]> sigrok.org Git - libsigrok.git/blame_incremental - src/hardware/hantek-dso/api.c
output/csv: use intermediate time_t var, silence compiler warning
[libsigrok.git] / src / hardware / hantek-dso / api.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2012 Bert Vermeulen <bert@biot.com>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <config.h>
21#include <math.h>
22#include <stdio.h>
23#include <stdint.h>
24#include <stdlib.h>
25#include <sys/types.h>
26#include <sys/stat.h>
27#include <fcntl.h>
28#include <unistd.h>
29#include <string.h>
30#include <sys/time.h>
31#include <inttypes.h>
32#include <glib.h>
33#include <libusb.h>
34#include <libsigrok/libsigrok.h>
35#include "libsigrok-internal.h"
36#include "protocol.h"
37
38/* Max time in ms before we want to check on USB events */
39/* TODO tune this properly */
40#define TICK 1
41
42#define NUM_TIMEBASE 10
43#define NUM_VDIV 8
44
45#define NUM_BUFFER_SIZES 2
46
47static const uint32_t scanopts[] = {
48 SR_CONF_CONN,
49};
50
51static const uint32_t drvopts[] = {
52 SR_CONF_OSCILLOSCOPE,
53};
54
55static const uint32_t devopts[] = {
56 SR_CONF_CONTINUOUS,
57 SR_CONF_CONN | SR_CONF_GET,
58 SR_CONF_LIMIT_FRAMES | SR_CONF_GET | SR_CONF_SET,
59 SR_CONF_TIMEBASE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
60 SR_CONF_NUM_HDIV | SR_CONF_GET,
61 SR_CONF_CAPTURE_RATIO | SR_CONF_GET | SR_CONF_SET,
62 SR_CONF_TRIGGER_SOURCE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
63 SR_CONF_TRIGGER_SLOPE | SR_CONF_GET | SR_CONF_SET,
64 SR_CONF_BUFFERSIZE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
65 SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
66 SR_CONF_NUM_VDIV | SR_CONF_GET,
67 SR_CONF_TRIGGER_LEVEL | SR_CONF_GET | SR_CONF_SET,
68};
69
70static const uint32_t devopts_cg[] = {
71 SR_CONF_VDIV | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
72 SR_CONF_COUPLING | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
73 SR_CONF_FILTER | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
74};
75
76static const char *channel_names[] = {
77 "CH1", "CH2",
78};
79
80static const uint64_t buffersizes_32k[] = {
81 (10 * 1024), (32 * 1024),
82};
83static const uint64_t buffersizes_512k[] = {
84 (10 * 1024), (512 * 1024),
85};
86static const uint64_t buffersizes_14k[] = {
87 (10 * 1024), (14 * 1024),
88};
89
90static const struct dso_profile dev_profiles[] = {
91 { 0x04b4, 0x2090, 0x04b5, 0x2090,
92 "Hantek", "DSO-2090",
93 buffersizes_32k,
94 "hantek-dso-2090.fw" },
95 { 0x04b4, 0x2150, 0x04b5, 0x2150,
96 "Hantek", "DSO-2150",
97 buffersizes_32k,
98 "hantek-dso-2150.fw" },
99 { 0x04b4, 0x2250, 0x04b5, 0x2250,
100 "Hantek", "DSO-2250",
101 buffersizes_512k,
102 "hantek-dso-2250.fw" },
103 { 0x04b4, 0x5200, 0x04b5, 0x5200,
104 "Hantek", "DSO-5200",
105 buffersizes_14k,
106 "hantek-dso-5200.fw" },
107 { 0x04b4, 0x520a, 0x04b5, 0x520a,
108 "Hantek", "DSO-5200A",
109 buffersizes_512k,
110 "hantek-dso-5200A.fw" },
111 ALL_ZERO
112};
113
114static const uint64_t timebases[][2] = {
115 /* microseconds */
116 { 10, 1000000 },
117 { 20, 1000000 },
118 { 40, 1000000 },
119 { 100, 1000000 },
120 { 200, 1000000 },
121 { 400, 1000000 },
122 /* milliseconds */
123 { 1, 1000 },
124 { 2, 1000 },
125 { 4, 1000 },
126 { 10, 1000 },
127 { 20, 1000 },
128 { 40, 1000 },
129 { 100, 1000 },
130 { 200, 1000 },
131 { 400, 1000 },
132};
133
134static const uint64_t samplerates[] = {
135 SR_KHZ(20),
136 SR_KHZ(25),
137 SR_KHZ(50),
138 SR_KHZ(100),
139 SR_KHZ(200),
140 SR_KHZ(250),
141 SR_KHZ(500),
142 SR_MHZ(1),
143 SR_MHZ(2),
144 SR_MHZ(5),
145 SR_MHZ(10),
146 SR_MHZ(20),
147 SR_MHZ(25),
148 SR_MHZ(50),
149 SR_MHZ(100),
150 SR_MHZ(125),
151 /* Fast mode not supported yet.
152 SR_MHZ(200),
153 SR_MHZ(250), */
154};
155
156static const uint64_t vdivs[][2] = {
157 /* millivolts */
158 { 10, 1000 },
159 { 20, 1000 },
160 { 50, 1000 },
161 { 100, 1000 },
162 { 200, 1000 },
163 { 500, 1000 },
164 /* volts */
165 { 1, 1 },
166 { 2, 1 },
167 { 5, 1 },
168};
169
170static const char *trigger_sources[] = {
171 "CH1", "CH2", "EXT",
172};
173
174static const char *trigger_slopes[] = {
175 "r", "f",
176};
177
178static const char *coupling[] = {
179 "AC", "DC", "GND",
180};
181
182static struct sr_dev_inst *dso_dev_new(const struct dso_profile *prof)
183{
184 struct sr_dev_inst *sdi;
185 struct sr_channel *ch;
186 struct sr_channel_group *cg;
187 struct dev_context *devc;
188 unsigned int i;
189
190 sdi = g_malloc0(sizeof(struct sr_dev_inst));
191 sdi->status = SR_ST_INITIALIZING;
192 sdi->vendor = g_strdup(prof->vendor);
193 sdi->model = g_strdup(prof->model);
194
195 /*
196 * Add only the real channels -- EXT isn't a source of data, only
197 * a trigger source internal to the device.
198 */
199 for (i = 0; i < ARRAY_SIZE(channel_names); i++) {
200 ch = sr_channel_new(sdi, i, SR_CHANNEL_ANALOG, TRUE, channel_names[i]);
201 cg = sr_channel_group_new(sdi, channel_names[i], NULL);
202 cg->channels = g_slist_append(cg->channels, ch);
203 }
204
205 devc = g_malloc0(sizeof(struct dev_context));
206 devc->profile = prof;
207 devc->dev_state = IDLE;
208 devc->timebase = DEFAULT_TIMEBASE;
209 devc->samplerate = DEFAULT_SAMPLERATE;
210 devc->ch_enabled[0] = TRUE;
211 devc->ch_enabled[1] = TRUE;
212 devc->voltage[0] = DEFAULT_VOLTAGE;
213 devc->voltage[1] = DEFAULT_VOLTAGE;
214 devc->coupling[0] = DEFAULT_COUPLING;
215 devc->coupling[1] = DEFAULT_COUPLING;
216 devc->voffset_ch1 = DEFAULT_VERT_OFFSET;
217 devc->voffset_ch2 = DEFAULT_VERT_OFFSET;
218 devc->voffset_trigger = DEFAULT_VERT_TRIGGERPOS;
219 devc->framesize = DEFAULT_FRAMESIZE;
220 devc->triggerslope = SLOPE_POSITIVE;
221 devc->triggersource = NULL;
222 devc->capture_ratio = DEFAULT_CAPTURE_RATIO;
223 sdi->priv = devc;
224
225 return sdi;
226}
227
228static int configure_channels(const struct sr_dev_inst *sdi)
229{
230 struct dev_context *devc;
231 struct sr_channel *ch;
232 const GSList *l;
233 int p;
234
235 devc = sdi->priv;
236
237 g_slist_free(devc->enabled_channels);
238 devc->enabled_channels = NULL;
239 devc->ch_enabled[0] = devc->ch_enabled[1] = FALSE;
240 for (l = sdi->channels, p = 0; l; l = l->next, p++) {
241 ch = l->data;
242 if (p == 0)
243 devc->ch_enabled[0] = ch->enabled;
244 else
245 devc->ch_enabled[1] = ch->enabled;
246 if (ch->enabled)
247 devc->enabled_channels = g_slist_append(devc->enabled_channels, ch);
248 }
249
250 return SR_OK;
251}
252
253static void clear_helper(struct dev_context *devc)
254{
255 g_free(devc->triggersource);
256 g_slist_free(devc->enabled_channels);
257}
258
259static int dev_clear(const struct sr_dev_driver *di)
260{
261 return std_dev_clear_with_callback(di, (std_dev_clear_callback)clear_helper);
262}
263
264static GSList *scan(struct sr_dev_driver *di, GSList *options)
265{
266 struct drv_context *drvc;
267 struct dev_context *devc;
268 struct sr_dev_inst *sdi;
269 struct sr_usb_dev_inst *usb;
270 struct sr_config *src;
271 const struct dso_profile *prof;
272 GSList *l, *devices, *conn_devices;
273 struct libusb_device_descriptor des;
274 libusb_device **devlist;
275 int i, j;
276 const char *conn;
277 char connection_id[64];
278
279 drvc = di->context;
280
281 devices = 0;
282
283 conn = NULL;
284 for (l = options; l; l = l->next) {
285 src = l->data;
286 if (src->key == SR_CONF_CONN) {
287 conn = g_variant_get_string(src->data, NULL);
288 break;
289 }
290 }
291 if (conn)
292 conn_devices = sr_usb_find(drvc->sr_ctx->libusb_ctx, conn);
293 else
294 conn_devices = NULL;
295
296 /* Find all Hantek DSO devices and upload firmware to all of them. */
297 libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist);
298 for (i = 0; devlist[i]; i++) {
299 if (conn) {
300 usb = NULL;
301 for (l = conn_devices; l; l = l->next) {
302 usb = l->data;
303 if (usb->bus == libusb_get_bus_number(devlist[i])
304 && usb->address == libusb_get_device_address(devlist[i]))
305 break;
306 }
307 if (!l)
308 /* This device matched none of the ones that
309 * matched the conn specification. */
310 continue;
311 }
312
313 libusb_get_device_descriptor(devlist[i], &des);
314
315 if (usb_get_port_path(devlist[i], connection_id, sizeof(connection_id)) < 0)
316 continue;
317
318 prof = NULL;
319 for (j = 0; dev_profiles[j].orig_vid; j++) {
320 if (des.idVendor == dev_profiles[j].orig_vid
321 && des.idProduct == dev_profiles[j].orig_pid) {
322 /* Device matches the pre-firmware profile. */
323 prof = &dev_profiles[j];
324 sr_dbg("Found a %s %s.", prof->vendor, prof->model);
325 sdi = dso_dev_new(prof);
326 sdi->connection_id = g_strdup(connection_id);
327 devices = g_slist_append(devices, sdi);
328 devc = sdi->priv;
329 if (ezusb_upload_firmware(drvc->sr_ctx, devlist[i],
330 USB_CONFIGURATION, prof->firmware) == SR_OK) {
331 /* Remember when the firmware on this device was updated */
332 devc->fw_updated = g_get_monotonic_time();
333 } else {
334 sr_err("Firmware upload failed, name %s", prof->firmware);
335 }
336 /* Dummy USB address of 0xff will get overwritten later. */
337 sdi->conn = sr_usb_dev_inst_new(
338 libusb_get_bus_number(devlist[i]), 0xff, NULL);
339 break;
340 } else if (des.idVendor == dev_profiles[j].fw_vid
341 && des.idProduct == dev_profiles[j].fw_pid) {
342 /* Device matches the post-firmware profile. */
343 prof = &dev_profiles[j];
344 sr_dbg("Found a %s %s.", prof->vendor, prof->model);
345 sdi = dso_dev_new(prof);
346 sdi->connection_id = g_strdup(connection_id);
347 sdi->status = SR_ST_INACTIVE;
348 devices = g_slist_append(devices, sdi);
349 sdi->inst_type = SR_INST_USB;
350 sdi->conn = sr_usb_dev_inst_new(
351 libusb_get_bus_number(devlist[i]),
352 libusb_get_device_address(devlist[i]), NULL);
353 break;
354 }
355 }
356 if (!prof)
357 /* not a supported VID/PID */
358 continue;
359 }
360 libusb_free_device_list(devlist, 1);
361
362 return std_scan_complete(di, devices);
363}
364
365static int dev_open(struct sr_dev_inst *sdi)
366{
367 struct dev_context *devc;
368 struct sr_usb_dev_inst *usb;
369 int64_t timediff_us, timediff_ms;
370 int err;
371
372 devc = sdi->priv;
373 usb = sdi->conn;
374
375 /*
376 * If the firmware was recently uploaded, wait up to MAX_RENUM_DELAY_MS
377 * for the FX2 to renumerate.
378 */
379 err = SR_ERR;
380 if (devc->fw_updated > 0) {
381 sr_info("Waiting for device to reset.");
382 /* Takes >= 300ms for the FX2 to be gone from the USB bus. */
383 g_usleep(300 * 1000);
384 timediff_ms = 0;
385 while (timediff_ms < MAX_RENUM_DELAY_MS) {
386 if ((err = dso_open(sdi)) == SR_OK)
387 break;
388 g_usleep(100 * 1000);
389 timediff_us = g_get_monotonic_time() - devc->fw_updated;
390 timediff_ms = timediff_us / 1000;
391 sr_spew("Waited %" PRIi64 " ms.", timediff_ms);
392 }
393 sr_info("Device came back after %" PRIi64 " ms.", timediff_ms);
394 } else {
395 err = dso_open(sdi);
396 }
397
398 if (err != SR_OK) {
399 sr_err("Unable to open device.");
400 return SR_ERR;
401 }
402
403 err = libusb_claim_interface(usb->devhdl, USB_INTERFACE);
404 if (err != 0) {
405 sr_err("Unable to claim interface: %s.",
406 libusb_error_name(err));
407 return SR_ERR;
408 }
409
410 return SR_OK;
411}
412
413static int dev_close(struct sr_dev_inst *sdi)
414{
415 dso_close(sdi);
416
417 return SR_OK;
418}
419
420static int config_get(uint32_t key, GVariant **data,
421 const struct sr_dev_inst *sdi, const struct sr_channel_group *cg)
422{
423 struct dev_context *devc;
424 struct sr_usb_dev_inst *usb;
425 const char *s;
426 const uint64_t *vdiv;
427 int ch_idx;
428
429 switch (key) {
430 case SR_CONF_NUM_HDIV:
431 *data = g_variant_new_int32(NUM_TIMEBASE);
432 break;
433 case SR_CONF_NUM_VDIV:
434 *data = g_variant_new_int32(NUM_VDIV);
435 break;
436 }
437
438 if (!sdi)
439 return SR_ERR_ARG;
440
441 devc = sdi->priv;
442 if (!cg) {
443 switch (key) {
444 case SR_CONF_TRIGGER_LEVEL:
445 *data = g_variant_new_double(devc->voffset_trigger);
446 break;
447 case SR_CONF_CONN:
448 if (!sdi->conn)
449 return SR_ERR_ARG;
450 usb = sdi->conn;
451 if (usb->address == 255)
452 /* Device still needs to re-enumerate after firmware
453 * upload, so we don't know its (future) address. */
454 return SR_ERR;
455 *data = g_variant_new_printf("%d.%d", usb->bus, usb->address);
456 break;
457 case SR_CONF_TIMEBASE:
458 *data = g_variant_new("(tt)", timebases[devc->timebase][0],
459 timebases[devc->timebase][1]);
460 break;
461 case SR_CONF_SAMPLERATE:
462 *data = g_variant_new_uint64(devc->samplerate);
463 break;
464 case SR_CONF_BUFFERSIZE:
465 *data = g_variant_new_uint64(devc->framesize);
466 break;
467 case SR_CONF_TRIGGER_SOURCE:
468 if (!devc->triggersource)
469 return SR_ERR_NA;
470 *data = g_variant_new_string(devc->triggersource);
471 break;
472 case SR_CONF_TRIGGER_SLOPE:
473 s = (devc->triggerslope == SLOPE_POSITIVE) ? "r" : "f";
474 *data = g_variant_new_string(s);
475 break;
476 case SR_CONF_CAPTURE_RATIO:
477 *data = g_variant_new_uint64(devc->capture_ratio);
478 break;
479 case SR_CONF_LIMIT_FRAMES:
480 *data = g_variant_new_uint64(devc->limit_frames);
481 break;
482 default:
483 return SR_ERR_NA;
484 }
485 } else {
486 if (sdi->channel_groups->data == cg)
487 ch_idx = 0;
488 else if (sdi->channel_groups->next->data == cg)
489 ch_idx = 1;
490 else
491 return SR_ERR_ARG;
492 switch (key) {
493 case SR_CONF_FILTER:
494 *data = g_variant_new_boolean(devc->filter[ch_idx]);
495 break;
496 case SR_CONF_VDIV:
497 vdiv = vdivs[devc->voltage[ch_idx]];
498 *data = g_variant_new("(tt)", vdiv[0], vdiv[1]);
499 break;
500 case SR_CONF_COUPLING:
501 *data = g_variant_new_string(coupling[devc->coupling[ch_idx]]);
502 break;
503 }
504 }
505
506 return SR_OK;
507}
508
509static int config_set(uint32_t key, GVariant *data,
510 const struct sr_dev_inst *sdi, const struct sr_channel_group *cg)
511{
512 struct dev_context *devc;
513 int ch_idx, idx;
514 float flt;
515
516 devc = sdi->priv;
517 if (!cg) {
518 switch (key) {
519 case SR_CONF_LIMIT_FRAMES:
520 devc->limit_frames = g_variant_get_uint64(data);
521 break;
522 case SR_CONF_TRIGGER_LEVEL:
523 flt = g_variant_get_double(data);
524 if (flt < 0.0 || flt > 1.0) {
525 sr_err("Trigger level must be in [0.0,1.0].");
526 return SR_ERR_ARG;
527 }
528 devc->voffset_trigger = flt;
529 if (dso_set_voffsets(sdi) != SR_OK)
530 return SR_ERR;
531 break;
532 case SR_CONF_TRIGGER_SLOPE:
533 if ((idx = std_str_idx(data, ARRAY_AND_SIZE(trigger_slopes))) < 0)
534 return SR_ERR_ARG;
535 devc->triggerslope = idx;
536 break;
537 case SR_CONF_CAPTURE_RATIO:
538 devc->capture_ratio = g_variant_get_uint64(data);
539 break;
540 case SR_CONF_BUFFERSIZE:
541 if ((idx = std_u64_idx(data, devc->profile->buffersizes, NUM_BUFFER_SIZES)) < 0)
542 return SR_ERR_ARG;
543 devc->framesize = devc->profile->buffersizes[idx];
544 break;
545 case SR_CONF_TIMEBASE:
546 if ((idx = std_u64_tuple_idx(data, ARRAY_AND_SIZE(timebases))) < 0)
547 return SR_ERR_ARG;
548 devc->timebase = idx;
549 break;
550 case SR_CONF_SAMPLERATE:
551 if ((idx = std_u64_idx(data, ARRAY_AND_SIZE(samplerates))) < 0)
552 return SR_ERR_ARG;
553 devc->samplerate = samplerates[idx];
554 if (dso_set_trigger_samplerate(sdi) != SR_OK)
555 return SR_ERR;
556 break;
557 case SR_CONF_TRIGGER_SOURCE:
558 if ((idx = std_str_idx(data, ARRAY_AND_SIZE(trigger_sources))) < 0)
559 return SR_ERR_ARG;
560 g_free(devc->triggersource);
561 devc->triggersource = g_strdup(trigger_sources[idx]);
562 break;
563 default:
564 return SR_ERR_NA;
565 }
566 } else {
567 if (sdi->channel_groups->data == cg)
568 ch_idx = 0;
569 else if (sdi->channel_groups->next->data == cg)
570 ch_idx = 1;
571 else
572 return SR_ERR_ARG;
573 switch (key) {
574 case SR_CONF_FILTER:
575 devc->filter[ch_idx] = g_variant_get_boolean(data);
576 break;
577 case SR_CONF_VDIV:
578 if ((idx = std_u64_tuple_idx(data, ARRAY_AND_SIZE(vdivs))) < 0)
579 return SR_ERR_ARG;
580 devc->voltage[ch_idx] = idx;
581 break;
582 case SR_CONF_COUPLING:
583 if ((idx = std_str_idx(data, ARRAY_AND_SIZE(coupling))) < 0)
584 return SR_ERR_ARG;
585 devc->coupling[ch_idx] = idx;
586 break;
587 default:
588 return SR_ERR_NA;
589 }
590 }
591
592 return SR_OK;
593}
594
595static int config_list(uint32_t key, GVariant **data,
596 const struct sr_dev_inst *sdi, const struct sr_channel_group *cg)
597{
598 struct dev_context *devc;
599
600 if (!cg) {
601 switch (key) {
602 case SR_CONF_SCAN_OPTIONS:
603 case SR_CONF_DEVICE_OPTIONS:
604 return STD_CONFIG_LIST(key, data, sdi, cg, scanopts, drvopts, devopts);
605 case SR_CONF_BUFFERSIZE:
606 if (!sdi)
607 return SR_ERR_ARG;
608 devc = sdi->priv;
609 *data = std_gvar_array_u64(devc->profile->buffersizes, NUM_BUFFER_SIZES);
610 break;
611 case SR_CONF_SAMPLERATE:
612 *data = std_gvar_samplerates(ARRAY_AND_SIZE(samplerates));
613 break;
614 case SR_CONF_TIMEBASE:
615 *data = std_gvar_tuple_array(ARRAY_AND_SIZE(timebases));
616 break;
617 case SR_CONF_TRIGGER_SOURCE:
618 *data = g_variant_new_strv(ARRAY_AND_SIZE(trigger_sources));
619 break;
620 case SR_CONF_TRIGGER_SLOPE:
621 *data = g_variant_new_strv(ARRAY_AND_SIZE(trigger_slopes));
622 break;
623 default:
624 return SR_ERR_NA;
625 }
626 } else {
627 switch (key) {
628 case SR_CONF_DEVICE_OPTIONS:
629 *data = std_gvar_array_u32(ARRAY_AND_SIZE(devopts_cg));
630 break;
631 case SR_CONF_COUPLING:
632 *data = g_variant_new_strv(ARRAY_AND_SIZE(coupling));
633 break;
634 case SR_CONF_VDIV:
635 *data = std_gvar_tuple_array(ARRAY_AND_SIZE(vdivs));
636 break;
637 default:
638 return SR_ERR_NA;
639 }
640 }
641
642 return SR_OK;
643}
644
645static void send_chunk(struct sr_dev_inst *sdi, unsigned char *buf,
646 int num_samples)
647{
648 struct sr_datafeed_packet packet;
649 struct sr_datafeed_analog analog;
650 struct sr_analog_encoding encoding;
651 struct sr_analog_meaning meaning;
652 struct sr_analog_spec spec;
653 struct dev_context *devc = sdi->priv;
654 GSList *channels = devc->enabled_channels;
655
656 packet.type = SR_DF_ANALOG;
657 packet.payload = &analog;
658 /* TODO: support for 5xxx series 9-bit samples */
659 sr_analog_init(&analog, &encoding, &meaning, &spec, 0);
660 analog.num_samples = num_samples;
661 analog.meaning->mq = SR_MQ_VOLTAGE;
662 analog.meaning->unit = SR_UNIT_VOLT;
663 analog.meaning->mqflags = 0;
664 /* TODO: Check malloc return value. */
665 analog.data = g_try_malloc(num_samples * sizeof(float));
666
667 for (int ch = 0; ch < NUM_CHANNELS; ch++) {
668 if (!devc->ch_enabled[ch])
669 continue;
670
671 float range = ((float)vdivs[devc->voltage[ch]][0] / vdivs[devc->voltage[ch]][1]) * 8;
672 float vdivlog = log10f(range / 255);
673 int digits = -(int)vdivlog + (vdivlog < 0.0);
674 analog.encoding->digits = digits;
675 analog.spec->spec_digits = digits;
676 analog.meaning->channels = g_slist_append(NULL, channels->data);
677
678 for (int i = 0; i < num_samples; i++) {
679 /*
680 * The device always sends data for both channels. If a channel
681 * is disabled, it contains a copy of the enabled channel's
682 * data. However, we only send the requested channels to
683 * the bus.
684 *
685 * Voltage values are encoded as a value 0-255 (0-512 on the
686 * DSO-5200*), where the value is a point in the range
687 * represented by the vdiv setting. There are 8 vertical divs,
688 * so e.g. 500mV/div represents 4V peak-to-peak where 0 = -2V
689 * and 255 = +2V.
690 */
691 /* TODO: Support for DSO-5xxx series 9-bit samples. */
692 ((float *)analog.data)[i] = range / 255 * *(buf + i * 2 + 1 - ch) - range / 2;
693 }
694 sr_session_send(sdi, &packet);
695 g_slist_free(analog.meaning->channels);
696
697 channels = channels->next;
698 }
699 g_free(analog.data);
700}
701
702/*
703 * Called by libusb (as triggered by handle_event()) when a transfer comes in.
704 * Only channel data comes in asynchronously, and all transfers for this are
705 * queued up beforehand, so this just needs to chuck the incoming data onto
706 * the libsigrok session bus.
707 */
708static void LIBUSB_CALL receive_transfer(struct libusb_transfer *transfer)
709{
710 struct sr_dev_inst *sdi;
711 struct dev_context *devc;
712 int num_samples, pre;
713
714 sdi = transfer->user_data;
715 devc = sdi->priv;
716 sr_spew("receive_transfer(): status %s received %d bytes.",
717 libusb_error_name(transfer->status), transfer->actual_length);
718
719 if (transfer->actual_length == 0)
720 /* Nothing to send to the bus. */
721 return;
722
723 num_samples = transfer->actual_length / 2;
724
725 sr_spew("Got %d-%d/%d samples in frame.", devc->samp_received + 1,
726 devc->samp_received + num_samples, devc->framesize);
727
728 /*
729 * The device always sends a full frame, but the beginning of the frame
730 * doesn't represent the trigger point. The offset at which the trigger
731 * happened came in with the capture state, so we need to start sending
732 * from there up the session bus. The samples in the frame buffer
733 * before that trigger point came after the end of the device's frame
734 * buffer was reached, and it wrapped around to overwrite up until the
735 * trigger point.
736 */
737 if (devc->samp_received < devc->trigger_offset) {
738 /* Trigger point not yet reached. */
739 if (devc->samp_received + num_samples < devc->trigger_offset) {
740 /* The entire chunk is before the trigger point. */
741 memcpy(devc->framebuf + devc->samp_buffered * 2,
742 transfer->buffer, num_samples * 2);
743 devc->samp_buffered += num_samples;
744 } else {
745 /*
746 * This chunk hits or overruns the trigger point.
747 * Store the part before the trigger fired, and
748 * send the rest up to the session bus.
749 */
750 pre = devc->trigger_offset - devc->samp_received;
751 memcpy(devc->framebuf + devc->samp_buffered * 2,
752 transfer->buffer, pre * 2);
753 devc->samp_buffered += pre;
754
755 /* The rest of this chunk starts with the trigger point. */
756 sr_dbg("Reached trigger point, %d samples buffered.",
757 devc->samp_buffered);
758
759 /* Avoid the corner case where the chunk ended at
760 * exactly the trigger point. */
761 if (num_samples > pre)
762 send_chunk(sdi, transfer->buffer + pre * 2,
763 num_samples - pre);
764 }
765 } else {
766 /* Already past the trigger point, just send it all out. */
767 send_chunk(sdi, transfer->buffer, num_samples);
768 }
769
770 devc->samp_received += num_samples;
771
772 /* Everything in this transfer was either copied to the buffer or
773 * sent to the session bus. */
774 g_free(transfer->buffer);
775 libusb_free_transfer(transfer);
776
777 if (devc->samp_received >= devc->framesize) {
778 /* That was the last chunk in this frame. Send the buffered
779 * pre-trigger samples out now, in one big chunk. */
780 sr_dbg("End of frame, sending %d pre-trigger buffered samples.",
781 devc->samp_buffered);
782 send_chunk(sdi, devc->framebuf, devc->samp_buffered);
783 g_free(devc->framebuf);
784 devc->framebuf = NULL;
785
786 /* Mark the end of this frame. */
787 std_session_send_df_frame_end(sdi);
788
789 if (devc->limit_frames && ++devc->num_frames >= devc->limit_frames) {
790 /* Terminate session */
791 devc->dev_state = STOPPING;
792 } else {
793 devc->dev_state = NEW_CAPTURE;
794 }
795 }
796}
797
798static int handle_event(int fd, int revents, void *cb_data)
799{
800 const struct sr_dev_inst *sdi;
801 struct timeval tv;
802 struct sr_dev_driver *di;
803 struct dev_context *devc;
804 struct drv_context *drvc;
805 int num_channels;
806 uint32_t trigger_offset;
807 uint8_t capturestate;
808
809 (void)fd;
810 (void)revents;
811
812 sdi = cb_data;
813 di = sdi->driver;
814 drvc = di->context;
815 devc = sdi->priv;
816 if (devc->dev_state == STOPPING) {
817 /* We've been told to wind up the acquisition. */
818 sr_dbg("Stopping acquisition.");
819 /*
820 * TODO: Doesn't really cancel pending transfers so they might
821 * come in after SR_DF_END is sent.
822 */
823 usb_source_remove(sdi->session, drvc->sr_ctx);
824
825 std_session_send_df_end(sdi);
826
827 devc->dev_state = IDLE;
828
829 return TRUE;
830 }
831
832 /* Always handle pending libusb events. */
833 tv.tv_sec = tv.tv_usec = 0;
834 libusb_handle_events_timeout(drvc->sr_ctx->libusb_ctx, &tv);
835
836 /* TODO: ugh */
837 if (devc->dev_state == NEW_CAPTURE) {
838 if (dso_capture_start(sdi) != SR_OK)
839 return TRUE;
840 if (dso_enable_trigger(sdi) != SR_OK)
841 return TRUE;
842 if (!devc->triggersource) {
843 if (dso_force_trigger(sdi) != SR_OK)
844 return TRUE;
845 }
846 sr_dbg("Successfully requested next chunk.");
847 devc->dev_state = CAPTURE;
848 return TRUE;
849 }
850 if (devc->dev_state != CAPTURE)
851 return TRUE;
852
853 if ((dso_get_capturestate(sdi, &capturestate, &trigger_offset)) != SR_OK)
854 return TRUE;
855
856 sr_dbg("Capturestate %d.", capturestate);
857 sr_dbg("Trigger offset 0x%.6x.", trigger_offset);
858 switch (capturestate) {
859 case CAPTURE_EMPTY:
860 if (++devc->capture_empty_count >= MAX_CAPTURE_EMPTY) {
861 devc->capture_empty_count = 0;
862 if (dso_capture_start(sdi) != SR_OK)
863 break;
864 if (dso_enable_trigger(sdi) != SR_OK)
865 break;
866 if (!devc->triggersource) {
867 if (dso_force_trigger(sdi) != SR_OK)
868 break;
869 }
870 sr_dbg("Successfully requested next chunk.");
871 }
872 break;
873 case CAPTURE_FILLING:
874 /* No data yet. */
875 break;
876 case CAPTURE_READY_8BIT:
877 case CAPTURE_READY_2250:
878 /* Remember where in the captured frame the trigger is. */
879 devc->trigger_offset = trigger_offset;
880
881 num_channels = (devc->ch_enabled[0] && devc->ch_enabled[1]) ? 2 : 1;
882 devc->framebuf = g_malloc(devc->framesize * num_channels * 2);
883 devc->samp_buffered = devc->samp_received = 0;
884
885 /* Tell the scope to send us the first frame. */
886 if (dso_get_channeldata(sdi, receive_transfer) != SR_OK)
887 break;
888
889 /*
890 * Don't hit the state machine again until we're done fetching
891 * the data we just told the scope to send.
892 */
893 devc->dev_state = FETCH_DATA;
894
895 /* Tell the frontend a new frame is on the way. */
896 std_session_send_df_frame_begin(sdi);
897 break;
898 case CAPTURE_READY_9BIT:
899 /* TODO */
900 sr_err("Not yet supported.");
901 break;
902 case CAPTURE_TIMEOUT:
903 /* Doesn't matter, we'll try again next time. */
904 break;
905 default:
906 sr_dbg("Unknown capture state: %d.", capturestate);
907 break;
908 }
909
910 return TRUE;
911}
912
913static int dev_acquisition_start(const struct sr_dev_inst *sdi)
914{
915 struct dev_context *devc;
916 struct sr_dev_driver *di = sdi->driver;
917 struct drv_context *drvc = di->context;
918
919 devc = sdi->priv;
920
921 if (configure_channels(sdi) != SR_OK) {
922 sr_err("Failed to configure channels.");
923 return SR_ERR;
924 }
925
926 if (dso_init(sdi) != SR_OK)
927 return SR_ERR;
928
929 if (dso_capture_start(sdi) != SR_OK)
930 return SR_ERR;
931
932 devc->dev_state = CAPTURE;
933 usb_source_add(sdi->session, drvc->sr_ctx, TICK, handle_event, (void *)sdi);
934
935 std_session_send_df_header(sdi);
936
937 return SR_OK;
938}
939
940static int dev_acquisition_stop(struct sr_dev_inst *sdi)
941{
942 struct dev_context *devc;
943
944 devc = sdi->priv;
945 devc->dev_state = STOPPING;
946 devc->num_frames = 0;
947
948 return SR_OK;
949}
950
951static struct sr_dev_driver hantek_dso_driver_info = {
952 .name = "hantek-dso",
953 .longname = "Hantek DSO",
954 .api_version = 1,
955 .init = std_init,
956 .cleanup = std_cleanup,
957 .scan = scan,
958 .dev_list = std_dev_list,
959 .dev_clear = dev_clear,
960 .config_get = config_get,
961 .config_set = config_set,
962 .config_list = config_list,
963 .dev_open = dev_open,
964 .dev_close = dev_close,
965 .dev_acquisition_start = dev_acquisition_start,
966 .dev_acquisition_stop = dev_acquisition_stop,
967 .context = NULL,
968};
969SR_REGISTER_DEV_DRIVER(hantek_dso_driver_info);