]> sigrok.org Git - libsigrok.git/blob - hardware/asix-sigma/asix-sigma.c
1a56cf3999830168657df9c86202bac679e702b1
[libsigrok.git] / hardware / asix-sigma / asix-sigma.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
5  * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6  * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7  *
8  * This program is free software: you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 3 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21
22 /*
23  * ASIX SIGMA/SIGMA2 logic analyzer driver
24  */
25
26 #include <glib.h>
27 #include <glib/gstdio.h>
28 #include <ftdi.h>
29 #include <string.h>
30 #include "libsigrok.h"
31 #include "libsigrok-internal.h"
32 #include "asix-sigma.h"
33
34 #define USB_VENDOR                      0xa600
35 #define USB_PRODUCT                     0xa000
36 #define USB_DESCRIPTION                 "ASIX SIGMA"
37 #define USB_VENDOR_NAME                 "ASIX"
38 #define USB_MODEL_NAME                  "SIGMA"
39 #define USB_MODEL_VERSION               ""
40 #define TRIGGER_TYPE                    "rf10"
41 #define NUM_PROBES                      16
42
43 SR_PRIV struct sr_dev_driver asix_sigma_driver_info;
44 static struct sr_dev_driver *di = &asix_sigma_driver_info;
45 static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data);
46
47 static const uint64_t samplerates[] = {
48         SR_KHZ(200),
49         SR_KHZ(250),
50         SR_KHZ(500),
51         SR_MHZ(1),
52         SR_MHZ(5),
53         SR_MHZ(10),
54         SR_MHZ(25),
55         SR_MHZ(50),
56         SR_MHZ(100),
57         SR_MHZ(200),
58 };
59
60 /*
61  * Probe numbers seem to go from 1-16, according to this image:
62  * http://tools.asix.net/img/sigma_sigmacab_pins_720.jpg
63  * (the cable has two additional GND pins, and a TI and TO pin)
64  */
65 static const char *probe_names[NUM_PROBES + 1] = {
66         "1", "2", "3", "4", "5", "6", "7", "8",
67         "9", "10", "11", "12", "13", "14", "15", "16",
68         NULL,
69 };
70
71 static const int32_t hwcaps[] = {
72         SR_CONF_LOGIC_ANALYZER,
73         SR_CONF_SAMPLERATE,
74         SR_CONF_CAPTURE_RATIO,
75         SR_CONF_LIMIT_MSEC,
76 };
77
78 /* Force the FPGA to reboot. */
79 static uint8_t suicide[] = {
80         0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
81 };
82
83 /* Prepare to upload firmware (FPGA specific). */
84 static uint8_t init_array[] = {
85         0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
86 };
87
88 /* Initialize the logic analyzer mode. */
89 static uint8_t logic_mode_start[] = {
90         0x00, 0x40, 0x0f, 0x25, 0x35, 0x40,
91         0x2a, 0x3a, 0x40, 0x03, 0x20, 0x38,
92 };
93
94 static const char *firmware_files[] = {
95         "asix-sigma-50.fw",     /* 50 MHz, supports 8 bit fractions */
96         "asix-sigma-100.fw",    /* 100 MHz */
97         "asix-sigma-200.fw",    /* 200 MHz */
98         "asix-sigma-50sync.fw", /* Synchronous clock from pin */
99         "asix-sigma-phasor.fw", /* Frequency counter */
100 };
101
102 static int sigma_read(void *buf, size_t size, struct dev_context *devc)
103 {
104         int ret;
105
106         ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
107         if (ret < 0) {
108                 sr_err("ftdi_read_data failed: %s",
109                        ftdi_get_error_string(&devc->ftdic));
110         }
111
112         return ret;
113 }
114
115 static int sigma_write(void *buf, size_t size, struct dev_context *devc)
116 {
117         int ret;
118
119         ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size);
120         if (ret < 0) {
121                 sr_err("ftdi_write_data failed: %s",
122                        ftdi_get_error_string(&devc->ftdic));
123         } else if ((size_t) ret != size) {
124                 sr_err("ftdi_write_data did not complete write.");
125         }
126
127         return ret;
128 }
129
130 static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
131                                 struct dev_context *devc)
132 {
133         size_t i;
134         uint8_t buf[len + 2];
135         int idx = 0;
136
137         buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
138         buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
139
140         for (i = 0; i < len; ++i) {
141                 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
142                 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
143         }
144
145         return sigma_write(buf, idx, devc);
146 }
147
148 static int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc)
149 {
150         return sigma_write_register(reg, &value, 1, devc);
151 }
152
153 static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
154                                struct dev_context *devc)
155 {
156         uint8_t buf[3];
157
158         buf[0] = REG_ADDR_LOW | (reg & 0xf);
159         buf[1] = REG_ADDR_HIGH | (reg >> 4);
160         buf[2] = REG_READ_ADDR;
161
162         sigma_write(buf, sizeof(buf), devc);
163
164         return sigma_read(data, len, devc);
165 }
166
167 static uint8_t sigma_get_register(uint8_t reg, struct dev_context *devc)
168 {
169         uint8_t value;
170
171         if (1 != sigma_read_register(reg, &value, 1, devc)) {
172                 sr_err("sigma_get_register: 1 byte expected");
173                 return 0;
174         }
175
176         return value;
177 }
178
179 static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
180                           struct dev_context *devc)
181 {
182         uint8_t buf[] = {
183                 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
184
185                 REG_READ_ADDR | NEXT_REG,
186                 REG_READ_ADDR | NEXT_REG,
187                 REG_READ_ADDR | NEXT_REG,
188                 REG_READ_ADDR | NEXT_REG,
189                 REG_READ_ADDR | NEXT_REG,
190                 REG_READ_ADDR | NEXT_REG,
191         };
192         uint8_t result[6];
193
194         sigma_write(buf, sizeof(buf), devc);
195
196         sigma_read(result, sizeof(result), devc);
197
198         *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
199         *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
200
201         /* Not really sure why this must be done, but according to spec. */
202         if ((--*stoppos & 0x1ff) == 0x1ff)
203                 stoppos -= 64;
204
205         if ((*--triggerpos & 0x1ff) == 0x1ff)
206                 triggerpos -= 64;
207
208         return 1;
209 }
210
211 static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
212                            uint8_t *data, struct dev_context *devc)
213 {
214         size_t i;
215         uint8_t buf[4096];
216         int idx = 0;
217
218         /* Send the startchunk. Index start with 1. */
219         buf[0] = startchunk >> 8;
220         buf[1] = startchunk & 0xff;
221         sigma_write_register(WRITE_MEMROW, buf, 2, devc);
222
223         /* Read the DRAM. */
224         buf[idx++] = REG_DRAM_BLOCK;
225         buf[idx++] = REG_DRAM_WAIT_ACK;
226
227         for (i = 0; i < numchunks; ++i) {
228                 /* Alternate bit to copy from DRAM to cache. */
229                 if (i != (numchunks - 1))
230                         buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
231
232                 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
233
234                 if (i != (numchunks - 1))
235                         buf[idx++] = REG_DRAM_WAIT_ACK;
236         }
237
238         sigma_write(buf, idx, devc);
239
240         return sigma_read(data, numchunks * CHUNK_SIZE, devc);
241 }
242
243 /* Upload trigger look-up tables to Sigma. */
244 static int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc)
245 {
246         int i;
247         uint8_t tmp[2];
248         uint16_t bit;
249
250         /* Transpose the table and send to Sigma. */
251         for (i = 0; i < 16; ++i) {
252                 bit = 1 << i;
253
254                 tmp[0] = tmp[1] = 0;
255
256                 if (lut->m2d[0] & bit)
257                         tmp[0] |= 0x01;
258                 if (lut->m2d[1] & bit)
259                         tmp[0] |= 0x02;
260                 if (lut->m2d[2] & bit)
261                         tmp[0] |= 0x04;
262                 if (lut->m2d[3] & bit)
263                         tmp[0] |= 0x08;
264
265                 if (lut->m3 & bit)
266                         tmp[0] |= 0x10;
267                 if (lut->m3s & bit)
268                         tmp[0] |= 0x20;
269                 if (lut->m4 & bit)
270                         tmp[0] |= 0x40;
271
272                 if (lut->m0d[0] & bit)
273                         tmp[1] |= 0x01;
274                 if (lut->m0d[1] & bit)
275                         tmp[1] |= 0x02;
276                 if (lut->m0d[2] & bit)
277                         tmp[1] |= 0x04;
278                 if (lut->m0d[3] & bit)
279                         tmp[1] |= 0x08;
280
281                 if (lut->m1d[0] & bit)
282                         tmp[1] |= 0x10;
283                 if (lut->m1d[1] & bit)
284                         tmp[1] |= 0x20;
285                 if (lut->m1d[2] & bit)
286                         tmp[1] |= 0x40;
287                 if (lut->m1d[3] & bit)
288                         tmp[1] |= 0x80;
289
290                 sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
291                                      devc);
292                 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, devc);
293         }
294
295         /* Send the parameters */
296         sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
297                              sizeof(lut->params), devc);
298
299         return SR_OK;
300 }
301
302 /* Generate the bitbang stream for programming the FPGA. */
303 static int bin2bitbang(const char *filename,
304                        unsigned char **buf, size_t *buf_size)
305 {
306         FILE *f;
307         unsigned long file_size;
308         unsigned long offset = 0;
309         unsigned char *p;
310         uint8_t *firmware;
311         unsigned long fwsize = 0;
312         const int buffer_size = 65536;
313         size_t i;
314         int c, bit, v;
315         uint32_t imm = 0x3f6df2ab;
316
317         f = g_fopen(filename, "rb");
318         if (!f) {
319                 sr_err("g_fopen(\"%s\", \"rb\")", filename);
320                 return SR_ERR;
321         }
322
323         if (-1 == fseek(f, 0, SEEK_END)) {
324                 sr_err("fseek on %s failed", filename);
325                 fclose(f);
326                 return SR_ERR;
327         }
328
329         file_size = ftell(f);
330
331         fseek(f, 0, SEEK_SET);
332
333         if (!(firmware = g_try_malloc(buffer_size))) {
334                 sr_err("%s: firmware malloc failed", __func__);
335                 fclose(f);
336                 return SR_ERR_MALLOC;
337         }
338
339         while ((c = getc(f)) != EOF) {
340                 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
341                 firmware[fwsize++] = c ^ imm;
342         }
343         fclose(f);
344
345         if(fwsize != file_size) {
346             sr_err("%s: Error reading firmware", filename);
347             fclose(f);
348             g_free(firmware);
349             return SR_ERR;
350         }
351
352         *buf_size = fwsize * 2 * 8;
353
354         *buf = p = (unsigned char *)g_try_malloc(*buf_size);
355         if (!p) {
356                 sr_err("%s: buf/p malloc failed", __func__);
357                 g_free(firmware);
358                 return SR_ERR_MALLOC;
359         }
360
361         for (i = 0; i < fwsize; ++i) {
362                 for (bit = 7; bit >= 0; --bit) {
363                         v = firmware[i] & 1 << bit ? 0x40 : 0x00;
364                         p[offset++] = v | 0x01;
365                         p[offset++] = v;
366                 }
367         }
368
369         g_free(firmware);
370
371         if (offset != *buf_size) {
372                 g_free(*buf);
373                 sr_err("Error reading firmware %s "
374                        "offset=%ld, file_size=%ld, buf_size=%zd.",
375                        filename, offset, file_size, *buf_size);
376
377                 return SR_ERR;
378         }
379
380         return SR_OK;
381 }
382
383 static void clear_helper(void *priv)
384 {
385         struct dev_context *devc;
386
387         devc = priv;
388
389         ftdi_deinit(&devc->ftdic);
390 }
391
392 static int dev_clear(void)
393 {
394         return std_dev_clear(di, clear_helper);
395 }
396
397 static int init(struct sr_context *sr_ctx)
398 {
399         return std_init(sr_ctx, di, LOG_PREFIX);
400 }
401
402 static GSList *scan(GSList *options)
403 {
404         struct sr_dev_inst *sdi;
405         struct sr_channel *probe;
406         struct drv_context *drvc;
407         struct dev_context *devc;
408         GSList *devices;
409         struct ftdi_device_list *devlist;
410         char serial_txt[10];
411         uint32_t serial;
412         int ret, i;
413
414         (void)options;
415
416         drvc = di->priv;
417
418         devices = NULL;
419
420         if (!(devc = g_try_malloc(sizeof(struct dev_context)))) {
421                 sr_err("%s: devc malloc failed", __func__);
422                 return NULL;
423         }
424
425         ftdi_init(&devc->ftdic);
426
427         /* Look for SIGMAs. */
428
429         if ((ret = ftdi_usb_find_all(&devc->ftdic, &devlist,
430             USB_VENDOR, USB_PRODUCT)) <= 0) {
431                 if (ret < 0)
432                         sr_err("ftdi_usb_find_all(): %d", ret);
433                 goto free;
434         }
435
436         /* Make sure it's a version 1 or 2 SIGMA. */
437         ftdi_usb_get_strings(&devc->ftdic, devlist->dev, NULL, 0, NULL, 0,
438                              serial_txt, sizeof(serial_txt));
439         sscanf(serial_txt, "%x", &serial);
440
441         if (serial < 0xa6010000 || serial > 0xa602ffff) {
442                 sr_err("Only SIGMA and SIGMA2 are supported "
443                        "in this version of libsigrok.");
444                 goto free;
445         }
446
447         sr_info("Found ASIX SIGMA - Serial: %s", serial_txt);
448
449         devc->cur_samplerate = 0;
450         devc->period_ps = 0;
451         devc->limit_msec = 0;
452         devc->cur_firmware = -1;
453         devc->num_probes = 0;
454         devc->samples_per_event = 0;
455         devc->capture_ratio = 50;
456         devc->use_triggers = 0;
457
458         /* Register SIGMA device. */
459         if (!(sdi = sr_dev_inst_new(0, SR_ST_INITIALIZING, USB_VENDOR_NAME,
460                                     USB_MODEL_NAME, USB_MODEL_VERSION))) {
461                 sr_err("%s: sdi was NULL", __func__);
462                 goto free;
463         }
464         sdi->driver = di;
465
466         for (i = 0; probe_names[i]; i++) {
467                 if (!(probe = sr_probe_new(i, SR_PROBE_LOGIC, TRUE,
468                                 probe_names[i])))
469                         return NULL;
470                 sdi->probes = g_slist_append(sdi->probes, probe);
471         }
472
473         devices = g_slist_append(devices, sdi);
474         drvc->instances = g_slist_append(drvc->instances, sdi);
475         sdi->priv = devc;
476
477         /* We will open the device again when we need it. */
478         ftdi_list_free(&devlist);
479
480         return devices;
481
482 free:
483         ftdi_deinit(&devc->ftdic);
484         g_free(devc);
485         return NULL;
486 }
487
488 static GSList *dev_list(void)
489 {
490         return ((struct drv_context *)(di->priv))->instances;
491 }
492
493 static int upload_firmware(int firmware_idx, struct dev_context *devc)
494 {
495         int ret;
496         unsigned char *buf;
497         unsigned char pins;
498         size_t buf_size;
499         unsigned char result[32];
500         char firmware_path[128];
501
502         /* Make sure it's an ASIX SIGMA. */
503         if ((ret = ftdi_usb_open_desc(&devc->ftdic,
504                 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
505                 sr_err("ftdi_usb_open failed: %s",
506                        ftdi_get_error_string(&devc->ftdic));
507                 return 0;
508         }
509
510         if ((ret = ftdi_set_bitmode(&devc->ftdic, 0xdf, BITMODE_BITBANG)) < 0) {
511                 sr_err("ftdi_set_bitmode failed: %s",
512                        ftdi_get_error_string(&devc->ftdic));
513                 return 0;
514         }
515
516         /* Four times the speed of sigmalogan - Works well. */
517         if ((ret = ftdi_set_baudrate(&devc->ftdic, 750000)) < 0) {
518                 sr_err("ftdi_set_baudrate failed: %s",
519                        ftdi_get_error_string(&devc->ftdic));
520                 return 0;
521         }
522
523         /* Force the FPGA to reboot. */
524         sigma_write(suicide, sizeof(suicide), devc);
525         sigma_write(suicide, sizeof(suicide), devc);
526         sigma_write(suicide, sizeof(suicide), devc);
527         sigma_write(suicide, sizeof(suicide), devc);
528
529         /* Prepare to upload firmware (FPGA specific). */
530         sigma_write(init_array, sizeof(init_array), devc);
531
532         ftdi_usb_purge_buffers(&devc->ftdic);
533
534         /* Wait until the FPGA asserts INIT_B. */
535         while (1) {
536                 ret = sigma_read(result, 1, devc);
537                 if (result[0] & 0x20)
538                         break;
539         }
540
541         /* Prepare firmware. */
542         snprintf(firmware_path, sizeof(firmware_path), "%s/%s", FIRMWARE_DIR,
543                  firmware_files[firmware_idx]);
544
545         if ((ret = bin2bitbang(firmware_path, &buf, &buf_size)) != SR_OK) {
546                 sr_err("An error occured while reading the firmware: %s",
547                        firmware_path);
548                 return ret;
549         }
550
551         /* Upload firmare. */
552         sr_info("Uploading firmware file '%s'.", firmware_files[firmware_idx]);
553         sigma_write(buf, buf_size, devc);
554
555         g_free(buf);
556
557         if ((ret = ftdi_set_bitmode(&devc->ftdic, 0x00, BITMODE_RESET)) < 0) {
558                 sr_err("ftdi_set_bitmode failed: %s",
559                        ftdi_get_error_string(&devc->ftdic));
560                 return SR_ERR;
561         }
562
563         ftdi_usb_purge_buffers(&devc->ftdic);
564
565         /* Discard garbage. */
566         while (1 == sigma_read(&pins, 1, devc))
567                 ;
568
569         /* Initialize the logic analyzer mode. */
570         sigma_write(logic_mode_start, sizeof(logic_mode_start), devc);
571
572         /* Expect a 3 byte reply. */
573         ret = sigma_read(result, 3, devc);
574         if (ret != 3 ||
575             result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) {
576                 sr_err("Configuration failed. Invalid reply received.");
577                 return SR_ERR;
578         }
579
580         devc->cur_firmware = firmware_idx;
581
582         sr_info("Firmware uploaded.");
583
584         return SR_OK;
585 }
586
587 static int dev_open(struct sr_dev_inst *sdi)
588 {
589         struct dev_context *devc;
590         int ret;
591
592         devc = sdi->priv;
593
594         /* Make sure it's an ASIX SIGMA. */
595         if ((ret = ftdi_usb_open_desc(&devc->ftdic,
596                 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
597
598                 sr_err("ftdi_usb_open failed: %s",
599                        ftdi_get_error_string(&devc->ftdic));
600
601                 return 0;
602         }
603
604         sdi->status = SR_ST_ACTIVE;
605
606         return SR_OK;
607 }
608
609 static int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
610 {
611         struct dev_context *devc;
612         unsigned int i;
613         int ret;
614
615         devc = sdi->priv;
616         ret = SR_OK;
617
618         for (i = 0; i < ARRAY_SIZE(samplerates); i++) {
619                 if (samplerates[i] == samplerate)
620                         break;
621         }
622         if (samplerates[i] == 0)
623                 return SR_ERR_SAMPLERATE;
624
625         if (samplerate <= SR_MHZ(50)) {
626                 ret = upload_firmware(0, devc);
627                 devc->num_probes = 16;
628         }
629         if (samplerate == SR_MHZ(100)) {
630                 ret = upload_firmware(1, devc);
631                 devc->num_probes = 8;
632         }
633         else if (samplerate == SR_MHZ(200)) {
634                 ret = upload_firmware(2, devc);
635                 devc->num_probes = 4;
636         }
637
638         devc->cur_samplerate = samplerate;
639         devc->period_ps = 1000000000000ULL / samplerate;
640         devc->samples_per_event = 16 / devc->num_probes;
641         devc->state.state = SIGMA_IDLE;
642
643         return ret;
644 }
645
646 /*
647  * In 100 and 200 MHz mode, only a single pin rising/falling can be
648  * set as trigger. In other modes, two rising/falling triggers can be set,
649  * in addition to value/mask trigger for any number of probes.
650  *
651  * The Sigma supports complex triggers using boolean expressions, but this
652  * has not been implemented yet.
653  */
654 static int configure_probes(const struct sr_dev_inst *sdi)
655 {
656         struct dev_context *devc = sdi->priv;
657         const struct sr_channel *probe;
658         const GSList *l;
659         int trigger_set = 0;
660         int probebit;
661
662         memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
663
664         for (l = sdi->probes; l; l = l->next) {
665                 probe = (struct sr_channel *)l->data;
666                 probebit = 1 << (probe->index);
667
668                 if (!probe->enabled || !probe->trigger)
669                         continue;
670
671                 if (devc->cur_samplerate >= SR_MHZ(100)) {
672                         /* Fast trigger support. */
673                         if (trigger_set) {
674                                 sr_err("Only a single pin trigger in 100 and "
675                                        "200MHz mode is supported.");
676                                 return SR_ERR;
677                         }
678                         if (probe->trigger[0] == 'f')
679                                 devc->trigger.fallingmask |= probebit;
680                         else if (probe->trigger[0] == 'r')
681                                 devc->trigger.risingmask |= probebit;
682                         else {
683                                 sr_err("Only rising/falling trigger in 100 "
684                                        "and 200MHz mode is supported.");
685                                 return SR_ERR;
686                         }
687
688                         ++trigger_set;
689                 } else {
690                         /* Simple trigger support (event). */
691                         if (probe->trigger[0] == '1') {
692                                 devc->trigger.simplevalue |= probebit;
693                                 devc->trigger.simplemask |= probebit;
694                         }
695                         else if (probe->trigger[0] == '0') {
696                                 devc->trigger.simplevalue &= ~probebit;
697                                 devc->trigger.simplemask |= probebit;
698                         }
699                         else if (probe->trigger[0] == 'f') {
700                                 devc->trigger.fallingmask |= probebit;
701                                 ++trigger_set;
702                         }
703                         else if (probe->trigger[0] == 'r') {
704                                 devc->trigger.risingmask |= probebit;
705                                 ++trigger_set;
706                         }
707
708                         /*
709                          * Actually, Sigma supports 2 rising/falling triggers,
710                          * but they are ORed and the current trigger syntax
711                          * does not permit ORed triggers.
712                          */
713                         if (trigger_set > 1) {
714                                 sr_err("Only 1 rising/falling trigger "
715                                        "is supported.");
716                                 return SR_ERR;
717                         }
718                 }
719
720                 if (trigger_set)
721                         devc->use_triggers = 1;
722         }
723
724         return SR_OK;
725 }
726
727 static int dev_close(struct sr_dev_inst *sdi)
728 {
729         struct dev_context *devc;
730
731         devc = sdi->priv;
732
733         /* TODO */
734         if (sdi->status == SR_ST_ACTIVE)
735                 ftdi_usb_close(&devc->ftdic);
736
737         sdi->status = SR_ST_INACTIVE;
738
739         return SR_OK;
740 }
741
742 static int cleanup(void)
743 {
744         return dev_clear();
745 }
746
747 static int config_get(int id, GVariant **data, const struct sr_dev_inst *sdi,
748                 const struct sr_channel_group *cg)
749 {
750         struct dev_context *devc;
751
752         (void)cg;
753
754         switch (id) {
755         case SR_CONF_SAMPLERATE:
756                 if (sdi) {
757                         devc = sdi->priv;
758                         *data = g_variant_new_uint64(devc->cur_samplerate);
759                 } else
760                         return SR_ERR;
761                 break;
762         default:
763                 return SR_ERR_NA;
764         }
765
766         return SR_OK;
767 }
768
769 static int config_set(int id, GVariant *data, const struct sr_dev_inst *sdi,
770                 const struct sr_channel_group *cg)
771 {
772         struct dev_context *devc;
773         int ret;
774
775         (void)cg;
776
777         if (sdi->status != SR_ST_ACTIVE)
778                 return SR_ERR_DEV_CLOSED;
779
780         devc = sdi->priv;
781
782         if (id == SR_CONF_SAMPLERATE) {
783                 ret = set_samplerate(sdi, g_variant_get_uint64(data));
784         } else if (id == SR_CONF_LIMIT_MSEC) {
785                 devc->limit_msec = g_variant_get_uint64(data);
786                 if (devc->limit_msec > 0)
787                         ret = SR_OK;
788                 else
789                         ret = SR_ERR;
790         } else if (id == SR_CONF_CAPTURE_RATIO) {
791                 devc->capture_ratio = g_variant_get_uint64(data);
792                 if (devc->capture_ratio < 0 || devc->capture_ratio > 100)
793                         ret = SR_ERR;
794                 else
795                         ret = SR_OK;
796         } else {
797                 ret = SR_ERR_NA;
798         }
799
800         return ret;
801 }
802
803 static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi,
804                 const struct sr_channel_group *cg)
805 {
806         GVariant *gvar;
807         GVariantBuilder gvb;
808
809         (void)sdi;
810         (void)cg;
811
812         switch (key) {
813         case SR_CONF_DEVICE_OPTIONS:
814                 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
815                                 hwcaps, ARRAY_SIZE(hwcaps), sizeof(int32_t));
816                 break;
817         case SR_CONF_SAMPLERATE:
818                 g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
819                 gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), samplerates,
820                                 ARRAY_SIZE(samplerates), sizeof(uint64_t));
821                 g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
822                 *data = g_variant_builder_end(&gvb);
823                 break;
824         case SR_CONF_TRIGGER_TYPE:
825                 *data = g_variant_new_string(TRIGGER_TYPE);
826                 break;
827         default:
828                 return SR_ERR_NA;
829         }
830
831         return SR_OK;
832 }
833
834 /* Software trigger to determine exact trigger position. */
835 static int get_trigger_offset(uint16_t *samples, uint16_t last_sample,
836                               struct sigma_trigger *t)
837 {
838         int i;
839
840         for (i = 0; i < 8; ++i) {
841                 if (i > 0)
842                         last_sample = samples[i-1];
843
844                 /* Simple triggers. */
845                 if ((samples[i] & t->simplemask) != t->simplevalue)
846                         continue;
847
848                 /* Rising edge. */
849                 if ((last_sample & t->risingmask) != 0 || (samples[i] &
850                     t->risingmask) != t->risingmask)
851                         continue;
852
853                 /* Falling edge. */
854                 if ((last_sample & t->fallingmask) != t->fallingmask ||
855                     (samples[i] & t->fallingmask) != 0)
856                         continue;
857
858                 break;
859         }
860
861         /* If we did not match, return original trigger pos. */
862         return i & 0x7;
863 }
864
865 /*
866  * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
867  * Each event is 20ns apart, and can contain multiple samples.
868  *
869  * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
870  * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
871  * For 50 MHz and below, events contain one sample for each channel,
872  * spread 20 ns apart.
873  */
874 static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
875                            uint16_t *lastsample, int triggerpos,
876                            uint16_t limit_chunk, void *cb_data)
877 {
878         struct sr_dev_inst *sdi = cb_data;
879         struct dev_context *devc = sdi->priv;
880         uint16_t tsdiff, ts;
881         uint16_t samples[65536 * devc->samples_per_event];
882         struct sr_datafeed_packet packet;
883         struct sr_datafeed_logic logic;
884         int i, j, k, l, numpad, tosend;
885         size_t n = 0, sent = 0;
886         int clustersize = EVENTS_PER_CLUSTER * devc->samples_per_event;
887         uint16_t *event;
888         uint16_t cur_sample;
889         int triggerts = -1;
890
891         /* Check if trigger is in this chunk. */
892         if (triggerpos != -1) {
893                 if (devc->cur_samplerate <= SR_MHZ(50))
894                         triggerpos -= EVENTS_PER_CLUSTER - 1;
895
896                 if (triggerpos < 0)
897                         triggerpos = 0;
898
899                 /* Find in which cluster the trigger occured. */
900                 triggerts = triggerpos / 7;
901         }
902
903         /* For each ts. */
904         for (i = 0; i < 64; ++i) {
905                 ts = *(uint16_t *) &buf[i * 16];
906                 tsdiff = ts - *lastts;
907                 *lastts = ts;
908
909                 /* Decode partial chunk. */
910                 if (limit_chunk && ts > limit_chunk)
911                         return SR_OK;
912
913                 /* Pad last sample up to current point. */
914                 numpad = tsdiff * devc->samples_per_event - clustersize;
915                 if (numpad > 0) {
916                         for (j = 0; j < numpad; ++j)
917                                 samples[j] = *lastsample;
918
919                         n = numpad;
920                 }
921
922                 /* Send samples between previous and this timestamp to sigrok. */
923                 sent = 0;
924                 while (sent < n) {
925                         tosend = MIN(2048, n - sent);
926
927                         packet.type = SR_DF_LOGIC;
928                         packet.payload = &logic;
929                         logic.length = tosend * sizeof(uint16_t);
930                         logic.unitsize = 2;
931                         logic.data = samples + sent;
932                         sr_session_send(devc->cb_data, &packet);
933
934                         sent += tosend;
935                 }
936                 n = 0;
937
938                 event = (uint16_t *) &buf[i * 16 + 2];
939                 cur_sample = 0;
940
941                 /* For each event in cluster. */
942                 for (j = 0; j < 7; ++j) {
943
944                         /* For each sample in event. */
945                         for (k = 0; k < devc->samples_per_event; ++k) {
946                                 cur_sample = 0;
947
948                                 /* For each probe. */
949                                 for (l = 0; l < devc->num_probes; ++l)
950                                         cur_sample |= (!!(event[j] & (1 << (l *
951                                            devc->samples_per_event + k)))) << l;
952
953                                 samples[n++] = cur_sample;
954                         }
955                 }
956
957                 /* Send data up to trigger point (if triggered). */
958                 sent = 0;
959                 if (i == triggerts) {
960                         /*
961                          * Trigger is not always accurate to sample because of
962                          * pipeline delay. However, it always triggers before
963                          * the actual event. We therefore look at the next
964                          * samples to pinpoint the exact position of the trigger.
965                          */
966                         tosend = get_trigger_offset(samples, *lastsample,
967                                                     &devc->trigger);
968
969                         if (tosend > 0) {
970                                 packet.type = SR_DF_LOGIC;
971                                 packet.payload = &logic;
972                                 logic.length = tosend * sizeof(uint16_t);
973                                 logic.unitsize = 2;
974                                 logic.data = samples;
975                                 sr_session_send(devc->cb_data, &packet);
976
977                                 sent += tosend;
978                         }
979
980                         /* Only send trigger if explicitly enabled. */
981                         if (devc->use_triggers) {
982                                 packet.type = SR_DF_TRIGGER;
983                                 sr_session_send(devc->cb_data, &packet);
984                         }
985                 }
986
987                 /* Send rest of the chunk to sigrok. */
988                 tosend = n - sent;
989
990                 if (tosend > 0) {
991                         packet.type = SR_DF_LOGIC;
992                         packet.payload = &logic;
993                         logic.length = tosend * sizeof(uint16_t);
994                         logic.unitsize = 2;
995                         logic.data = samples + sent;
996                         sr_session_send(devc->cb_data, &packet);
997                 }
998
999                 *lastsample = samples[n - 1];
1000         }
1001
1002         return SR_OK;
1003 }
1004
1005 static int receive_data(int fd, int revents, void *cb_data)
1006 {
1007         struct sr_dev_inst *sdi = cb_data;
1008         struct dev_context *devc = sdi->priv;
1009         struct sr_datafeed_packet packet;
1010         const int chunks_per_read = 32;
1011         unsigned char buf[chunks_per_read * CHUNK_SIZE];
1012         int bufsz, numchunks, i, newchunks;
1013         uint64_t running_msec;
1014         struct timeval tv;
1015
1016         (void)fd;
1017         (void)revents;
1018
1019         /* Get the current position. */
1020         sigma_read_pos(&devc->state.stoppos, &devc->state.triggerpos, devc);
1021
1022         numchunks = (devc->state.stoppos + 511) / 512;
1023
1024         if (devc->state.state == SIGMA_IDLE)
1025                 return TRUE;
1026
1027         if (devc->state.state == SIGMA_CAPTURE) {
1028                 /* Check if the timer has expired, or memory is full. */
1029                 gettimeofday(&tv, 0);
1030                 running_msec = (tv.tv_sec - devc->start_tv.tv_sec) * 1000 +
1031                         (tv.tv_usec - devc->start_tv.tv_usec) / 1000;
1032
1033                 if (running_msec < devc->limit_msec && numchunks < 32767)
1034                         return TRUE; /* While capturing... */
1035                 else
1036                         dev_acquisition_stop(sdi, sdi);
1037
1038         }
1039
1040         if (devc->state.state == SIGMA_DOWNLOAD) {
1041                 if (devc->state.chunks_downloaded >= numchunks) {
1042                         /* End of samples. */
1043                         packet.type = SR_DF_END;
1044                         sr_session_send(devc->cb_data, &packet);
1045
1046                         devc->state.state = SIGMA_IDLE;
1047
1048                         return TRUE;
1049                 }
1050
1051                 newchunks = MIN(chunks_per_read,
1052                                 numchunks - devc->state.chunks_downloaded);
1053
1054                 sr_info("Downloading sample data: %.0f %%.",
1055                         100.0 * devc->state.chunks_downloaded / numchunks);
1056
1057                 bufsz = sigma_read_dram(devc->state.chunks_downloaded,
1058                                         newchunks, buf, devc);
1059                 /* TODO: Check bufsz. For now, just avoid compiler warnings. */
1060                 (void)bufsz;
1061
1062                 /* Find first ts. */
1063                 if (devc->state.chunks_downloaded == 0) {
1064                         devc->state.lastts = RL16(buf) - 1;
1065                         devc->state.lastsample = 0;
1066                 }
1067
1068                 /* Decode chunks and send them to sigrok. */
1069                 for (i = 0; i < newchunks; ++i) {
1070                         int limit_chunk = 0;
1071
1072                         /* The last chunk may potentially be only in part. */
1073                         if (devc->state.chunks_downloaded == numchunks - 1) {
1074                                 /* Find the last valid timestamp */
1075                                 limit_chunk = devc->state.stoppos % 512 + devc->state.lastts;
1076                         }
1077
1078                         if (devc->state.chunks_downloaded + i == devc->state.triggerchunk)
1079                                 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1080                                                 &devc->state.lastts,
1081                                                 &devc->state.lastsample,
1082                                                 devc->state.triggerpos & 0x1ff,
1083                                                 limit_chunk, sdi);
1084                         else
1085                                 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1086                                                 &devc->state.lastts,
1087                                                 &devc->state.lastsample,
1088                                                 -1, limit_chunk, sdi);
1089
1090                         ++devc->state.chunks_downloaded;
1091                 }
1092         }
1093
1094         return TRUE;
1095 }
1096
1097 /* Build a LUT entry used by the trigger functions. */
1098 static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
1099 {
1100         int i, j, k, bit;
1101
1102         /* For each quad probe. */
1103         for (i = 0; i < 4; ++i) {
1104                 entry[i] = 0xffff;
1105
1106                 /* For each bit in LUT. */
1107                 for (j = 0; j < 16; ++j)
1108
1109                         /* For each probe in quad. */
1110                         for (k = 0; k < 4; ++k) {
1111                                 bit = 1 << (i * 4 + k);
1112
1113                                 /* Set bit in entry */
1114                                 if ((mask & bit) &&
1115                                     ((!(value & bit)) !=
1116                                     (!(j & (1 << k)))))
1117                                         entry[i] &= ~(1 << j);
1118                         }
1119         }
1120 }
1121
1122 /* Add a logical function to LUT mask. */
1123 static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1124                                  int index, int neg, uint16_t *mask)
1125 {
1126         int i, j;
1127         int x[2][2], tmp, a, b, aset, bset, rset;
1128
1129         memset(x, 0, 4 * sizeof(int));
1130
1131         /* Trigger detect condition. */
1132         switch (oper) {
1133         case OP_LEVEL:
1134                 x[0][1] = 1;
1135                 x[1][1] = 1;
1136                 break;
1137         case OP_NOT:
1138                 x[0][0] = 1;
1139                 x[1][0] = 1;
1140                 break;
1141         case OP_RISE:
1142                 x[0][1] = 1;
1143                 break;
1144         case OP_FALL:
1145                 x[1][0] = 1;
1146                 break;
1147         case OP_RISEFALL:
1148                 x[0][1] = 1;
1149                 x[1][0] = 1;
1150                 break;
1151         case OP_NOTRISE:
1152                 x[1][1] = 1;
1153                 x[0][0] = 1;
1154                 x[1][0] = 1;
1155                 break;
1156         case OP_NOTFALL:
1157                 x[1][1] = 1;
1158                 x[0][0] = 1;
1159                 x[0][1] = 1;
1160                 break;
1161         case OP_NOTRISEFALL:
1162                 x[1][1] = 1;
1163                 x[0][0] = 1;
1164                 break;
1165         }
1166
1167         /* Transpose if neg is set. */
1168         if (neg) {
1169                 for (i = 0; i < 2; ++i) {
1170                         for (j = 0; j < 2; ++j) {
1171                                 tmp = x[i][j];
1172                                 x[i][j] = x[1-i][1-j];
1173                                 x[1-i][1-j] = tmp;
1174                         }
1175                 }
1176         }
1177
1178         /* Update mask with function. */
1179         for (i = 0; i < 16; ++i) {
1180                 a = (i >> (2 * index + 0)) & 1;
1181                 b = (i >> (2 * index + 1)) & 1;
1182
1183                 aset = (*mask >> i) & 1;
1184                 bset = x[b][a];
1185
1186                 if (func == FUNC_AND || func == FUNC_NAND)
1187                         rset = aset & bset;
1188                 else if (func == FUNC_OR || func == FUNC_NOR)
1189                         rset = aset | bset;
1190                 else if (func == FUNC_XOR || func == FUNC_NXOR)
1191                         rset = aset ^ bset;
1192
1193                 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1194                         rset = !rset;
1195
1196                 *mask &= ~(1 << i);
1197
1198                 if (rset)
1199                         *mask |= 1 << i;
1200         }
1201 }
1202
1203 /*
1204  * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1205  * simple pin change and state triggers. Only two transitions (rise/fall) can be
1206  * set at any time, but a full mask and value can be set (0/1).
1207  */
1208 static int build_basic_trigger(struct triggerlut *lut, struct dev_context *devc)
1209 {
1210         int i,j;
1211         uint16_t masks[2] = { 0, 0 };
1212
1213         memset(lut, 0, sizeof(struct triggerlut));
1214
1215         /* Contant for simple triggers. */
1216         lut->m4 = 0xa000;
1217
1218         /* Value/mask trigger support. */
1219         build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
1220                         lut->m2d);
1221
1222         /* Rise/fall trigger support. */
1223         for (i = 0, j = 0; i < 16; ++i) {
1224                 if (devc->trigger.risingmask & (1 << i) ||
1225                     devc->trigger.fallingmask & (1 << i))
1226                         masks[j++] = 1 << i;
1227         }
1228
1229         build_lut_entry(masks[0], masks[0], lut->m0d);
1230         build_lut_entry(masks[1], masks[1], lut->m1d);
1231
1232         /* Add glue logic */
1233         if (masks[0] || masks[1]) {
1234                 /* Transition trigger. */
1235                 if (masks[0] & devc->trigger.risingmask)
1236                         add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
1237                 if (masks[0] & devc->trigger.fallingmask)
1238                         add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
1239                 if (masks[1] & devc->trigger.risingmask)
1240                         add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
1241                 if (masks[1] & devc->trigger.fallingmask)
1242                         add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1243         } else {
1244                 /* Only value/mask trigger. */
1245                 lut->m3 = 0xffff;
1246         }
1247
1248         /* Triggertype: event. */
1249         lut->params.selres = 3;
1250
1251         return SR_OK;
1252 }
1253
1254 static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data)
1255 {
1256         struct dev_context *devc;
1257         struct clockselect_50 clockselect;
1258         int frac, triggerpin, ret;
1259         uint8_t triggerselect = 0;
1260         struct triggerinout triggerinout_conf;
1261         struct triggerlut lut;
1262
1263         if (sdi->status != SR_ST_ACTIVE)
1264                 return SR_ERR_DEV_CLOSED;
1265
1266         devc = sdi->priv;
1267
1268         if (configure_probes(sdi) != SR_OK) {
1269                 sr_err("Failed to configure probes.");
1270                 return SR_ERR;
1271         }
1272
1273         /* If the samplerate has not been set, default to 200 kHz. */
1274         if (devc->cur_firmware == -1) {
1275                 if ((ret = set_samplerate(sdi, SR_KHZ(200))) != SR_OK)
1276                         return ret;
1277         }
1278
1279         /* Enter trigger programming mode. */
1280         sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, devc);
1281
1282         /* 100 and 200 MHz mode. */
1283         if (devc->cur_samplerate >= SR_MHZ(100)) {
1284                 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, devc);
1285
1286                 /* Find which pin to trigger on from mask. */
1287                 for (triggerpin = 0; triggerpin < 8; ++triggerpin)
1288                         if ((devc->trigger.risingmask | devc->trigger.fallingmask) &
1289                             (1 << triggerpin))
1290                                 break;
1291
1292                 /* Set trigger pin and light LED on trigger. */
1293                 triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
1294
1295                 /* Default rising edge. */
1296                 if (devc->trigger.fallingmask)
1297                         triggerselect |= 1 << 3;
1298
1299         /* All other modes. */
1300         } else if (devc->cur_samplerate <= SR_MHZ(50)) {
1301                 build_basic_trigger(&lut, devc);
1302
1303                 sigma_write_trigger_lut(&lut, devc);
1304
1305                 triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
1306         }
1307
1308         /* Setup trigger in and out pins to default values. */
1309         memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
1310         triggerinout_conf.trgout_bytrigger = 1;
1311         triggerinout_conf.trgout_enable = 1;
1312
1313         sigma_write_register(WRITE_TRIGGER_OPTION,
1314                              (uint8_t *) &triggerinout_conf,
1315                              sizeof(struct triggerinout), devc);
1316
1317         /* Go back to normal mode. */
1318         sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, devc);
1319
1320         /* Set clock select register. */
1321         if (devc->cur_samplerate == SR_MHZ(200))
1322                 /* Enable 4 probes. */
1323                 sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, devc);
1324         else if (devc->cur_samplerate == SR_MHZ(100))
1325                 /* Enable 8 probes. */
1326                 sigma_set_register(WRITE_CLOCK_SELECT, 0x00, devc);
1327         else {
1328                 /*
1329                  * 50 MHz mode (or fraction thereof). Any fraction down to
1330                  * 50 MHz / 256 can be used, but is not supported by sigrok API.
1331                  */
1332                 frac = SR_MHZ(50) / devc->cur_samplerate - 1;
1333
1334                 clockselect.async = 0;
1335                 clockselect.fraction = frac;
1336                 clockselect.disabled_probes = 0;
1337
1338                 sigma_write_register(WRITE_CLOCK_SELECT,
1339                                      (uint8_t *) &clockselect,
1340                                      sizeof(clockselect), devc);
1341         }
1342
1343         /* Setup maximum post trigger time. */
1344         sigma_set_register(WRITE_POST_TRIGGER,
1345                            (devc->capture_ratio * 255) / 100, devc);
1346
1347         /* Start acqusition. */
1348         gettimeofday(&devc->start_tv, 0);
1349         sigma_set_register(WRITE_MODE, 0x0d, devc);
1350
1351         devc->cb_data = cb_data;
1352
1353         /* Send header packet to the session bus. */
1354         std_session_send_df_header(cb_data, LOG_PREFIX);
1355
1356         /* Add capture source. */
1357         sr_source_add(0, G_IO_IN, 10, receive_data, (void *)sdi);
1358
1359         devc->state.state = SIGMA_CAPTURE;
1360
1361         return SR_OK;
1362 }
1363
1364 static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
1365 {
1366         struct dev_context *devc;
1367         uint8_t modestatus;
1368
1369         (void)cb_data;
1370
1371         sr_source_remove(0);
1372
1373         if (!(devc = sdi->priv)) {
1374                 sr_err("%s: sdi->priv was NULL", __func__);
1375                 return SR_ERR_BUG;
1376         }
1377
1378         /* Stop acquisition. */
1379         sigma_set_register(WRITE_MODE, 0x11, devc);
1380
1381         /* Set SDRAM Read Enable. */
1382         sigma_set_register(WRITE_MODE, 0x02, devc);
1383
1384         /* Get the current position. */
1385         sigma_read_pos(&devc->state.stoppos, &devc->state.triggerpos, devc);
1386
1387         /* Check if trigger has fired. */
1388         modestatus = sigma_get_register(READ_MODE, devc);
1389         if (modestatus & 0x20)
1390                 devc->state.triggerchunk = devc->state.triggerpos / 512;
1391         else
1392                 devc->state.triggerchunk = -1;
1393
1394         devc->state.chunks_downloaded = 0;
1395
1396         devc->state.state = SIGMA_DOWNLOAD;
1397
1398         return SR_OK;
1399 }
1400
1401 SR_PRIV struct sr_dev_driver asix_sigma_driver_info = {
1402         .name = "asix-sigma",
1403         .longname = "ASIX SIGMA/SIGMA2",
1404         .api_version = 1,
1405         .init = init,
1406         .cleanup = cleanup,
1407         .scan = scan,
1408         .dev_list = dev_list,
1409         .dev_clear = dev_clear,
1410         .config_get = config_get,
1411         .config_set = config_set,
1412         .config_list = config_list,
1413         .dev_open = dev_open,
1414         .dev_close = dev_close,
1415         .dev_acquisition_start = dev_acquisition_start,
1416         .dev_acquisition_stop = dev_acquisition_stop,
1417         .priv = NULL,
1418 };