);
249
250         return sigma_read(data, numchunks * CHUNK_SIZE, devc);
251 }
252
253 /* Upload trigger look-up tables to Sigma. */
254 static int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc)
255 {
256         int i;
257         uint8_t tmp[2];
258         uint16_t bit;
259
260         /* Transpose the table and send to Sigma. */
261         for (i = 0; i < 16; ++i) {
262                 bit = 1 << i;
263
264                 tmp[0] = tmp[1] = 0;
265
266                 if (lut->m2d[0] & bit)
267                         tmp[0] |= 0x01;
268                 if (lut->m2d[1] & bit)
269                         tmp[0] |= 0x02;
270                 if (lut->m2d[2] & bit)
271                         tmp[0] |= 0x04;
272                 if (lut->m2d[3] & bit)
273                         tmp[0] |= 0x08;
274
275                 if (lut->m3 & bit)
276                         tmp[0] |= 0x10;
277                 if (lut->m3s & bit)
278                         tmp[0] |= 0x20;
279                 if (lut->m4 & bit)
280                         tmp[0] |= 0x40;
281
282                 if (lut->m0d[0] & bit)
283                         tmp[1] |= 0x01;
284                 if (lut->m0d[1] & bit)
285                         tmp[1] |= 0x02;
286                 if (lut->m0d[2] & bit)
287                         tmp[1] |= 0x04;
288                 if (lut->m0d[3] & bit)
289                         tmp[1] |= 0x08;
290
291                 if (lut->m1d[0] & bit)
292                         tmp[1] |= 0x10;
293                 if (lut->m1d[1] & bit)
294                         tmp[1] |= 0x20;
295                 if (lut->m1d[2] & bit)
296                         tmp[1] |= 0x40;
297                 if (lut->m1d[3] & bit)
298                         tmp[1] |= 0x80;
299
300                 sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
301                                      devc);
302                 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, devc);
303         }
304
305         /* Send the parameters */
306         sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
307                              sizeof(lut->params), devc);
308
309         return SR_OK;
310 }
311
312 /* Generate the bitbang stream for programming the FPGA. */
313 static int bin2bitbang(const char *filename,
314                        unsigned char **buf, size_t *buf_size)
315 {
316         FILE *f;
317         unsigned long file_size;
318         unsigned long offset = 0;
319         unsigned char *p;
320         uint8_t *firmware;
321         unsigned long fwsize = 0;
322         const int buffer_size = 65536;
323         size_t i;
324         int c, bit, v;
325         uint32_t imm = 0x3f6df2ab;
326
327         f = g_fopen(filename, "rb");
328         if (!f) {
329                 sr_err("g_fopen(\"%s\", \"rb\")", filename);
330                 return SR_ERR;
331         }
332
333         if (-1 == fseek(f, 0, SEEK_END)) {
334                 sr_err("fseek on %s failed", filename);
335                 fclose(f);
336                 return SR_ERR;
337         }
338
339         file_size = ftell(f);
340
341         fseek(f, 0, SEEK_SET);
342
343         if (!(firmware = g_try_malloc(buffer_size))) {
344                 sr_err("%s: firmware malloc failed", __func__);
345                 fclose(f);
346                 return SR_ERR_MALLOC;
347         }
348
349         while ((c = getc(f)) != EOF) {
350                 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
351                 firmware[fwsize++] = c ^ imm;
352         }
353         fclose(f);
354
355         if(fwsize != file_size) {
356             sr_err("%s: Error reading firmware", filename);
357             fclose(f);
358             g_free(firmware);
359             return SR_ERR;
360         }
361
362         *buf_size = fwsize * 2 * 8;
363
364         *buf = p = (unsigned char *)g_try_malloc(*buf_size);
365         if (!p) {
366                 sr_err("%s: buf/p malloc failed", __func__);
367                 g_free(firmware);
368                 return SR_ERR_MALLOC;
369         }
370
371         for (i = 0; i < fwsize; ++i) {
372                 for (bit = 7; bit >= 0; --bit) {
373                         v = firmware[i] & 1 << bit ? 0x40 : 0x00;
374                         p[offset++] = v | 0x01;
375                         p[offset++] = v;
376                 }
377         }
378
379         g_free(firmware);
380
381         if (offset != *buf_size) {
382                 g_free(*buf);
383                 sr_err("Error reading firmware %s "
384                        "offset=%ld, file_size=%ld, buf_size=%zd.",
385                        filename, offset, file_size, *buf_size);
386
387                 return SR_ERR;
388         }
389
390         return SR_OK;
391 }
392
393 static int clear_instances(void)
394 {
395         GSList *l;
396         struct sr_dev_inst *sdi;
397         struct drv_context *drvc;
398         struct dev_context *devc;
399
400         drvc = di->priv;
401
402         /* Properly close all devices. */
403         for (l = drvc->instances; l; l = l->next) {
404                 if (!(sdi = l->data)) {
405                         /* Log error, but continue cleaning up the rest. */
406                         sr_err("%s: sdi was NULL, continuing", __func__);
407                         continue;
408                 }
409                 if (sdi->priv) {
410                         devc = sdi->priv;
411                         ftdi_free(&devc->ftdic);
412                 }
413                 sr_dev_inst_free(sdi);
414         }
415         g_slist_free(drvc->instances);
416         drvc->instances = NULL;
417
418         return SR_OK;
419 }
420
421 static int hw_init(struct sr_context *sr_ctx)
422 {
423         struct drv_context *drvc;
424
425         if (!(drvc = g_try_malloc0(sizeof(struct drv_context)))) {
426                 sr_err("Driver context malloc failed.");
427                 return SR_ERR_MALLOC;
428         }
429         drvc->sr_ctx = sr_ctx;
430         di->priv = drvc;
431
432         return SR_OK;
433 }
434
435 static GSList *hw_scan(GSList *options)
436 {
437         struct sr_dev_inst *sdi;
438         struct sr_probe *probe;
439         struct drv_context *drvc;
440         struct dev_context *devc;
441         GSList *devices;
442         struct ftdi_device_list *devlist;
443         char serial_txt[10];
444         uint32_t serial;
445         int ret, i;
446
447         (void)options;
448
449         drvc = di->priv;
450         devices = NULL;
451         clear_instances();
452
453         if (!(devc = g_try_malloc(sizeof(struct dev_context)))) {
454                 sr_err("%s: devc malloc failed", __func__);
455                 return NULL;
456         }
457
458         ftdi_init(&devc->ftdic);
459
460         /* Look for SIGMAs. */
461
462         if ((ret = ftdi_usb_find_all(&devc->ftdic, &devlist,
463             USB_VENDOR, USB_PRODUCT)) <= 0) {
464                 if (ret < 0)
465                         sr_err("ftdi_usb_find_all(): %d", ret);
466                 goto free;
467         }
468
469         /* Make sure it's a version 1 or 2 SIGMA. */
470         ftdi_usb_get_strings(&devc->ftdic, devlist->dev, NULL, 0, NULL, 0,
471                              serial_txt, sizeof(serial_txt));
472         sscanf(serial_txt, "%x", &serial);
473
474         if (serial < 0xa6010000 || serial > 0xa602ffff) {
475                 sr_err("Only SIGMA and SIGMA2 are supported "
476                        "in this version of libsigrok.");
477                 goto free;
478         }
479
480         sr_info("Found ASIX SIGMA - Serial: %s", serial_txt);
481
482         devc->cur_samplerate = 0;
483         devc->period_ps = 0;
484         devc->limit_msec = 0;
485         devc->cur_firmware = -1;
486         devc->num_probes = 0;
487         devc->samples_per_event = 0;
488         devc->capture_ratio = 50;
489         devc->use_triggers = 0;
490
491         /* Register SIGMA device. */
492         if (!(sdi = sr_dev_inst_new(0, SR_ST_INITIALIZING, USB_VENDOR_NAME,
493                                     USB_MODEL_NAME, USB_MODEL_VERSION))) {
494                 sr_err("%s: sdi was NULL", __func__);
495                 goto free;
496         }
497         sdi->driver = di;
498
499         for (i = 0; probe_names[i]; i++) {
500                 if (!(probe = sr_probe_new(i, SR_PROBE_LOGIC, TRUE,
501                                 probe_names[i])))
502                         return NULL;
503                 sdi->probes = g_slist_append(sdi->probes, probe);
504         }
505
506         devices = g_slist_append(devices, sdi);
507         drvc->instances = g_slist_append(drvc->instances, sdi);
508         sdi->priv = devc;
509
510         /* We will open the device again when we need it. */
511         ftdi_list_free(&devlist);
512
513         return devices;
514
515 free:
516         ftdi_deinit(&devc->ftdic);
517         g_free(devc);
518         return NULL;
519 }
520
521 static GSList *hw_dev_list(void)
522 {
523         struct drv_context *drvc;
524
525         drvc = di->priv;
526
527         return drvc->instances;
528 }
529
530 static int upload_firmware(int firmware_idx, struct dev_context *devc)
531 {
532         int ret;
533         unsigned char *buf;
534         unsigned char pins;
535         size_t buf_size;
536         unsigned char result[32];
537         char firmware_path[128];
538
539         /* Make sure it's an ASIX SIGMA. */
540         if ((ret = ftdi_usb_open_desc(&devc->ftdic,
541                 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
542                 sr_err("ftdi_usb_open failed: %s",
543                        ftdi_get_error_string(&devc->ftdic));
544                 return 0;
545         }
546
547         if ((ret = ftdi_set_bitmode(&devc->ftdic, 0xdf, BITMODE_BITBANG)) < 0) {
548                 sr_err("ftdi_set_bitmode failed: %s",
549                        ftdi_get_error_string(&devc->ftdic));
550                 return 0;
551         }
552
553         /* Four times the speed of sigmalogan - Works well. */
554         if ((ret = ftdi_set_baudrate(&devc->ftdic, 750000)) < 0) {
555                 sr_err("ftdi_set_baudrate failed: %s",
556                        ftdi_get_error_string(&devc->ftdic));
557                 return 0;
558         }
559
560         /* Force the FPGA to reboot. */
561         sigma_write(suicide, sizeof(suicide), devc);
562         sigma_write(suicide, sizeof(suicide), devc);
563         sigma_write(suicide, sizeof(suicide), devc);
564         sigma_write(suicide, sizeof(suicide), devc);
565
566         /* Prepare to upload firmware (FPGA specific). */
567         sigma_write(init, sizeof(init), devc);
568
569         ftdi_usb_purge_buffers(&devc->ftdic);
570
571         /* Wait until the FPGA asserts INIT_B. */
572         while (1) {
573                 ret = sigma_read(result, 1, devc);
574                 if (result[0] & 0x20)
575                         break;
576         }
577
578         /* Prepare firmware. */
579         snprintf(firmware_path, sizeof(firmware_path), "%s/%s", FIRMWARE_DIR,
580                  firmware_files[firmware_idx]);
581
582         if ((ret = bin2bitbang(firmware_path, &buf, &buf_size)) != SR_OK) {
583                 sr_err("An error occured while reading the firmware: %s",
584                        firmware_path);
585                 return ret;
586         }
587
588         /* Upload firmare. */
589         sr_info("Uploading firmware file '%s'.", firmware_files[firmware_idx]);
590         sigma_write(buf, buf_size, devc);
591
592         g_free(buf);
593
594         if ((ret = ftdi_set_bitmode(&devc->ftdic, 0x00, BITMODE_RESET)) < 0) {
595                 sr_err("ftdi_set_bitmode failed: %s",
596                        ftdi_get_error_string(&devc->ftdic));
597                 return SR_ERR;
598         }
599
600         ftdi_usb_purge_buffers(&devc->ftdic);
601
602         /* Discard garbage. */
603         while (1 == sigma_read(&pins, 1, devc))
604                 ;
605
606         /* Initialize the logic analyzer mode. */
607         sigma_write(logic_mode_start, sizeof(logic_mode_start), devc);
608
609         /* Expect a 3 byte reply. */
610         ret = sigma_read(result, 3, devc);
611         if (ret != 3 ||
612             result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) {
613                 sr_err("Configuration failed. Invalid reply received.");
614                 return SR_ERR;
615         }
616
617         devc->cur_firmware = firmware_idx;
618
619         sr_info("Firmware uploaded.");
620
621         return SR_OK;
622 }
623
624 static int hw_dev_open(struct sr_dev_inst *sdi)
625 {
626         struct dev_context *devc;
627         int ret;
628
629         devc = sdi->priv;
630
631         /* Make sure it's an ASIX SIGMA. */
632         if ((ret = ftdi_usb_open_desc(&devc->ftdic,
633                 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
634
635                 sr_err("ftdi_usb_open failed: %s",
636                        ftdi_get_error_string(&devc->ftdic));
637
638                 return 0;
639         }
640
641         sdi->status = SR_ST_ACTIVE;
642
643         return SR_OK;
644 }
645
646 static int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
647 {
648         int i, ret;
649         struct dev_context *devc = sdi->priv;
650
651         ret = SR_OK;
652
653         for (i = 0; supported_samplerates[i]; i++) {
654                 if (supported_samplerates[i] == samplerate)
655                         break;
656         }
657         if (supported_samplerates[i] == 0)
658                 return SR_ERR_SAMPLERATE;
659
660         if (samplerate <= SR_MHZ(50)) {
661                 ret = upload_firmware(0, devc);
662                 devc->num_probes = 16;
663         }
664         if (samplerate == SR_MHZ(100)) {
665                 ret = upload_firmware(1, devc);
666                 devc->num_probes = 8;
667         }
668         else if (samplerate == SR_MHZ(200)) {
669                 ret = upload_firmware(2, devc);
670                 devc->num_probes = 4;
671         }
672
673         devc->cur_samplerate = samplerate;
674         devc->period_ps = 1000000000000 / samplerate;
675         devc->samples_per_event = 16 / devc->num_probes;
676         devc->state.state = SIGMA_IDLE;
677
678         return ret;
679 }
680
681 /*
682  * In 100 and 200 MHz mode, only a single pin rising/falling can be
683  * set as trigger. In other modes, two rising/falling triggers can be set,
684  * in addition to value/mask trigger for any number of probes.
685  *
686  * The Sigma supports complex triggers using boolean expressions, but this
687  * has not been implemented yet.
688  */
689 static int configure_probes(const struct sr_dev_inst *sdi)
690 {
691         struct dev_context *devc = sdi->priv;
692         const struct sr_probe *probe;
693         const GSList *l;
694         int trigger_set = 0;
695         int probebit;
696
697         memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
698
699         for (l = sdi->probes; l; l = l->next) {
700                 probe = (struct sr_probe *)l->data;
701                 probebit = 1 << (probe->index);
702
703                 if (!probe->enabled || !probe->trigger)
704                         continue;
705
706                 if (devc->cur_samplerate >= SR_MHZ(100)) {
707                         /* Fast trigger support. */
708                         if (trigger_set) {
709                                 sr_err("Only a single pin trigger in 100 and "
710                                        "200MHz mode is supported.");
711                                 return SR_ERR;
712                         }
713                         if (probe->trigger[0] == 'f')
714                                 devc->trigger.fallingmask |= probebit;
715                         else if (probe->trigger[0] == 'r')
716                                 devc->trigger.risingmask |= probebit;
717                         else {
718                                 sr_err("Only rising/falling trigger in 100 "
719                                        "and 200MHz mode is supported.");
720                                 return SR_ERR;
721                         }
722
723                         ++trigger_set;
724                 } else {
725                         /* Simple trigger support (event). */
726                         if (probe->trigger[0] == '1') {
727                                 devc->trigger.simplevalue |= probebit;
728                                 devc->trigger.simplemask |= probebit;
729                         }
730                         else if (probe->trigger[0] == '0') {
731                                 devc->trigger.simplevalue &= ~probebit;
732                                 devc->trigger.simplemask |= probebit;
733                         }
734                         else if (probe->trigger[0] == 'f') {
735                                 devc->trigger.fallingmask |= probebit;
736                                 ++trigger_set;
737                         }
738                         else if (probe->trigger[0] == 'r') {
739                                 devc->trigger.risingmask |= probebit;
740                                 ++trigger_set;
741                         }
742
743                         /*
744                          * Actually, Sigma supports 2 rising/falling triggers,
745                          * but they are ORed and the current trigger syntax
746                          * does not permit ORed triggers.
747                          */
748                         if (trigger_set > 1) {
749                                 sr_err("Only 1 rising/falling trigger "
750                                        "is supported.");
751                                 return SR_ERR;
752                         }
753                 }
754
755                 if (trigger_set)
756                         devc->use_triggers = 1;
757         }
758
759         return SR_OK;
760 }
761
762 static int hw_dev_close(struct sr_dev_inst *sdi)
763 {
764         struct dev_context *devc;
765
766         if (!(devc = sdi->priv)) {
767                 sr_err("%s: sdi->priv was NULL", __func__);
768                 return SR_ERR_BUG;
769         }
770
771         /* TODO */
772         if (sdi->status == SR_ST_ACTIVE)
773                 ftdi_usb_close(&devc->ftdic);
774
775         sdi->status = SR_ST_INACTIVE;
776
777         return SR_OK;
778 }
779
780 static int hw_cleanup(void)
781 {
782         if (!di->priv)
783                 return SR_OK;
784
785         clear_instances();
786
787         return SR_OK;
788 }
789
790 static int hw_info_get(int info_id, const void **data,
791                        const struct sr_dev_inst *sdi)
792 {
793         struct dev_context *devc;
794
795         switch (info_id) {
796         case SR_DI_HWCAPS:
797                 *data = hwcaps;
798                 break;
799         case SR_DI_SAMPLERATES:
800                 *data = &samplerates;
801                 break;
802         case SR_DI_TRIGGER_TYPES:
803                 *data = (char *)TRIGGER_TYPES;
804                 break;
805         case SR_DI_CUR_SAMPLERATE:
806                 if (sdi) {
807                         devc = sdi->priv;
808                         *data = &devc->cur_samplerate;
809                 } else
810                         return SR_ERR;
811                 break;
812         default:
813                 return SR_ERR_ARG;
814         }
815
816         return SR_OK;
817 }
818
819 static int hw_dev_config_set(const struct sr_dev_inst *sdi, int hwcap,
820                              const void *value)
821 {
822         struct dev_context *devc;
823         int ret;
824
825         devc = sdi->priv;
826
827         if (hwcap == SR_HWCAP_SAMPLERATE) {
828                 ret = set_samplerate(sdi, *(const uint64_t *)value);
829         } else if (hwcap == SR_HWCAP_LIMIT_MSEC) {
830                 devc->limit_msec = *(const uint64_t *)value;
831                 if (devc->limit_msec > 0)
832                         ret = SR_OK;
833                 else
834                         ret = SR_ERR;
835         } else if (hwcap == SR_HWCAP_CAPTURE_RATIO) {
836                 devc->capture_ratio = *(const uint64_t *)value;
837                 if (devc->capture_ratio < 0 || devc->capture_ratio > 100)
838                         ret = SR_ERR;
839                 else
840                         ret = SR_OK;
841         } else {
842                 ret = SR_ERR;
843         }
844
845         return ret;
846 }
847
848 /* Software trigger to determine exact trigger position. */
849 static int get_trigger_offset(uint16_t *samples, uint16_t last_sample,
850                               struct sigma_trigger *t)
851 {
852         int i;
853
854         for (i = 0; i < 8; ++i) {
855                 if (i > 0)
856                         last_sample = samples[i-1];
857
858                 /* Simple triggers. */
859                 if ((samples[i] & t->simplemask) != t->simplevalue)
860                         continue;
861
862                 /* Rising edge. */
863                 if ((last_sample & t->risingmask) != 0 || (samples[i] &
864                     t->risingmask) != t->risingmask)
865                         continue;
866
867                 /* Falling edge. */
868                 if ((last_sample & t->fallingmask) != t->fallingmask ||
869                     (samples[i] & t->fallingmask) != 0)
870                         continue;
871
872                 break;
873         }
874
875         /* If we did not match, return original trigger pos. */
876         return i & 0x7;
877 }
878
879 /*
880  * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
881  * Each event is 20ns apart, and can contain multiple samples.
882  *
883  * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
884  * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
885  * For 50 MHz and below, events contain one sample for each channel,
886  * spread 20 ns apart.
887  */
888 static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
889                            uint16_t *lastsample, int triggerpos,
890                            uint16_t limit_chunk, void *cb_data)
891 {
892         struct sr_dev_inst *sdi = cb_data;
893         struct dev_context *devc = sdi->priv;
894         uint16_t tsdiff, ts;
895         uint16_t samples[65536 * devc->samples_per_event];
896         struct sr_datafeed_packet packet;
897         struct sr_datafeed_logic logic;
898         int i, j, k, l, numpad, tosend;
899         size_t n = 0, sent = 0;
900         int clustersize = EVENTS_PER_CLUSTER * devc->samples_per_event;
901         uint16_t *event;
902         uint16_t cur_sample;
903         int triggerts = -1;
904
905         /* Check if trigger is in this chunk. */
906         if (triggerpos != -1) {
907                 if (devc->cur_samplerate <= SR_MHZ(50))
908                         triggerpos -= EVENTS_PER_CLUSTER - 1;
909
910                 if (triggerpos < 0)
911                         triggerpos = 0;
912
913                 /* Find in which cluster the trigger occured. */
914                 triggerts = triggerpos / 7;
915         }
916
917         /* For each ts. */
918         for (i = 0; i < 64; ++i) {
919                 ts = *(uint16_t *) &buf[i * 16];
920                 tsdiff = ts - *lastts;
921                 *lastts = ts;
922
923                 /* Decode partial chunk. */
924                 if (limit_chunk && ts > limit_chunk)
925                         return SR_OK;
926
927                 /* Pad last sample up to current point. */
928                 numpad = tsdiff * devc->samples_per_event - clustersize;
929                 if (numpad > 0) {
930                         for (j = 0; j < numpad; ++j)
931                                 samples[j] = *lastsample;
932
933                         n = numpad;
934                 }
935
936                 /* Send samples between previous and this timestamp to sigrok. */
937                 sent = 0;
938                 while (sent < n) {
939                         tosend = MIN(2048, n - sent);
940
941                         packet.type = SR_DF_LOGIC;
942                         packet.payload = &logic;
943                         logic.length = tosend * sizeof(uint16_t);
944                         logic.unitsize = 2;
945                         logic.data = samples + sent;
946                         sr_session_send(devc->session_dev_id, &packet);
947
948                         sent += tosend;
949                 }
950                 n = 0;
951
952                 event = (uint16_t *) &buf[i * 16 + 2];
953                 cur_sample = 0;
954
955                 /* For each event in cluster. */
956                 for (j = 0; j < 7; ++j) {
957
958                         /* For each sample in event. */
959                         for (k = 0; k < devc->samples_per_event; ++k) {
960                                 cur_sample = 0;
961
962                                 /* For each probe. */
963                                 for (l = 0; l < devc->num_probes; ++l)
964                                         cur_sample |= (!!(event[j] & (1 << (l *
965                                            devc->samples_per_event + k)))) << l;
966
967                                 samples[n++] = cur_sample;
968                         }
969                 }
970
971                 /* Send data up to trigger point (if triggered). */
972                 sent = 0;
973                 if (i == triggerts) {
974                         /*
975                          * Trigger is not always accurate to sample because of
976                          * pipeline delay. However, it always triggers before
977                          * the actual event. We therefore look at the next
978                          * samples to pinpoint the exact position of the trigger.
979                          */
980                         tosend = get_trigger_offset(samples, *lastsample,
981                                                     &devc->trigger);
982
983                         if (tosend > 0) {
984                                 packet.type = SR_DF_LOGIC;
985                                 packet.payload = &logic;
986                                 logic.length = tosend * sizeof(uint16_t);
987                                 logic.unitsize = 2;
988                                 logic.data = samples;
989                                 sr_session_send(devc->session_dev_id, &packet);
990
991                                 sent += tosend;
992                         }
993
994                         /* Only send trigger if explicitly enabled. */
995                         if (devc->use_triggers) {
996                                 packet.type = SR_DF_TRIGGER;
997                                 sr_session_send(devc->session_dev_id, &packet);
998                         }
999                 }
1000
1001                 /* Send rest of the chunk to sigrok. */
1002                 tosend = n - sent;
1003
1004                 if (tosend > 0) {
1005                         packet.type = SR_DF_LOGIC;
1006                         packet.payload = &logic;
1007                         logic.length = tosend * sizeof(uint16_t);
1008                         logic.unitsize = 2;
1009                         logic.data = samples + sent;
1010                         sr_session_send(devc->session_dev_id, &packet);
1011                 }
1012
1013                 *lastsample = samples[n - 1];
1014         }
1015
1016         return SR_OK;
1017 }
1018
1019 static int receive_data(int fd, int revents, void *cb_data)
1020 {
1021         struct sr_dev_inst *sdi = cb_data;
1022         struct dev_context *devc = sdi->priv;
1023         struct sr_datafeed_packet packet;
1024         const int chunks_per_read = 32;
1025         unsigned char buf[chunks_per_read * CHUNK_SIZE];
1026         int bufsz, numchunks, i, newchunks;
1027         uint64_t running_msec;
1028         struct timeval tv;
1029
1030         (void)fd;
1031         (void)revents;
1032
1033         /* Get the current position. */
1034         sigma_read_pos(&devc->state.stoppos, &devc->state.triggerpos, devc);
1035
1036         numchunks = (devc->state.stoppos + 511) / 512;
1037
1038         if (devc->state.state == SIGMA_IDLE)
1039                 return TRUE;
1040
1041         if (devc->state.state == SIGMA_CAPTURE) {
1042                 /* Check if the timer has expired, or memory is full. */
1043                 gettimeofday(&tv, 0);
1044                 running_msec = (tv.tv_sec - devc->start_tv.tv_sec) * 1000 +
1045                         (tv.tv_usec - devc->start_tv.tv_usec) / 1000;
1046
1047                 if (running_msec < devc->limit_msec && numchunks < 32767)
1048                         return TRUE; /* While capturing... */
1049                 else
1050                         hw_dev_acquisition_stop(sdi, sdi);
1051
1052         }
1053
1054         if (devc->state.state == SIGMA_DOWNLOAD) {
1055                 if (devc->state.chunks_downloaded >= numchunks) {
1056                         /* End of samples. */
1057                         packet.type = SR_DF_END;
1058                         sr_session_send(devc->session_dev_id, &packet);
1059
1060                         devc->state.state = SIGMA_IDLE;
1061
1062                         return TRUE;
1063                 }
1064
1065                 newchunks = MIN(chunks_per_read,
1066                                 numchunks - devc->state.chunks_downloaded);
1067
1068                 sr_info("Downloading sample data: %.0f %%.",
1069                         100.0 * devc->state.chunks_downloaded / numchunks);
1070
1071                 bufsz = sigma_read_dram(devc->state.chunks_downloaded,
1072                                         newchunks, buf, devc);
1073                 /* TODO: Check bufsz. For now, just avoid compiler warnings. */
1074                 (void)bufsz;
1075
1076                 /* Find first ts. */
1077                 if (devc->state.chunks_downloaded == 0) {
1078                         devc->state.lastts = *(uint16_t *) buf - 1;
1079                         devc->state.lastsample = 0;
1080                 }
1081
1082                 /* Decode chunks and send them to sigrok. */
1083                 for (i = 0; i < newchunks; ++i) {
1084                         int limit_chunk = 0;
1085
1086                         /* The last chunk may potentially be only in part. */
1087                         if (devc->state.chunks_downloaded == numchunks - 1) {
1088                                 /* Find the last valid timestamp */
1089                                 limit_chunk = devc->state.stoppos % 512 + devc->state.lastts;
1090                         }
1091
1092                         if (devc->state.chunks_downloaded + i == devc->state.triggerchunk)
1093                                 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1094                                                 &devc->state.lastts,
1095                                                 &devc->state.lastsample,
1096                                                 devc->state.triggerpos & 0x1ff,
1097                                                 limit_chunk, sdi);
1098                         else
1099                                 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1100                                                 &devc->state.lastts,
1101                                                 &devc->state.lastsample,
1102                                                 -1, limit_chunk, sdi);
1103
1104                         ++devc->state.chunks_downloaded;
1105                 }
1106         }
1107
1108         return TRUE;
1109 }
1110
1111 /* Build a LUT entry used by the trigger functions. */
1112 static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
1113 {
1114         int i, j, k, bit;
1115
1116         /* For each quad probe. */
1117         for (i = 0; i < 4; ++i) {
1118                 entry[i] = 0xffff;
1119
1120                 /* For each bit in LUT. */
1121                 for (j = 0; j < 16; ++j)
1122
1123                         /* For each probe in quad. */
1124                         for (k = 0; k < 4; ++k) {
1125                                 bit = 1 << (i * 4 + k);
1126
1127                                 /* Set bit in entry */
1128                                 if ((mask & bit) &&
1129                                     ((!(value & bit)) !=
1130                                     (!(j & (1 << k)))))
1131                                         entry[i] &= ~(1 << j);
1132                         }
1133         }
1134 }
1135
1136 /* Add a logical function to LUT mask. */
1137 static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1138                                  int index, int neg, uint16_t *mask)
1139 {
1140         int i, j;
1141         int x[2][2], tmp, a, b, aset, bset, rset;
1142
1143         memset(x, 0, 4 * sizeof(int));
1144
1145         /* Trigger detect condition. */
1146         switch (oper) {
1147         case OP_LEVEL:
1148                 x[0][1] = 1;
1149                 x[1][1] = 1;
1150                 break;
1151         case OP_NOT:
1152                 x[0][0] = 1;
1153                 x[1][0] = 1;
1154                 break;
1155         case OP_RISE:
1156                 x[0][1] = 1;
1157                 break;
1158         case OP_FALL:
1159                 x[1][0] = 1;
1160                 break;
1161         case OP_RISEFALL:
1162                 x[0][1] = 1;
1163                 x[1][0] = 1;
1164                 break;
1165         case OP_NOTRISE:
1166                 x[1][1] = 1;
1167                 x[0][0] = 1;
1168                 x[1][0] = 1;
1169                 break;
1170         case OP_NOTFALL:
1171                 x[1][1] = 1;
1172                 x[0][0] = 1;
1173                 x[0][1] = 1;
1174                 break;
1175         case OP_NOTRISEFALL:
1176                 x[1][1] = 1;
1177                 x[0][0] = 1;
1178                 break;
1179         }
1180
1181         /* Transpose if neg is set. */
1182         if (neg) {
1183                 for (i = 0; i < 2; ++i) {
1184                         for (j = 0; j < 2; ++j) {
1185                                 tmp = x[i][j];
1186                                 x[i][j] = x[1-i][1-j];
1187                                 x[1-i][1-j] = tmp;
1188                         }
1189                 }
1190         }
1191
1192         /* Update mask with function. */
1193         for (i = 0; i < 16; ++i) {
1194                 a = (i >> (2 * index + 0)) & 1;
1195                 b = (i >> (2 * index + 1)) & 1;
1196
1197                 aset = (*mask >> i) & 1;
1198                 bset = x[b][a];
1199
1200                 if (func == FUNC_AND || func == FUNC_NAND)
1201                         rset = aset & bset;
1202                 else if (func == FUNC_OR || func == FUNC_NOR)
1203                         rset = aset | bset;
1204                 else if (func == FUNC_XOR || func == FUNC_NXOR)
1205                         rset = aset ^ bset;
1206
1207                 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1208                         rset = !rset;
1209
1210                 *mask &= ~(1 << i);
1211
1212                 if (rset)
1213                         *mask |= 1 << i;
1214         }
1215 }
1216
1217 /*
1218  * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1219  * simple pin change and state triggers. Only two transitions (rise/fall) can be
1220  * set at any time, but a full mask and value can be set (0/1).
1221  */
1222 static int build_basic_trigger(struct triggerlut *lut, struct dev_context *devc)
1223 {
1224         int i,j;
1225         uint16_t masks[2] = { 0, 0 };
1226
1227         memset(lut, 0, sizeof(struct triggerlut));
1228
1229         /* Contant for simple triggers. */
1230         lut->m4 = 0xa000;
1231
1232         /* Value/mask trigger support. */
1233         build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
1234                         lut->m2d);
1235
1236         /* Rise/fall trigger support. */
1237         for (i = 0, j = 0; i < 16; ++i) {
1238                 if (devc->trigger.risingmask & (1 << i) ||
1239                     devc->trigger.fallingmask & (1 << i))
1240                         masks[j++] = 1 << i;
1241         }
1242
1243         build_lut_entry(masks[0], masks[0], lut->m0d);
1244         build_lut_entry(masks[1], masks[1], lut->m1d);
1245
1246         /* Add glue logic */
1247         if (masks[0] || masks[1]) {
1248                 /* Transition trigger. */
1249                 if (masks[0] & devc->trigger.risingmask)
1250                         add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
1251                 if (masks[0] & devc->trigger.fallingmask)
1252                         add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
1253                 if (masks[1] & devc->trigger.risingmask)
1254                         add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
1255                 if (masks[1] & devc->trigger.fallingmask)
1256                         add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1257         } else {
1258                 /* Only value/mask trigger. */
1259                 lut->m3 = 0xffff;
1260         }
1261
1262         /* Triggertype: event. */
1263         lut->params.selres = 3;
1264
1265         return SR_OK;
1266 }
1267
1268 static int hw_dev_acquisition_start(const struct sr_dev_inst *sdi,
1269                 void *cb_data)
1270 {
1271         struct dev_context *devc;
1272         struct sr_datafeed_packet *packet;
1273         struct sr_datafeed_header *header;
1274         struct sr_datafeed_meta_logic meta;
1275         struct clockselect_50 clockselect;
1276         int frac, triggerpin, ret;
1277         uint8_t triggerselect = 0;
1278         struct triggerinout triggerinout_conf;
1279         struct triggerlut lut;
1280
1281         devc = sdi->priv;
1282
1283         if (configure_probes(sdi) != SR_OK) {
1284                 sr_err("Failed to configure probes.");
1285                 return SR_ERR;
1286         }
1287
1288         /* If the samplerate has not been set, default to 200 kHz. */
1289         if (devc->cur_firmware == -1) {
1290                 if ((ret = set_samplerate(sdi, SR_KHZ(200))) != SR_OK)
1291                         return ret;
1292         }
1293
1294         /* Enter trigger programming mode. */
1295         sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, devc);
1296
1297         /* 100 and 200 MHz mode. */
1298         if (devc->cur_samplerate >= SR_MHZ(100)) {
1299                 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, devc);
1300
1301                 /* Find which pin to trigger on from mask. */
1302                 for (triggerpin = 0; triggerpin < 8; ++triggerpin)
1303                         if ((devc->trigger.risingmask | devc->trigger.fallingmask) &
1304                             (1 << triggerpin))
1305                                 break;
1306
1307                 /* Set trigger pin and light LED on trigger. */
1308                 triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
1309
1310                 /* Default rising edge. */
1311                 if (devc->trigger.fallingmask)
1312                         triggerselect |= 1 << 3;
1313
1314         /* All other modes. */
1315         } else if (devc->cur_samplerate <= SR_MHZ(50)) {
1316                 build_basic_trigger(&lut, devc);
1317
1318                 sigma_write_trigger_lut(&lut, devc);
1319
1320                 triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
1321         }
1322
1323         /* Setup trigger in and out pins to default values. */
1324         memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
1325         triggerinout_conf.trgout_bytrigger = 1;
1326         triggerinout_conf.trgout_enable = 1;
1327
1328         sigma_write_register(WRITE_TRIGGER_OPTION,
1329                              (uint8_t *) &triggerinout_conf,
1330                              sizeof(struct triggerinout), devc);
1331
1332         /* Go back to normal mode. */
1333         sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, devc);
1334
1335         /* Set clock select register. */
1336         if (devc->cur_samplerate == SR_MHZ(200))
1337                 /* Enable 4 probes. */
1338                 sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, devc);
1339         else if (devc->cur_samplerate == SR_MHZ(100))
1340                 /* Enable 8 probes. */
1341                 sigma_set_register(WRITE_CLOCK_SELECT, 0x00, devc);
1342         else {
1343                 /*
1344                  * 50 MHz mode (or fraction thereof). Any fraction down to
1345                  * 50 MHz / 256 can be used, but is not supported by sigrok API.
1346                  */
1347                 frac = SR_MHZ(50) / devc->cur_samplerate - 1;
1348
1349                 clockselect.async = 0;
1350                 clockselect.fraction = frac;
1351                 clockselect.disabled_probes = 0;
1352
1353                 sigma_write_register(WRITE_CLOCK_SELECT,
1354                                      (uint8_t *) &clockselect,
1355                                      sizeof(clockselect), devc);
1356         }
1357
1358         /* Setup maximum post trigger time. */
1359         sigma_set_register(WRITE_POST_TRIGGER,
1360                            (devc->capture_ratio * 255) / 100, devc);
1361
1362         /* Start acqusition. */
1363         gettimeofday(&devc->start_tv, 0);
1364         sigma_set_register(WRITE_MODE, 0x0d, devc);
1365
1366         devc->session_dev_id = cb_data;
1367
1368         if (!(packet = g_try_malloc(sizeof(struct sr_datafeed_packet)))) {
1369                 sr_err("%s: packet malloc failed.", __func__);
1370                 return SR_ERR_MALLOC;
1371         }
1372
1373         if (!(header = g_try_malloc(sizeof(struct sr_datafeed_header)))) {
1374                 sr_err("%s: header malloc failed.", __func__);
1375                 return SR_ERR_MALLOC;
1376         }
1377
1378         /* Send header packet to the session bus. */
1379         packet->type = SR_DF_HEADER;
1380         packet->payload = header;
1381         header->feed_version = 1;
1382         gettimeofday(&header->starttime, NULL);
1383         sr_session_send(devc->session_dev_id, packet);
1384
1385         /* Send metadata about the SR_DF_LOGIC packets to come. */
1386         packet->type = SR_DF_META_LOGIC;
1387         packet->payload = &meta;
1388         meta.samplerate = devc->cur_samplerate;
1389         meta.num_probes = devc->num_probes;
1390         sr_session_send(devc->session_dev_id, packet);
1391
1392         /* Add capture source. */
1393         sr_source_add(0, G_IO_IN, 10, receive_data, (void *)sdi);
1394
1395         g_free(header);
1396         g_free(packet);
1397
1398         devc->state.state = SIGMA_CAPTURE;
1399
1400         return SR_OK;
1401 }
1402
1403 static int hw_dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
1404 {
1405         struct dev_context *devc;
1406         uint8_t modestatus;
1407
1408         (void)cb_data;
1409
1410         sr_source_remove(0);
1411
1412         if (!(devc = sdi->priv)) {
1413                 sr_err("%s: sdi->priv was NULL", __func__);
1414                 return SR_ERR_BUG;
1415         }
1416
1417         /* Stop acquisition. */
1418         sigma_set_register(WRITE_MODE, 0x11, devc);
1419
1420         /* Set SDRAM Read Enable. */
1421         sigma_set_register(WRITE_MODE, 0x02, devc);
1422
1423         /* Get the current position. */
1424         sigma_read_pos(&devc->state.stoppos, &devc->state.triggerpos, devc);
1425
1426         /* Check if trigger has fired. */
1427         modestatus = sigma_get_register(READ_MODE, devc);
1428         if (modestatus & 0x20)
1429                 devc->state.triggerchunk = devc->state.triggerpos / 512;
1430         else
1431                 devc->state.triggerchunk = -1;
1432
1433         devc->state.chunks_downloaded = 0;
1434
1435         devc->state.state = SIGMA_DOWNLOAD;
1436
1437         return SR_OK;
1438 }
1439
1440 SR_PRIV struct sr_dev_driver asix_sigma_driver_info = {
1441         .name = "asix-sigma",
1442         .longname = "ASIX SIGMA/SIGMA2",
1443         .api_version = 1,
1444         .init = hw_init,
1445         .cleanup = hw_cleanup,
1446         .scan = hw_scan,
1447         .dev_list = hw_dev_list,
1448         .dev_clear = clear_instances,
1449         .dev_open = hw_dev_open,
1450         .dev_close = hw_dev_close,
1451         .info_get = hw_info_get,
1452         .dev_config_set = hw_dev_config_set,
1453         .dev_acquisition_start = hw_dev_acquisition_start,
1454         .dev_acquisition_stop = hw_dev_acquisition_stop,
1455         .priv = NULL,
1456 };