]> sigrok.org Git - libsigrok.git/blame_incremental - src/hardware/asix-sigma/protocol.c
output/csv: use intermediate time_t var, silence compiler warning
[libsigrok.git] / src / hardware / asix-sigma / protocol.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
5 * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6 * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7 * Copyright (C) 2020 Gerhard Sittig <gerhard.sittig@gmx.net>
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23/*
24 * ASIX SIGMA/SIGMA2 logic analyzer driver
25 */
26
27#include <config.h>
28#include "protocol.h"
29
30/*
31 * The ASIX SIGMA hardware supports fixed 200MHz and 100MHz sample rates
32 * (by means of separate firmware images). As well as 50MHz divided by
33 * an integer divider in the 1..256 range (by the "typical" firmware).
34 * Which translates to a strict lower boundary of around 195kHz.
35 *
36 * This driver "suggests" a subset of the available rates by listing a
37 * few discrete values, while setter routines accept any user specified
38 * rate that is supported by the hardware.
39 */
40static const uint64_t samplerates[] = {
41 /* 50MHz and integer divider. 1/2/5 steps (where possible). */
42 SR_KHZ(200), SR_KHZ(500),
43 SR_MHZ(1), SR_MHZ(2), SR_MHZ(5),
44 SR_MHZ(10), SR_MHZ(25), SR_MHZ(50),
45 /* 100MHz/200MHz, fixed rates in special firmware. */
46 SR_MHZ(100), SR_MHZ(200),
47};
48
49SR_PRIV GVariant *sigma_get_samplerates_list(void)
50{
51 return std_gvar_samplerates(samplerates, ARRAY_SIZE(samplerates));
52}
53
54static const char *firmware_files[] = {
55 [SIGMA_FW_50MHZ] = "asix-sigma-50.fw", /* 50MHz, 8bit divider. */
56 [SIGMA_FW_100MHZ] = "asix-sigma-100.fw", /* 100MHz, fixed. */
57 [SIGMA_FW_200MHZ] = "asix-sigma-200.fw", /* 200MHz, fixed. */
58 [SIGMA_FW_SYNC] = "asix-sigma-50sync.fw", /* Sync from external pin. */
59 [SIGMA_FW_FREQ] = "asix-sigma-phasor.fw", /* Frequency counter. */
60};
61
62#define SIGMA_FIRMWARE_SIZE_LIMIT (256 * 1024)
63
64static int sigma_ftdi_open(const struct sr_dev_inst *sdi)
65{
66 struct dev_context *devc;
67 int vid, pid;
68 const char *serno;
69 int ret;
70
71 devc = sdi->priv;
72 if (!devc)
73 return SR_ERR_ARG;
74
75 if (devc->ftdi.is_open)
76 return SR_OK;
77
78 vid = devc->id.vid;
79 pid = devc->id.pid;
80 serno = sdi->serial_num;
81 if (!vid || !pid || !serno || !*serno)
82 return SR_ERR_ARG;
83
84 ret = ftdi_init(&devc->ftdi.ctx);
85 if (ret < 0) {
86 sr_err("Cannot initialize FTDI context (%d): %s.",
87 ret, ftdi_get_error_string(&devc->ftdi.ctx));
88 return SR_ERR_IO;
89 }
90 ret = ftdi_usb_open_desc_index(&devc->ftdi.ctx,
91 vid, pid, NULL, serno, 0);
92 if (ret < 0) {
93 sr_err("Cannot open device (%d): %s.",
94 ret, ftdi_get_error_string(&devc->ftdi.ctx));
95 return SR_ERR_IO;
96 }
97 devc->ftdi.is_open = TRUE;
98
99 return SR_OK;
100}
101
102static int sigma_ftdi_close(struct dev_context *devc)
103{
104 int ret;
105
106 ret = ftdi_usb_close(&devc->ftdi.ctx);
107 devc->ftdi.is_open = FALSE;
108 devc->ftdi.must_close = FALSE;
109 ftdi_deinit(&devc->ftdi.ctx);
110
111 return ret == 0 ? SR_OK : SR_ERR_IO;
112}
113
114SR_PRIV int sigma_check_open(const struct sr_dev_inst *sdi)
115{
116 struct dev_context *devc;
117 int ret;
118
119 if (!sdi)
120 return SR_ERR_ARG;
121 devc = sdi->priv;
122 if (!devc)
123 return SR_ERR_ARG;
124
125 if (devc->ftdi.is_open)
126 return SR_OK;
127
128 ret = sigma_ftdi_open(sdi);
129 if (ret != SR_OK)
130 return ret;
131 devc->ftdi.must_close = TRUE;
132
133 return ret;
134}
135
136SR_PRIV int sigma_check_close(struct dev_context *devc)
137{
138 int ret;
139
140 if (!devc)
141 return SR_ERR_ARG;
142
143 if (devc->ftdi.must_close) {
144 ret = sigma_ftdi_close(devc);
145 if (ret != SR_OK)
146 return ret;
147 devc->ftdi.must_close = FALSE;
148 }
149
150 return SR_OK;
151}
152
153SR_PRIV int sigma_force_open(const struct sr_dev_inst *sdi)
154{
155 struct dev_context *devc;
156 int ret;
157
158 if (!sdi)
159 return SR_ERR_ARG;
160 devc = sdi->priv;
161 if (!devc)
162 return SR_ERR_ARG;
163
164 ret = sigma_ftdi_open(sdi);
165 if (ret != SR_OK)
166 return ret;
167 devc->ftdi.must_close = FALSE;
168
169 return SR_OK;
170}
171
172SR_PRIV int sigma_force_close(struct dev_context *devc)
173{
174 return sigma_ftdi_close(devc);
175}
176
177/*
178 * BEWARE! Error propagation is important, as are kinds of return values.
179 *
180 * - Raw USB tranport communicates the number of sent or received bytes,
181 * or negative error codes in the external library's(!) range of codes.
182 * - Internal routines at the "sigrok driver level" communicate success
183 * or failure in terms of SR_OK et al error codes.
184 * - Main loop style receive callbacks communicate booleans which arrange
185 * for repeated calls to drive progress during acquisition.
186 *
187 * Careful consideration by maintainers is essential, because all of the
188 * above kinds of values are assignment compatbile from the compiler's
189 * point of view. Implementation errors will go unnoticed at build time.
190 */
191
192static int sigma_read_raw(struct dev_context *devc, void *buf, size_t size)
193{
194 int ret;
195
196 ret = ftdi_read_data(&devc->ftdi.ctx, (unsigned char *)buf, size);
197 if (ret < 0) {
198 sr_err("USB data read failed: %s",
199 ftdi_get_error_string(&devc->ftdi.ctx));
200 }
201
202 return ret;
203}
204
205static int sigma_write_raw(struct dev_context *devc, const void *buf, size_t size)
206{
207 int ret;
208
209 ret = ftdi_write_data(&devc->ftdi.ctx, buf, size);
210 if (ret < 0) {
211 sr_err("USB data write failed: %s",
212 ftdi_get_error_string(&devc->ftdi.ctx));
213 } else if ((size_t)ret != size) {
214 sr_err("USB data write length mismatch.");
215 }
216
217 return ret;
218}
219
220static int sigma_read_sr(struct dev_context *devc, void *buf, size_t size)
221{
222 int ret;
223
224 ret = sigma_read_raw(devc, buf, size);
225 if (ret < 0 || (size_t)ret != size)
226 return SR_ERR_IO;
227
228 return SR_OK;
229}
230
231static int sigma_write_sr(struct dev_context *devc, const void *buf, size_t size)
232{
233 int ret;
234
235 ret = sigma_write_raw(devc, buf, size);
236 if (ret < 0 || (size_t)ret != size)
237 return SR_ERR_IO;
238
239 return SR_OK;
240}
241
242/*
243 * Implementor's note: The local write buffer's size shall suffice for
244 * any know FPGA register transaction that is involved in the supported
245 * feature set of this sigrok device driver. If the length check trips,
246 * that's a programmer's error and needs adjustment in the complete call
247 * stack of the respective code path.
248 */
249#define SIGMA_MAX_REG_DEPTH 32
250
251/*
252 * Implementor's note: The FPGA command set supports register access
253 * with automatic address adjustment. This operation is documented to
254 * wrap within a 16-address range, it cannot cross boundaries where the
255 * register address' nibble overflows. An internal helper assumes that
256 * callers remain within this auto-adjustment range, and thus multi
257 * register access requests can never exceed that count.
258 */
259#define SIGMA_MAX_REG_COUNT 16
260
261SR_PRIV int sigma_write_register(struct dev_context *devc,
262 uint8_t reg, uint8_t *data, size_t len)
263{
264 uint8_t buf[2 + SIGMA_MAX_REG_DEPTH * 2], *wrptr;
265 size_t idx;
266
267 if (len > SIGMA_MAX_REG_DEPTH) {
268 sr_err("Short write buffer for %zu bytes to reg %u.", len, reg);
269 return SR_ERR_BUG;
270 }
271
272 wrptr = buf;
273 write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(reg));
274 write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(reg));
275 for (idx = 0; idx < len; idx++) {
276 write_u8_inc(&wrptr, REG_DATA_LOW | LO4(data[idx]));
277 write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | HI4(data[idx]));
278 }
279
280 return sigma_write_sr(devc, buf, wrptr - buf);
281}
282
283SR_PRIV int sigma_set_register(struct dev_context *devc,
284 uint8_t reg, uint8_t value)
285{
286 return sigma_write_register(devc, reg, &value, sizeof(value));
287}
288
289static int sigma_read_register(struct dev_context *devc,
290 uint8_t reg, uint8_t *data, size_t len)
291{
292 uint8_t buf[3], *wrptr;
293 int ret;
294
295 wrptr = buf;
296 write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(reg));
297 write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(reg));
298 write_u8_inc(&wrptr, REG_READ_ADDR);
299 ret = sigma_write_sr(devc, buf, wrptr - buf);
300 if (ret != SR_OK)
301 return ret;
302
303 return sigma_read_sr(devc, data, len);
304}
305
306static int sigma_get_register(struct dev_context *devc,
307 uint8_t reg, uint8_t *data)
308{
309 return sigma_read_register(devc, reg, data, sizeof(*data));
310}
311
312static int sigma_get_registers(struct dev_context *devc,
313 uint8_t reg, uint8_t *data, size_t count)
314{
315 uint8_t buf[2 + SIGMA_MAX_REG_COUNT], *wrptr;
316 size_t idx;
317 int ret;
318
319 if (count > SIGMA_MAX_REG_COUNT) {
320 sr_err("Short command buffer for %zu reg reads at %u.", count, reg);
321 return SR_ERR_BUG;
322 }
323
324 wrptr = buf;
325 write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(reg));
326 write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(reg));
327 for (idx = 0; idx < count; idx++)
328 write_u8_inc(&wrptr, REG_READ_ADDR | REG_ADDR_INC);
329 ret = sigma_write_sr(devc, buf, wrptr - buf);
330 if (ret != SR_OK)
331 return ret;
332
333 return sigma_read_sr(devc, data, count);
334}
335
336static int sigma_read_pos(struct dev_context *devc,
337 uint32_t *stoppos, uint32_t *triggerpos, uint8_t *mode)
338{
339 uint8_t result[7];
340 const uint8_t *rdptr;
341 uint32_t v32;
342 uint8_t v8;
343 int ret;
344
345 /*
346 * Read 7 registers starting at trigger position LSB.
347 * Which yields two 24bit counter values, and mode flags.
348 */
349 ret = sigma_get_registers(devc, READ_TRIGGER_POS_LOW,
350 result, sizeof(result));
351 if (ret != SR_OK)
352 return ret;
353
354 rdptr = &result[0];
355 v32 = read_u24le_inc(&rdptr);
356 if (triggerpos)
357 *triggerpos = v32;
358 v32 = read_u24le_inc(&rdptr);
359 if (stoppos)
360 *stoppos = v32;
361 v8 = read_u8_inc(&rdptr);
362 if (mode)
363 *mode = v8;
364
365 /*
366 * These positions consist of "the memory row" in the MSB fields,
367 * and "an event index" within the row in the LSB fields. Part
368 * of the memory row's content is sample data, another part is
369 * timestamps.
370 *
371 * The retrieved register values point to after the captured
372 * position. So they need to get decremented, and adjusted to
373 * cater for the timestamps when the decrement carries over to
374 * a different memory row.
375 */
376 if (stoppos && (--*stoppos & ROW_MASK) == ROW_MASK)
377 *stoppos -= CLUSTERS_PER_ROW;
378 if (triggerpos && (--*triggerpos & ROW_MASK) == ROW_MASK)
379 *triggerpos -= CLUSTERS_PER_ROW;
380
381 return SR_OK;
382}
383
384static int sigma_read_dram(struct dev_context *devc,
385 size_t startchunk, size_t numchunks, uint8_t *data)
386{
387 uint8_t buf[128], *wrptr, regval;
388 size_t chunk;
389 int sel, ret;
390 gboolean is_last;
391
392 if (2 + 3 * numchunks > ARRAY_SIZE(buf)) {
393 sr_err("Short write buffer for %zu DRAM row reads.", numchunks);
394 return SR_ERR_BUG;
395 }
396
397 /* Communicate DRAM start address (memory row, aka samples line). */
398 wrptr = buf;
399 write_u16be_inc(&wrptr, startchunk);
400 ret = sigma_write_register(devc, WRITE_MEMROW, buf, wrptr - buf);
401 if (ret != SR_OK)
402 return ret;
403
404 /*
405 * Access DRAM content. Fetch from DRAM to FPGA's internal RAM,
406 * then transfer via USB. Interleave the FPGA's DRAM access and
407 * USB transfer, use alternating buffers (0/1) in the process.
408 */
409 wrptr = buf;
410 write_u8_inc(&wrptr, REG_DRAM_BLOCK);
411 write_u8_inc(&wrptr, REG_DRAM_WAIT_ACK);
412 for (chunk = 0; chunk < numchunks; chunk++) {
413 sel = chunk % 2;
414 is_last = chunk == numchunks - 1;
415 if (!is_last) {
416 regval = REG_DRAM_BLOCK | REG_DRAM_SEL_BOOL(!sel);
417 write_u8_inc(&wrptr, regval);
418 }
419 regval = REG_DRAM_BLOCK_DATA | REG_DRAM_SEL_BOOL(sel);
420 write_u8_inc(&wrptr, regval);
421 if (!is_last)
422 write_u8_inc(&wrptr, REG_DRAM_WAIT_ACK);
423 }
424 ret = sigma_write_sr(devc, buf, wrptr - buf);
425 if (ret != SR_OK)
426 return ret;
427
428 return sigma_read_sr(devc, data, numchunks * ROW_LENGTH_BYTES);
429}
430
431/* Upload trigger look-up tables to Sigma. */
432SR_PRIV int sigma_write_trigger_lut(struct dev_context *devc,
433 struct triggerlut *lut)
434{
435 size_t lut_addr;
436 uint16_t bit;
437 uint8_t m3d, m2d, m1d, m0d;
438 uint8_t buf[6], *wrptr;
439 uint8_t trgsel2;
440 uint16_t lutreg, selreg;
441 int ret;
442
443 /*
444 * Translate the LUT part of the trigger configuration from the
445 * application's perspective to the hardware register's bitfield
446 * layout. Send the LUT to the device. This configures the logic
447 * which combines pin levels or edges.
448 */
449 for (lut_addr = 0; lut_addr < 16; lut_addr++) {
450 bit = BIT(lut_addr);
451
452 /* - M4 M3S M3Q */
453 m3d = 0;
454 if (lut->m4 & bit)
455 m3d |= BIT(2);
456 if (lut->m3s & bit)
457 m3d |= BIT(1);
458 if (lut->m3q & bit)
459 m3d |= BIT(0);
460
461 /* M2D3 M2D2 M2D1 M2D0 */
462 m2d = 0;
463 if (lut->m2d[3] & bit)
464 m2d |= BIT(3);
465 if (lut->m2d[2] & bit)
466 m2d |= BIT(2);
467 if (lut->m2d[1] & bit)
468 m2d |= BIT(1);
469 if (lut->m2d[0] & bit)
470 m2d |= BIT(0);
471
472 /* M1D3 M1D2 M1D1 M1D0 */
473 m1d = 0;
474 if (lut->m1d[3] & bit)
475 m1d |= BIT(3);
476 if (lut->m1d[2] & bit)
477 m1d |= BIT(2);
478 if (lut->m1d[1] & bit)
479 m1d |= BIT(1);
480 if (lut->m1d[0] & bit)
481 m1d |= BIT(0);
482
483 /* M0D3 M0D2 M0D1 M0D0 */
484 m0d = 0;
485 if (lut->m0d[3] & bit)
486 m0d |= BIT(3);
487 if (lut->m0d[2] & bit)
488 m0d |= BIT(2);
489 if (lut->m0d[1] & bit)
490 m0d |= BIT(1);
491 if (lut->m0d[0] & bit)
492 m0d |= BIT(0);
493
494 /*
495 * Send 16bits with M3D/M2D and M1D/M0D bit masks to the
496 * TriggerSelect register, then strobe the LUT write by
497 * passing A3-A0 to TriggerSelect2. Hold RESET during LUT
498 * programming.
499 */
500 wrptr = buf;
501 lutreg = 0;
502 lutreg <<= 4; lutreg |= m3d;
503 lutreg <<= 4; lutreg |= m2d;
504 lutreg <<= 4; lutreg |= m1d;
505 lutreg <<= 4; lutreg |= m0d;
506 write_u16be_inc(&wrptr, lutreg);
507 ret = sigma_write_register(devc, WRITE_TRIGGER_SELECT,
508 buf, wrptr - buf);
509 if (ret != SR_OK)
510 return ret;
511 trgsel2 = TRGSEL2_RESET | TRGSEL2_LUT_WRITE |
512 (lut_addr & TRGSEL2_LUT_ADDR_MASK);
513 ret = sigma_set_register(devc, WRITE_TRIGGER_SELECT2, trgsel2);
514 if (ret != SR_OK)
515 return ret;
516 }
517
518 /*
519 * Send the parameters. This covers counters and durations.
520 */
521 wrptr = buf;
522 selreg = 0;
523 selreg |= (lut->params.selinc & TRGSEL_SELINC_MASK) << TRGSEL_SELINC_SHIFT;
524 selreg |= (lut->params.selres & TRGSEL_SELRES_MASK) << TRGSEL_SELRES_SHIFT;
525 selreg |= (lut->params.sela & TRGSEL_SELA_MASK) << TRGSEL_SELA_SHIFT;
526 selreg |= (lut->params.selb & TRGSEL_SELB_MASK) << TRGSEL_SELB_SHIFT;
527 selreg |= (lut->params.selc & TRGSEL_SELC_MASK) << TRGSEL_SELC_SHIFT;
528 selreg |= (lut->params.selpresc & TRGSEL_SELPRESC_MASK) << TRGSEL_SELPRESC_SHIFT;
529 write_u16be_inc(&wrptr, selreg);
530 write_u16be_inc(&wrptr, lut->params.cmpb);
531 write_u16be_inc(&wrptr, lut->params.cmpa);
532 ret = sigma_write_register(devc, WRITE_TRIGGER_SELECT, buf, wrptr - buf);
533 if (ret != SR_OK)
534 return ret;
535
536 return SR_OK;
537}
538
539/*
540 * See Xilinx UG332 for Spartan-3 FPGA configuration. The SIGMA device
541 * uses FTDI bitbang mode for netlist download in slave serial mode.
542 * (LATER: The OMEGA device's cable contains a more capable FTDI chip
543 * and uses MPSSE mode for bitbang. -- Can we also use FT232H in FT245
544 * compatible bitbang mode? For maximum code re-use and reduced libftdi
545 * dependency? See section 3.5.5 of FT232H: D0 clk, D1 data (out), D2
546 * data (in), D3 select, D4-7 GPIOL. See section 3.5.7 for MCU FIFO.)
547 *
548 * 750kbps rate (four times the speed of sigmalogan) works well for
549 * netlist download. All pins except INIT_B are output pins during
550 * configuration download.
551 *
552 * Some pins are inverted as a byproduct of level shifting circuitry.
553 * That's why high CCLK level (from the cable's point of view) is idle
554 * from the FPGA's perspective.
555 *
556 * The vendor's literature discusses a "suicide sequence" which ends
557 * regular FPGA execution and should be sent before entering bitbang
558 * mode and sending configuration data. Set D7 and toggle D2, D3, D4
559 * a few times.
560 */
561#define BB_PIN_CCLK BIT(0) /* D0, CCLK */
562#define BB_PIN_PROG BIT(1) /* D1, PROG */
563#define BB_PIN_D2 BIT(2) /* D2, (part of) SUICIDE */
564#define BB_PIN_D3 BIT(3) /* D3, (part of) SUICIDE */
565#define BB_PIN_D4 BIT(4) /* D4, (part of) SUICIDE (unused?) */
566#define BB_PIN_INIT BIT(5) /* D5, INIT, input pin */
567#define BB_PIN_DIN BIT(6) /* D6, DIN */
568#define BB_PIN_D7 BIT(7) /* D7, (part of) SUICIDE */
569
570#define BB_BITRATE (750 * 1000)
571#define BB_PINMASK (0xff & ~BB_PIN_INIT)
572
573/*
574 * Initiate slave serial mode for configuration download. Which is done
575 * by pulsing PROG_B and sensing INIT_B. Make sure CCLK is idle before
576 * initiating the configuration download.
577 *
578 * Run a "suicide sequence" first to terminate the regular FPGA operation
579 * before reconfiguration. The FTDI cable is single channel, and shares
580 * pins which are used for data communication in FIFO mode with pins that
581 * are used for FPGA configuration in bitbang mode. Hardware defaults for
582 * unconfigured hardware, and runtime conditions after FPGA configuration
583 * need to cooperate such that re-configuration of the FPGA can start.
584 */
585static int sigma_fpga_init_bitbang_once(struct dev_context *devc)
586{
587 const uint8_t suicide[] = {
588 BB_PIN_D7 | BB_PIN_D2,
589 BB_PIN_D7 | BB_PIN_D2,
590 BB_PIN_D7 | BB_PIN_D3,
591 BB_PIN_D7 | BB_PIN_D2,
592 BB_PIN_D7 | BB_PIN_D3,
593 BB_PIN_D7 | BB_PIN_D2,
594 BB_PIN_D7 | BB_PIN_D3,
595 BB_PIN_D7 | BB_PIN_D2,
596 };
597 const uint8_t init_array[] = {
598 BB_PIN_CCLK,
599 BB_PIN_CCLK | BB_PIN_PROG,
600 BB_PIN_CCLK | BB_PIN_PROG,
601 BB_PIN_CCLK,
602 BB_PIN_CCLK,
603 BB_PIN_CCLK,
604 BB_PIN_CCLK,
605 BB_PIN_CCLK,
606 BB_PIN_CCLK,
607 BB_PIN_CCLK,
608 };
609 size_t retries;
610 int ret;
611 uint8_t data;
612
613 /* Section 2. part 1), do the FPGA suicide. */
614 ret = SR_OK;
615 ret |= sigma_write_sr(devc, suicide, sizeof(suicide));
616 ret |= sigma_write_sr(devc, suicide, sizeof(suicide));
617 ret |= sigma_write_sr(devc, suicide, sizeof(suicide));
618 ret |= sigma_write_sr(devc, suicide, sizeof(suicide));
619 if (ret != SR_OK)
620 return SR_ERR_IO;
621 g_usleep(10 * 1000);
622
623 /* Section 2. part 2), pulse PROG. */
624 ret = sigma_write_sr(devc, init_array, sizeof(init_array));
625 if (ret != SR_OK)
626 return ret;
627 g_usleep(10 * 1000);
628 ftdi_usb_purge_buffers(&devc->ftdi.ctx);
629
630 /*
631 * Wait until the FPGA asserts INIT_B. Check in a maximum number
632 * of bursts with a given delay between them. Read as many pin
633 * capture results as the combination of FTDI chip and FTID lib
634 * may provide. Cope with absence of pin capture data in a cycle.
635 * This approach shall result in fast reponse in case of success,
636 * low cost of execution during wait, reliable error handling in
637 * the transport layer, and robust response to failure or absence
638 * of result data (hardware inactivity after stimulus).
639 */
640 retries = 10;
641 while (retries--) {
642 do {
643 ret = sigma_read_raw(devc, &data, sizeof(data));
644 if (ret < 0)
645 return SR_ERR_IO;
646 if (ret == sizeof(data) && (data & BB_PIN_INIT))
647 return SR_OK;
648 } while (ret == sizeof(data));
649 if (retries)
650 g_usleep(10 * 1000);
651 }
652
653 return SR_ERR_TIMEOUT;
654}
655
656/*
657 * This is belt and braces. Re-run the bitbang initiation sequence a few
658 * times should first attempts fail. Failure is rare but can happen (was
659 * observed during driver development).
660 */
661static int sigma_fpga_init_bitbang(struct dev_context *devc)
662{
663 size_t retries;
664 int ret;
665
666 retries = 10;
667 while (retries--) {
668 ret = sigma_fpga_init_bitbang_once(devc);
669 if (ret == SR_OK)
670 return ret;
671 if (ret != SR_ERR_TIMEOUT)
672 return ret;
673 }
674 return ret;
675}
676
677/*
678 * Configure the FPGA for logic-analyzer mode.
679 */
680static int sigma_fpga_init_la(struct dev_context *devc)
681{
682 uint8_t buf[20], *wrptr;
683 uint8_t data_55, data_aa, mode;
684 uint8_t result[3];
685 const uint8_t *rdptr;
686 int ret;
687
688 wrptr = buf;
689
690 /* Read ID register. */
691 write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(READ_ID));
692 write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(READ_ID));
693 write_u8_inc(&wrptr, REG_READ_ADDR);
694
695 /* Write 0x55 to scratch register, read back. */
696 data_55 = 0x55;
697 write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(WRITE_TEST));
698 write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(WRITE_TEST));
699 write_u8_inc(&wrptr, REG_DATA_LOW | LO4(data_55));
700 write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | HI4(data_55));
701 write_u8_inc(&wrptr, REG_READ_ADDR);
702
703 /* Write 0xaa to scratch register, read back. */
704 data_aa = 0xaa;
705 write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(WRITE_TEST));
706 write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(WRITE_TEST));
707 write_u8_inc(&wrptr, REG_DATA_LOW | LO4(data_aa));
708 write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | HI4(data_aa));
709 write_u8_inc(&wrptr, REG_READ_ADDR);
710
711 /* Initiate SDRAM initialization in mode register. */
712 mode = WMR_SDRAMINIT;
713 write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(WRITE_MODE));
714 write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(WRITE_MODE));
715 write_u8_inc(&wrptr, REG_DATA_LOW | LO4(mode));
716 write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | HI4(mode));
717
718 /*
719 * Send the command sequence which contains 3 READ requests.
720 * Expect to see the corresponding 3 response bytes.
721 */
722 ret = sigma_write_sr(devc, buf, wrptr - buf);
723 if (ret != SR_OK) {
724 sr_err("Could not request LA start response.");
725 return ret;
726 }
727 ret = sigma_read_sr(devc, result, ARRAY_SIZE(result));
728 if (ret != SR_OK) {
729 sr_err("Could not receive LA start response.");
730 return SR_ERR_IO;
731 }
732 rdptr = result;
733 if (read_u8_inc(&rdptr) != 0xa6) {
734 sr_err("Unexpected ID response.");
735 return SR_ERR_DATA;
736 }
737 if (read_u8_inc(&rdptr) != data_55) {
738 sr_err("Unexpected scratch read-back (55).");
739 return SR_ERR_DATA;
740 }
741 if (read_u8_inc(&rdptr) != data_aa) {
742 sr_err("Unexpected scratch read-back (aa).");
743 return SR_ERR_DATA;
744 }
745
746 return SR_OK;
747}
748
749/*
750 * Read the firmware from a file and transform it into a series of bitbang
751 * pulses used to program the FPGA. Note that the *bb_cmd must be free()'d
752 * by the caller of this function.
753 */
754static int sigma_fw_2_bitbang(struct sr_context *ctx, const char *name,
755 uint8_t **bb_cmd, size_t *bb_cmd_size)
756{
757 uint8_t *firmware;
758 size_t file_size;
759 uint8_t *p;
760 size_t l;
761 uint32_t imm;
762 size_t bb_size;
763 uint8_t *bb_stream, *bbs, byte, mask, v;
764
765 /* Retrieve the on-disk firmware file content. */
766 firmware = sr_resource_load(ctx, SR_RESOURCE_FIRMWARE, name,
767 &file_size, SIGMA_FIRMWARE_SIZE_LIMIT);
768 if (!firmware)
769 return SR_ERR_IO;
770
771 /* Unscramble the file content (XOR with "random" sequence). */
772 p = firmware;
773 l = file_size;
774 imm = 0x3f6df2ab;
775 while (l--) {
776 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
777 *p++ ^= imm & 0xff;
778 }
779
780 /*
781 * Generate a sequence of bitbang samples. With two samples per
782 * FPGA configuration bit, providing the level for the DIN signal
783 * as well as two edges for CCLK. See Xilinx UG332 for details
784 * ("slave serial" mode).
785 *
786 * Note that CCLK is inverted in hardware. That's why the
787 * respective bit is first set and then cleared in the bitbang
788 * sample sets. So that the DIN level will be stable when the
789 * data gets sampled at the rising CCLK edge, and the signals'
790 * setup time constraint will be met.
791 *
792 * The caller will put the FPGA into download mode, will send
793 * the bitbang samples, and release the allocated memory.
794 */
795 bb_size = file_size * 8 * 2;
796 bb_stream = g_try_malloc(bb_size);
797 if (!bb_stream) {
798 sr_err("Memory allocation failed during firmware upload.");
799 g_free(firmware);
800 return SR_ERR_MALLOC;
801 }
802 bbs = bb_stream;
803 p = firmware;
804 l = file_size;
805 while (l--) {
806 byte = *p++;
807 mask = 0x80;
808 while (mask) {
809 v = (byte & mask) ? BB_PIN_DIN : 0;
810 mask >>= 1;
811 *bbs++ = v | BB_PIN_CCLK;
812 *bbs++ = v;
813 }
814 }
815 g_free(firmware);
816
817 /* The transformation completed successfully, return the result. */
818 *bb_cmd = bb_stream;
819 *bb_cmd_size = bb_size;
820
821 return SR_OK;
822}
823
824static int upload_firmware(struct sr_context *ctx, struct dev_context *devc,
825 enum sigma_firmware_idx firmware_idx)
826{
827 int ret;
828 uint8_t *buf;
829 uint8_t pins;
830 size_t buf_size;
831 const char *firmware;
832
833 /* Check for valid firmware file selection. */
834 if (firmware_idx >= ARRAY_SIZE(firmware_files))
835 return SR_ERR_ARG;
836 firmware = firmware_files[firmware_idx];
837 if (!firmware || !*firmware)
838 return SR_ERR_ARG;
839
840 /* Avoid downloading the same firmware multiple times. */
841 if (devc->firmware_idx == firmware_idx) {
842 sr_info("Not uploading firmware file '%s' again.", firmware);
843 return SR_OK;
844 }
845
846 devc->state = SIGMA_CONFIG;
847
848 /* Set the cable to bitbang mode. */
849 ret = ftdi_set_bitmode(&devc->ftdi.ctx, BB_PINMASK, BITMODE_BITBANG);
850 if (ret < 0) {
851 sr_err("Could not setup cable mode for upload: %s",
852 ftdi_get_error_string(&devc->ftdi.ctx));
853 return SR_ERR;
854 }
855 ret = ftdi_set_baudrate(&devc->ftdi.ctx, BB_BITRATE);
856 if (ret < 0) {
857 sr_err("Could not setup bitrate for upload: %s",
858 ftdi_get_error_string(&devc->ftdi.ctx));
859 return SR_ERR;
860 }
861
862 /* Initiate FPGA configuration mode. */
863 ret = sigma_fpga_init_bitbang(devc);
864 if (ret) {
865 sr_err("Could not initiate firmware upload to hardware");
866 return ret;
867 }
868
869 /* Prepare wire format of the firmware image. */
870 ret = sigma_fw_2_bitbang(ctx, firmware, &buf, &buf_size);
871 if (ret != SR_OK) {
872 sr_err("Could not prepare file %s for upload.", firmware);
873 return ret;
874 }
875
876 /* Write the FPGA netlist to the cable. */
877 sr_info("Uploading firmware file '%s'.", firmware);
878 ret = sigma_write_sr(devc, buf, buf_size);
879 g_free(buf);
880 if (ret != SR_OK) {
881 sr_err("Could not upload firmware file '%s'.", firmware);
882 return ret;
883 }
884
885 /* Leave bitbang mode and discard pending input data. */
886 ret = ftdi_set_bitmode(&devc->ftdi.ctx, 0, BITMODE_RESET);
887 if (ret < 0) {
888 sr_err("Could not setup cable mode after upload: %s",
889 ftdi_get_error_string(&devc->ftdi.ctx));
890 return SR_ERR;
891 }
892 ftdi_usb_purge_buffers(&devc->ftdi.ctx);
893 while (sigma_read_raw(devc, &pins, sizeof(pins)) > 0)
894 ;
895
896 /* Initialize the FPGA for logic-analyzer mode. */
897 ret = sigma_fpga_init_la(devc);
898 if (ret != SR_OK) {
899 sr_err("Hardware response after firmware upload failed.");
900 return ret;
901 }
902
903 /* Keep track of successful firmware download completion. */
904 devc->state = SIGMA_IDLE;
905 devc->firmware_idx = firmware_idx;
906 sr_info("Firmware uploaded.");
907
908 return SR_OK;
909}
910
911/*
912 * The driver supports user specified time or sample count limits. The
913 * device's hardware supports neither, and hardware compression prevents
914 * reliable detection of "fill levels" (currently reached sample counts)
915 * from register values during acquisition. That's why the driver needs
916 * to apply some heuristics:
917 *
918 * - The (optional) sample count limit and the (normalized) samplerate
919 * get mapped to an estimated duration for these samples' acquisition.
920 * - The (optional) time limit gets checked as well. The lesser of the
921 * two limits will terminate the data acquisition phase. The exact
922 * sample count limit gets enforced in session feed submission paths.
923 * - Some slack needs to be given to account for hardware pipelines as
924 * well as late storage of last chunks after compression thresholds
925 * are tripped. The resulting data set will span at least the caller
926 * specified period of time, which shall be perfectly acceptable.
927 *
928 * With RLE compression active, up to 64K sample periods can pass before
929 * a cluster accumulates. Which translates to 327ms at 200kHz. Add two
930 * times that period for good measure, one is not enough to flush the
931 * hardware pipeline (observation from an earlier experiment).
932 */
933SR_PRIV int sigma_set_acquire_timeout(struct dev_context *devc)
934{
935 int ret;
936 GVariant *data;
937 uint64_t user_count, user_msecs;
938 uint64_t worst_cluster_time_ms;
939 uint64_t count_msecs, acquire_msecs;
940
941 sr_sw_limits_init(&devc->limit.acquire);
942 devc->late_trigger_timeout = FALSE;
943
944 /* Get sample count limit, convert to msecs. */
945 ret = sr_sw_limits_config_get(&devc->limit.config,
946 SR_CONF_LIMIT_SAMPLES, &data);
947 if (ret != SR_OK)
948 return ret;
949 user_count = g_variant_get_uint64(data);
950 g_variant_unref(data);
951 count_msecs = 0;
952 if (devc->use_triggers) {
953 user_count *= 100 - devc->capture_ratio;
954 user_count /= 100;
955 }
956 if (user_count)
957 count_msecs = 1000 * user_count / devc->clock.samplerate + 1;
958
959 /* Get time limit, which is in msecs. */
960 ret = sr_sw_limits_config_get(&devc->limit.config,
961 SR_CONF_LIMIT_MSEC, &data);
962 if (ret != SR_OK)
963 return ret;
964 user_msecs = g_variant_get_uint64(data);
965 g_variant_unref(data);
966 if (devc->use_triggers) {
967 user_msecs *= 100 - devc->capture_ratio;
968 user_msecs /= 100;
969 }
970
971 /* Get the lesser of them, with both being optional. */
972 acquire_msecs = ~UINT64_C(0);
973 if (user_count && count_msecs < acquire_msecs)
974 acquire_msecs = count_msecs;
975 if (user_msecs && user_msecs < acquire_msecs)
976 acquire_msecs = user_msecs;
977 if (acquire_msecs == ~UINT64_C(0))
978 return SR_OK;
979
980 /* Add some slack, and use that timeout for acquisition. */
981 worst_cluster_time_ms = 1000 * 65536 / devc->clock.samplerate;
982 acquire_msecs += 2 * worst_cluster_time_ms;
983 data = g_variant_new_uint64(acquire_msecs);
984 ret = sr_sw_limits_config_set(&devc->limit.acquire,
985 SR_CONF_LIMIT_MSEC, data);
986 g_variant_unref(data);
987 if (ret != SR_OK)
988 return ret;
989
990 /* Deferred or immediate (trigger-less) timeout period start. */
991 if (devc->use_triggers)
992 devc->late_trigger_timeout = TRUE;
993 else
994 sr_sw_limits_acquisition_start(&devc->limit.acquire);
995
996 return SR_OK;
997}
998
999/*
1000 * Check whether a caller specified samplerate matches the device's
1001 * hardware constraints (can be used for acquisition). Optionally yield
1002 * a value that approximates the original spec.
1003 *
1004 * This routine assumes that input specs are in the 200kHz to 200MHz
1005 * range of supported rates, and callers typically want to normalize a
1006 * given value to the hardware capabilities. Values in the 50MHz range
1007 * get rounded up by default, to avoid a more expensive check for the
1008 * closest match, while higher sampling rate is always desirable during
1009 * measurement. Input specs which exactly match hardware capabilities
1010 * remain unaffected. Because 100/200MHz rates also limit the number of
1011 * available channels, they are not suggested by this routine, instead
1012 * callers need to pick them consciously.
1013 */
1014SR_PRIV int sigma_normalize_samplerate(uint64_t want_rate, uint64_t *have_rate)
1015{
1016 uint64_t div, rate;
1017
1018 /* Accept exact matches for 100/200MHz. */
1019 if (want_rate == SR_MHZ(200) || want_rate == SR_MHZ(100)) {
1020 if (have_rate)
1021 *have_rate = want_rate;
1022 return SR_OK;
1023 }
1024
1025 /* Accept 200kHz to 50MHz range, and map to near value. */
1026 if (want_rate >= SR_KHZ(200) && want_rate <= SR_MHZ(50)) {
1027 div = SR_MHZ(50) / want_rate;
1028 rate = SR_MHZ(50) / div;
1029 if (have_rate)
1030 *have_rate = rate;
1031 return SR_OK;
1032 }
1033
1034 return SR_ERR_ARG;
1035}
1036
1037/* Gets called at probe time. Can seed software settings from hardware state. */
1038SR_PRIV int sigma_fetch_hw_config(const struct sr_dev_inst *sdi)
1039{
1040 struct dev_context *devc;
1041 int ret;
1042 uint8_t regaddr, regval;
1043
1044 devc = sdi->priv;
1045 if (!devc)
1046 return SR_ERR_ARG;
1047
1048 /* Seed configuration values from defaults. */
1049 devc->firmware_idx = SIGMA_FW_NONE;
1050 devc->clock.samplerate = samplerates[0];
1051
1052 /* TODO
1053 * Ideally the device driver could retrieve recently stored
1054 * details from hardware registers, thus re-use user specified
1055 * configuration values across sigrok sessions. Which could
1056 * avoid repeated expensive though unnecessary firmware uploads,
1057 * improve performance and usability. Unfortunately it appears
1058 * that the registers range which is documented as available for
1059 * application use keeps providing 0xff data content. At least
1060 * with the netlist version which ships with sigrok. The same
1061 * was observed with unused registers in the first page.
1062 */
1063 return SR_ERR_NA;
1064
1065 /* This is for research, currently does not work yet. */
1066 ret = sigma_check_open(sdi);
1067 regaddr = 16;
1068 regaddr = 14;
1069 ret = sigma_set_register(devc, regaddr, 'F');
1070 ret = sigma_get_register(devc, regaddr, &regval);
1071 sr_warn("%s() reg[%u] val[%u] rc[%d]", __func__, regaddr, regval, ret);
1072 ret = sigma_check_close(devc);
1073 return ret;
1074}
1075
1076/* Gets called after successful (volatile) hardware configuration. */
1077SR_PRIV int sigma_store_hw_config(const struct sr_dev_inst *sdi)
1078{
1079 /* TODO See above, registers seem to not hold written data. */
1080 (void)sdi;
1081 return SR_ERR_NA;
1082}
1083
1084SR_PRIV int sigma_set_samplerate(const struct sr_dev_inst *sdi)
1085{
1086 struct dev_context *devc;
1087 struct drv_context *drvc;
1088 uint64_t samplerate;
1089 int ret;
1090 size_t num_channels;
1091
1092 devc = sdi->priv;
1093 drvc = sdi->driver->context;
1094
1095 /* Accept any caller specified rate which the hardware supports. */
1096 ret = sigma_normalize_samplerate(devc->clock.samplerate, &samplerate);
1097 if (ret != SR_OK)
1098 return ret;
1099
1100 /*
1101 * Depending on the samplerates of 200/100/50- MHz, specific
1102 * firmware is required and higher rates might limit the set
1103 * of available channels.
1104 */
1105 num_channels = devc->interp.num_channels;
1106 if (samplerate <= SR_MHZ(50)) {
1107 ret = upload_firmware(drvc->sr_ctx, devc, SIGMA_FW_50MHZ);
1108 num_channels = 16;
1109 } else if (samplerate == SR_MHZ(100)) {
1110 ret = upload_firmware(drvc->sr_ctx, devc, SIGMA_FW_100MHZ);
1111 num_channels = 8;
1112 } else if (samplerate == SR_MHZ(200)) {
1113 ret = upload_firmware(drvc->sr_ctx, devc, SIGMA_FW_200MHZ);
1114 num_channels = 4;
1115 }
1116
1117 /*
1118 * The samplerate affects the number of available logic channels
1119 * as well as a sample memory layout detail (the number of samples
1120 * which the device will communicate within an "event").
1121 */
1122 if (ret == SR_OK) {
1123 devc->interp.num_channels = num_channels;
1124 devc->interp.samples_per_event = 16 / devc->interp.num_channels;
1125 }
1126
1127 /*
1128 * Store the firmware type and most recently configured samplerate
1129 * in hardware, such that subsequent sessions can start from there.
1130 * This is a "best effort" approach. Failure is non-fatal.
1131 */
1132 if (ret == SR_OK)
1133 (void)sigma_store_hw_config(sdi);
1134
1135 return ret;
1136}
1137
1138/*
1139 * Arrange for a session feed submit buffer. A queue where a number of
1140 * samples gets accumulated to reduce the number of send calls. Which
1141 * also enforces an optional sample count limit for data acquisition.
1142 *
1143 * The buffer holds up to CHUNK_SIZE bytes. The unit size is fixed (the
1144 * driver provides a fixed channel layout regardless of samplerate).
1145 */
1146
1147#define CHUNK_SIZE (4 * 1024 * 1024)
1148
1149struct submit_buffer {
1150 size_t unit_size;
1151 size_t max_samples, curr_samples;
1152 uint8_t *sample_data;
1153 uint8_t *write_pointer;
1154 struct sr_dev_inst *sdi;
1155 struct sr_datafeed_packet packet;
1156 struct sr_datafeed_logic logic;
1157};
1158
1159static int alloc_submit_buffer(struct sr_dev_inst *sdi)
1160{
1161 struct dev_context *devc;
1162 struct submit_buffer *buffer;
1163 size_t size;
1164
1165 devc = sdi->priv;
1166
1167 buffer = g_malloc0(sizeof(*buffer));
1168 devc->buffer = buffer;
1169
1170 buffer->unit_size = sizeof(uint16_t);
1171 size = CHUNK_SIZE;
1172 size /= buffer->unit_size;
1173 buffer->max_samples = size;
1174 size *= buffer->unit_size;
1175 buffer->sample_data = g_try_malloc0(size);
1176 if (!buffer->sample_data)
1177 return SR_ERR_MALLOC;
1178 buffer->write_pointer = buffer->sample_data;
1179 sr_sw_limits_init(&devc->limit.submit);
1180
1181 buffer->sdi = sdi;
1182 memset(&buffer->logic, 0, sizeof(buffer->logic));
1183 buffer->logic.unitsize = buffer->unit_size;
1184 buffer->logic.data = buffer->sample_data;
1185 memset(&buffer->packet, 0, sizeof(buffer->packet));
1186 buffer->packet.type = SR_DF_LOGIC;
1187 buffer->packet.payload = &buffer->logic;
1188
1189 return SR_OK;
1190}
1191
1192static int setup_submit_limit(struct dev_context *devc)
1193{
1194 struct sr_sw_limits *limits;
1195 int ret;
1196 GVariant *data;
1197 uint64_t total;
1198
1199 limits = &devc->limit.submit;
1200
1201 ret = sr_sw_limits_config_get(&devc->limit.config,
1202 SR_CONF_LIMIT_SAMPLES, &data);
1203 if (ret != SR_OK)
1204 return ret;
1205 total = g_variant_get_uint64(data);
1206 g_variant_unref(data);
1207
1208 sr_sw_limits_init(limits);
1209 if (total) {
1210 data = g_variant_new_uint64(total);
1211 ret = sr_sw_limits_config_set(limits,
1212 SR_CONF_LIMIT_SAMPLES, data);
1213 g_variant_unref(data);
1214 if (ret != SR_OK)
1215 return ret;
1216 }
1217
1218 sr_sw_limits_acquisition_start(limits);
1219
1220 return SR_OK;
1221}
1222
1223static void free_submit_buffer(struct dev_context *devc)
1224{
1225 struct submit_buffer *buffer;
1226
1227 if (!devc)
1228 return;
1229
1230 buffer = devc->buffer;
1231 if (!buffer)
1232 return;
1233 devc->buffer = NULL;
1234
1235 g_free(buffer->sample_data);
1236 g_free(buffer);
1237}
1238
1239static int flush_submit_buffer(struct dev_context *devc)
1240{
1241 struct submit_buffer *buffer;
1242 int ret;
1243
1244 buffer = devc->buffer;
1245
1246 /* Is queued sample data available? */
1247 if (!buffer->curr_samples)
1248 return SR_OK;
1249
1250 /* Submit to the session feed. */
1251 buffer->logic.length = buffer->curr_samples * buffer->unit_size;
1252 ret = sr_session_send(buffer->sdi, &buffer->packet);
1253 if (ret != SR_OK)
1254 return ret;
1255
1256 /* Rewind queue position. */
1257 buffer->curr_samples = 0;
1258 buffer->write_pointer = buffer->sample_data;
1259
1260 return SR_OK;
1261}
1262
1263static int addto_submit_buffer(struct dev_context *devc,
1264 uint16_t sample, size_t count)
1265{
1266 struct submit_buffer *buffer;
1267 struct sr_sw_limits *limits;
1268 int ret;
1269
1270 buffer = devc->buffer;
1271 limits = &devc->limit.submit;
1272 if (!devc->use_triggers && sr_sw_limits_check(limits))
1273 count = 0;
1274
1275 /*
1276 * Individually accumulate and check each sample, such that
1277 * accumulation between flushes won't exceed local storage, and
1278 * enforcement of user specified limits is exact.
1279 */
1280 while (count--) {
1281 write_u16le_inc(&buffer->write_pointer, sample);
1282 buffer->curr_samples++;
1283 if (buffer->curr_samples == buffer->max_samples) {
1284 ret = flush_submit_buffer(devc);
1285 if (ret != SR_OK)
1286 return ret;
1287 }
1288 sr_sw_limits_update_samples_read(limits, 1);
1289 if (!devc->use_triggers && sr_sw_limits_check(limits))
1290 break;
1291 }
1292
1293 return SR_OK;
1294}
1295
1296static void sigma_location_break_down(struct sigma_location *loc)
1297{
1298
1299 loc->line = loc->raw / ROW_LENGTH_U16;
1300 loc->line += ROW_COUNT;
1301 loc->line %= ROW_COUNT;
1302 loc->cluster = loc->raw % ROW_LENGTH_U16;
1303 loc->event = loc->cluster % EVENTS_PER_CLUSTER;
1304 loc->cluster = loc->cluster / EVENTS_PER_CLUSTER;
1305}
1306
1307static gboolean sigma_location_is_eq(struct sigma_location *loc1,
1308 struct sigma_location *loc2, gboolean with_event)
1309{
1310
1311 if (!loc1 || !loc2)
1312 return FALSE;
1313
1314 if (loc1->line != loc2->line)
1315 return FALSE;
1316 if (loc1->cluster != loc2->cluster)
1317 return FALSE;
1318
1319 if (with_event && loc1->event != loc2->event)
1320 return FALSE;
1321
1322 return TRUE;
1323}
1324
1325/* Decrement the broken-down location fields (leave 'raw' as is). */
1326static void sigma_location_decrement(struct sigma_location *loc,
1327 gboolean with_event)
1328{
1329
1330 if (!loc)
1331 return;
1332
1333 if (with_event) {
1334 if (loc->event--)
1335 return;
1336 loc->event = EVENTS_PER_CLUSTER - 1;
1337 }
1338
1339 if (loc->cluster--)
1340 return;
1341 loc->cluster = CLUSTERS_PER_ROW - 1;
1342
1343 if (loc->line--)
1344 return;
1345 loc->line = ROW_COUNT - 1;
1346}
1347
1348static void sigma_location_increment(struct sigma_location *loc)
1349{
1350
1351 if (!loc)
1352 return;
1353
1354 if (++loc->event < EVENTS_PER_CLUSTER)
1355 return;
1356 loc->event = 0;
1357 if (++loc->cluster < CLUSTERS_PER_ROW)
1358 return;
1359 loc->cluster = 0;
1360 if (++loc->line < ROW_COUNT)
1361 return;
1362 loc->line = 0;
1363}
1364
1365/*
1366 * Determine the position where to open the period of trigger match
1367 * checks. Setup an "impossible" location when triggers are not used.
1368 * Start from the hardware provided 'trig' position otherwise, and
1369 * go back a few clusters, but don't go before the 'start' position.
1370 */
1371static void rewind_trig_arm_pos(struct dev_context *devc, size_t count)
1372{
1373 struct sigma_sample_interp *interp;
1374
1375 if (!devc)
1376 return;
1377 interp = &devc->interp;
1378
1379 if (!devc->use_triggers) {
1380 interp->trig_arm.raw = ~0;
1381 sigma_location_break_down(&interp->trig_arm);
1382 return;
1383 }
1384
1385 interp->trig_arm = interp->trig;
1386 while (count--) {
1387 if (sigma_location_is_eq(&interp->trig_arm, &interp->start, TRUE))
1388 break;
1389 sigma_location_decrement(&interp->trig_arm, TRUE);
1390 }
1391}
1392
1393static int alloc_sample_buffer(struct dev_context *devc,
1394 size_t stop_pos, size_t trig_pos, uint8_t mode)
1395{
1396 struct sigma_sample_interp *interp;
1397 gboolean wrapped;
1398 size_t alloc_size;
1399
1400 interp = &devc->interp;
1401
1402 /*
1403 * Either fetch sample memory from absolute start of DRAM to the
1404 * current write position. Or from after the current write position
1405 * to before the current write position, if the write pointer has
1406 * wrapped around at the upper DRAM boundary. Assume that the line
1407 * which most recently got written to is of unknown state, ignore
1408 * its content in the "wrapped" case.
1409 */
1410 wrapped = mode & RMR_ROUND;
1411 interp->start.raw = 0;
1412 interp->stop.raw = stop_pos;
1413 if (wrapped) {
1414 interp->start.raw = stop_pos;
1415 interp->start.raw >>= ROW_SHIFT;
1416 interp->start.raw++;
1417 interp->start.raw <<= ROW_SHIFT;
1418 interp->stop.raw = stop_pos;
1419 interp->stop.raw >>= ROW_SHIFT;
1420 interp->stop.raw--;
1421 interp->stop.raw <<= ROW_SHIFT;
1422 }
1423 interp->trig.raw = trig_pos;
1424 interp->iter.raw = 0;
1425
1426 /* Break down raw values to line, cluster, event fields. */
1427 sigma_location_break_down(&interp->start);
1428 sigma_location_break_down(&interp->stop);
1429 sigma_location_break_down(&interp->trig);
1430 sigma_location_break_down(&interp->iter);
1431
1432 /*
1433 * The hardware provided trigger location "is late" because of
1434 * latency in hardware pipelines. It points to after the trigger
1435 * condition match. Arrange for a software check of sample data
1436 * matches starting just a little before the hardware provided
1437 * location. The "4 clusters" distance is an arbitrary choice.
1438 */
1439 rewind_trig_arm_pos(devc, 4 * EVENTS_PER_CLUSTER);
1440 memset(&interp->trig_chk, 0, sizeof(interp->trig_chk));
1441
1442 /* Determine which DRAM lines to fetch from the device. */
1443 memset(&interp->fetch, 0, sizeof(interp->fetch));
1444 interp->fetch.lines_total = interp->stop.line + 1;
1445 interp->fetch.lines_total -= interp->start.line;
1446 interp->fetch.lines_total += ROW_COUNT;
1447 interp->fetch.lines_total %= ROW_COUNT;
1448 interp->fetch.lines_done = 0;
1449
1450 /* Arrange for chunked download, N lines per USB request. */
1451 interp->fetch.lines_per_read = 32;
1452 alloc_size = sizeof(devc->interp.fetch.rcvd_lines[0]);
1453 alloc_size *= devc->interp.fetch.lines_per_read;
1454 devc->interp.fetch.rcvd_lines = g_try_malloc0(alloc_size);
1455 if (!devc->interp.fetch.rcvd_lines)
1456 return SR_ERR_MALLOC;
1457
1458 return SR_OK;
1459}
1460
1461static uint16_t sigma_deinterlace_data_4x4(uint16_t indata, int idx);
1462static uint16_t sigma_deinterlace_data_2x8(uint16_t indata, int idx);
1463
1464static int fetch_sample_buffer(struct dev_context *devc)
1465{
1466 struct sigma_sample_interp *interp;
1467 size_t count;
1468 int ret;
1469 const uint8_t *rdptr;
1470 uint16_t ts, data;
1471
1472 interp = &devc->interp;
1473
1474 /* First invocation? Seed the iteration position. */
1475 if (!interp->fetch.lines_done) {
1476 interp->iter = interp->start;
1477 }
1478
1479 /* Get another set of DRAM lines in one read call. */
1480 count = interp->fetch.lines_total - interp->fetch.lines_done;
1481 if (count > interp->fetch.lines_per_read)
1482 count = interp->fetch.lines_per_read;
1483 ret = sigma_read_dram(devc, interp->iter.line, count,
1484 (uint8_t *)interp->fetch.rcvd_lines);
1485 if (ret != SR_OK)
1486 return ret;
1487 interp->fetch.lines_rcvd = count;
1488 interp->fetch.curr_line = &interp->fetch.rcvd_lines[0];
1489
1490 /* First invocation? Get initial timestamp and sample data. */
1491 if (!interp->fetch.lines_done) {
1492 rdptr = (void *)interp->fetch.curr_line;
1493 ts = read_u16le_inc(&rdptr);
1494 data = read_u16le_inc(&rdptr);
1495 if (interp->samples_per_event == 4) {
1496 data = sigma_deinterlace_data_4x4(data, 0);
1497 } else if (interp->samples_per_event == 2) {
1498 data = sigma_deinterlace_data_2x8(data, 0);
1499 }
1500 interp->last.ts = ts;
1501 interp->last.sample = data;
1502 }
1503
1504 return SR_OK;
1505}
1506
1507static void free_sample_buffer(struct dev_context *devc)
1508{
1509 g_free(devc->interp.fetch.rcvd_lines);
1510 devc->interp.fetch.rcvd_lines = NULL;
1511 devc->interp.fetch.lines_per_read = 0;
1512}
1513
1514/*
1515 * Parse application provided trigger conditions to the driver's internal
1516 * presentation. Yields a mask of pins of interest, and their expected
1517 * pin levels or edges.
1518 *
1519 * In 100 and 200 MHz mode, only a single pin's rising/falling edge can be
1520 * set as trigger. In 50- MHz modes, two rising/falling edges can be set,
1521 * in addition to value/mask specs for any number of channels.
1522 *
1523 * Hardware implementation detail: When more than one edge is specified,
1524 * then the condition is only considered a match when _all_ transitions
1525 * are seen in the same 20ns check interval, regardless of the user's
1526 * perceived samplerate which can be a fraction of 50MHz. Which reduces
1527 * practical use to edges on a single pin in addition to data patterns.
1528 * Which still covers a lot of users' typical scenarios. Not an issue,
1529 * just something to remain aware of.
1530 *
1531 * The Sigma hardware also supports complex triggers which involve the
1532 * logical combination of several patterns, pulse durations, counts of
1533 * condition matches, A-then-B sequences, etc. But this has not been
1534 * implemented yet here, and applications may lack means to express
1535 * these conditions (present the complex conditions to users for entry
1536 * and review, pass application specs to drivers covering the versatile
1537 * combinations).
1538 *
1539 * Implementor's note: This routine currently exclusively accepts input
1540 * in the form of sr_trigger stages, which results from "01rf-" choices
1541 * on a multitude of individual GUI traces, or the CLI's --trigger spec
1542 * which takes one list of <pin>=<value/edge> details.
1543 *
1544 * TODO Consider the addition of SR_CONF_TRIGGER_PATTERN support, which
1545 * accepts a single free form string argument, and could describe a
1546 * multi-bit pattern without the tedious trace name/index selection.
1547 * Fortunately the number of channels is fixed for this device, we need
1548 * not come up with variable length support and counts beyond 64. _When_
1549 * --trigger as well as SR_CONF_TRIGGER_PATTERN are supported, then the
1550 * implementation needs to come up with priorities for these sources of
1551 * input specs, or enforce exclusive use of either form (at one time,
1552 * per acquisition / invocation).
1553 *
1554 * Text forms that may be worth supporting:
1555 * - Simple forms, mere numbers, optional base specs. These are easiest
1556 * to implement with existing common conversion helpers.
1557 * triggerpattern=<value>[/<mask>]
1558 * triggerpattern=255
1559 * triggerpattern=45054
1560 * triggerpattern=0xaffe
1561 * triggerpattern=0xa0f0/0xf0f0
1562 * triggerpattern=0b1010111111111110/0x7ffe
1563 * - Alternative bit pattern form, including wildcards in a single value.
1564 * This cannot use common conversion support, needs special handling.
1565 * triggerpattern=0b1010xxxx1111xxx0
1566 * This is most similar to SR_CONF_TRIGGER_PATTERN as hameg-hmo uses
1567 * it. Passes the app's spec via SCPI to the device. See section 2.3.5
1568 * "Pattern trigger" and :TRIG:A:PATT:SOUR in the Hameg document.
1569 * - Prefixed form to tell the above variants apart, and support both of
1570 * them at the same time. Additional optional separator for long digit
1571 * runs, and edge support in the form which lists individual bits (not
1572 * useful for dec/hex formats).
1573 * triggerpattern=value=45054
1574 * triggerpattern=value=0b1010111111111110
1575 * triggerpattern=value=0xa0f0,mask=0xf0f0
1576 * triggerpattern=bits=1010-xxxx-1111-xxxx
1577 * triggerpattern=bits=0010-r100
1578 *
1579 * TODO Check this set of processing rules for completeness/correctness.
1580 * - Do implement the prefixed format which covers most use cases, _and_
1581 * should be usable from CLI and GUI environments.
1582 * - Default to 'bits=' prefix if none was found (and only accept one
1583 * single key/value pair in that case with the default key).
1584 * - Accept dash and space separators in the 'bits=' value. Stick with
1585 * mere unseparated values for value and mask, use common conversion.
1586 * This results in transparent dec/bin/oct/hex support. Underscores?
1587 * - Accept 0/1 binary digits in 'bits=', as well as r/f/e edge specs.
1588 * - Only use --trigger (struct sr_trigger) when SR_CONF_TRIGGER_PATTERN
1589 * is absent? Or always accept --trigger in addition to the data pattern
1590 * spec? Then only accept edge specs from --trigger, since data pattern
1591 * was most importantly motivated by address/data bus inspection?
1592 * - TODO Consider edge=<pin><slope> as an optional additional spec in
1593 * the value= and mask= group? Does that help make exclusive support
1594 * for either --trigger or -c triggerpattern acceptable?
1595 * triggerpattern=value=0xa0f0,mask=0xb0f0,edge=15r
1596 * triggerpattern=bits=1r10-xxxx-1111-xxxx
1597 * triggerpattern=1r10-xxxx-1111-xxxx
1598 * - *Any* input spec regardless of format and origin must end up in the
1599 * 'struct sigma_trigger' internal presentation used by this driver.
1600 * It's desirable to have sigma_convert_trigger() do all the parsing,
1601 * and constraint checking in a central location.
1602 */
1603SR_PRIV int sigma_convert_trigger(const struct sr_dev_inst *sdi)
1604{
1605 struct dev_context *devc;
1606 struct sr_trigger *trigger;
1607 struct sr_trigger_stage *stage;
1608 struct sr_trigger_match *match;
1609 const GSList *l, *m;
1610 uint16_t channelbit;
1611 size_t edge_count;
1612
1613 devc = sdi->priv;
1614 memset(&devc->trigger, 0, sizeof(devc->trigger));
1615 devc->use_triggers = FALSE;
1616
1617 /* TODO Consider additional SR_CONF_TRIGGER_PATTERN support. */
1618 trigger = sr_session_trigger_get(sdi->session);
1619 if (!trigger)
1620 return SR_OK;
1621
1622 edge_count = 0;
1623 for (l = trigger->stages; l; l = l->next) {
1624 stage = l->data;
1625 for (m = stage->matches; m; m = m->next) {
1626 match = m->data;
1627 /* Ignore disabled channels with a trigger. */
1628 if (!match->channel->enabled)
1629 continue;
1630 channelbit = BIT(match->channel->index);
1631 if (devc->clock.samplerate >= SR_MHZ(100)) {
1632 /* Fast trigger support. */
1633 if (edge_count > 0) {
1634 sr_err("100/200MHz modes limited to single trigger pin.");
1635 return SR_ERR;
1636 }
1637 if (match->match == SR_TRIGGER_FALLING) {
1638 devc->trigger.fallingmask |= channelbit;
1639 } else if (match->match == SR_TRIGGER_RISING) {
1640 devc->trigger.risingmask |= channelbit;
1641 } else {
1642 sr_err("100/200MHz modes limited to edge trigger.");
1643 return SR_ERR;
1644 }
1645
1646 edge_count++;
1647 } else {
1648 /* Simple trigger support (event). */
1649 if (match->match == SR_TRIGGER_ONE) {
1650 devc->trigger.simplevalue |= channelbit;
1651 devc->trigger.simplemask |= channelbit;
1652 } else if (match->match == SR_TRIGGER_ZERO) {
1653 devc->trigger.simplevalue &= ~channelbit;
1654 devc->trigger.simplemask |= channelbit;
1655 } else if (match->match == SR_TRIGGER_FALLING) {
1656 devc->trigger.fallingmask |= channelbit;
1657 edge_count++;
1658 } else if (match->match == SR_TRIGGER_RISING) {
1659 devc->trigger.risingmask |= channelbit;
1660 edge_count++;
1661 }
1662
1663 /*
1664 * Actually, Sigma supports 2 rising/falling triggers,
1665 * but they are ORed and the current trigger syntax
1666 * does not permit ORed triggers.
1667 */
1668 if (edge_count > 1) {
1669 sr_err("Limited to 1 edge trigger.");
1670 return SR_ERR;
1671 }
1672 }
1673 }
1674 }
1675
1676 /* Keep track whether triggers are involved during acquisition. */
1677 devc->use_triggers = TRUE;
1678
1679 return SR_OK;
1680}
1681
1682static gboolean sample_matches_trigger(struct dev_context *devc, uint16_t sample)
1683{
1684 struct sigma_sample_interp *interp;
1685 uint16_t last_sample;
1686 struct sigma_trigger *t;
1687 gboolean simple_match, rising_match, falling_match;
1688 gboolean matched;
1689
1690 /*
1691 * This logic is about improving the precision of the hardware
1692 * provided trigger match position. Software checks are only
1693 * required for a short range of samples, and only when a user
1694 * specified trigger condition was involved during acquisition.
1695 */
1696 if (!devc)
1697 return FALSE;
1698 if (!devc->use_triggers)
1699 return FALSE;
1700 interp = &devc->interp;
1701 if (!interp->trig_chk.armed)
1702 return FALSE;
1703
1704 /*
1705 * Check if the current sample and its most recent transition
1706 * match the initially provided trigger condition. The data
1707 * must not fail either of the individual checks. Unused
1708 * trigger features remain neutral in the summary expression.
1709 */
1710 last_sample = interp->last.sample;
1711 t = &devc->trigger;
1712 simple_match = (sample & t->simplemask) == t->simplevalue;
1713 rising_match = ((last_sample & t->risingmask) == 0) &&
1714 ((sample & t->risingmask) == t->risingmask);
1715 falling_match = ((last_sample & t->fallingmask) == t->fallingmask) &&
1716 ((sample & t->fallingmask) == 0);
1717 matched = simple_match && rising_match && falling_match;
1718
1719 return matched;
1720}
1721
1722static int send_trigger_marker(struct dev_context *devc)
1723{
1724 int ret;
1725
1726 ret = flush_submit_buffer(devc);
1727 if (ret != SR_OK)
1728 return ret;
1729 ret = std_session_send_df_trigger(devc->buffer->sdi);
1730 if (ret != SR_OK)
1731 return ret;
1732
1733 return SR_OK;
1734}
1735
1736static int check_and_submit_sample(struct dev_context *devc,
1737 uint16_t sample, size_t count)
1738{
1739 gboolean triggered;
1740 int ret;
1741
1742 triggered = sample_matches_trigger(devc, sample);
1743 if (triggered) {
1744 send_trigger_marker(devc);
1745 devc->interp.trig_chk.matched = TRUE;
1746 }
1747
1748 ret = addto_submit_buffer(devc, sample, count);
1749 if (ret != SR_OK)
1750 return ret;
1751
1752 return SR_OK;
1753}
1754
1755static void sigma_location_check(struct dev_context *devc)
1756{
1757 struct sigma_sample_interp *interp;
1758
1759 if (!devc)
1760 return;
1761 interp = &devc->interp;
1762
1763 /*
1764 * Manage the period of trigger match checks in software.
1765 * Start supervision somewhere before the hardware provided
1766 * location. Stop supervision after an arbitrary amount of
1767 * event slots, or when a match was found.
1768 */
1769 if (interp->trig_chk.armed) {
1770 interp->trig_chk.evt_remain--;
1771 if (!interp->trig_chk.evt_remain || interp->trig_chk.matched)
1772 interp->trig_chk.armed = FALSE;
1773 }
1774 if (!interp->trig_chk.armed && !interp->trig_chk.matched) {
1775 if (sigma_location_is_eq(&interp->iter, &interp->trig_arm, TRUE)) {
1776 interp->trig_chk.armed = TRUE;
1777 interp->trig_chk.matched = FALSE;
1778 interp->trig_chk.evt_remain = 8 * EVENTS_PER_CLUSTER;
1779 }
1780 }
1781
1782 /*
1783 * Force a trigger marker when the software check found no match
1784 * yet while the hardware provided position was reached. This
1785 * very probably is a user initiated button press.
1786 */
1787 if (interp->trig_chk.armed) {
1788 if (sigma_location_is_eq(&interp->iter, &interp->trig, TRUE)) {
1789 (void)send_trigger_marker(devc);
1790 interp->trig_chk.matched = TRUE;
1791 }
1792 }
1793}
1794
1795/*
1796 * Return the timestamp of "DRAM cluster".
1797 */
1798static uint16_t sigma_dram_cluster_ts(struct sigma_dram_cluster *cluster)
1799{
1800 return read_u16le((const uint8_t *)&cluster->timestamp);
1801}
1802
1803/*
1804 * Return one 16bit data entity of a DRAM cluster at the specified index.
1805 */
1806static uint16_t sigma_dram_cluster_data(struct sigma_dram_cluster *cl, int idx)
1807{
1808 return read_u16le((const uint8_t *)&cl->samples[idx]);
1809}
1810
1811/*
1812 * Deinterlace sample data that was retrieved at 100MHz samplerate.
1813 * One 16bit item contains two samples of 8bits each. The bits of
1814 * multiple samples are interleaved.
1815 */
1816static uint16_t sigma_deinterlace_data_2x8(uint16_t indata, int idx)
1817{
1818 uint16_t outdata;
1819
1820 indata >>= idx;
1821 outdata = 0;
1822 outdata |= (indata >> (0 * 2 - 0)) & (1 << 0);
1823 outdata |= (indata >> (1 * 2 - 1)) & (1 << 1);
1824 outdata |= (indata >> (2 * 2 - 2)) & (1 << 2);
1825 outdata |= (indata >> (3 * 2 - 3)) & (1 << 3);
1826 outdata |= (indata >> (4 * 2 - 4)) & (1 << 4);
1827 outdata |= (indata >> (5 * 2 - 5)) & (1 << 5);
1828 outdata |= (indata >> (6 * 2 - 6)) & (1 << 6);
1829 outdata |= (indata >> (7 * 2 - 7)) & (1 << 7);
1830 return outdata;
1831}
1832
1833/*
1834 * Deinterlace sample data that was retrieved at 200MHz samplerate.
1835 * One 16bit item contains four samples of 4bits each. The bits of
1836 * multiple samples are interleaved.
1837 */
1838static uint16_t sigma_deinterlace_data_4x4(uint16_t indata, int idx)
1839{
1840 uint16_t outdata;
1841
1842 indata >>= idx;
1843 outdata = 0;
1844 outdata |= (indata >> (0 * 4 - 0)) & (1 << 0);
1845 outdata |= (indata >> (1 * 4 - 1)) & (1 << 1);
1846 outdata |= (indata >> (2 * 4 - 2)) & (1 << 2);
1847 outdata |= (indata >> (3 * 4 - 3)) & (1 << 3);
1848 return outdata;
1849}
1850
1851static void sigma_decode_dram_cluster(struct dev_context *devc,
1852 struct sigma_dram_cluster *dram_cluster,
1853 size_t events_in_cluster)
1854{
1855 uint16_t tsdiff, ts, sample, item16;
1856 size_t count;
1857 size_t evt;
1858
1859 /*
1860 * If this cluster is not adjacent to the previously received
1861 * cluster, then send the appropriate number of samples with the
1862 * previous values to the sigrok session. This "decodes RLE".
1863 *
1864 * These samples cannot match the trigger since they just repeat
1865 * the previously submitted data pattern. (This assumption holds
1866 * for simple level and edge triggers. It would not for timed or
1867 * counted conditions, which currently are not supported.)
1868 */
1869 ts = sigma_dram_cluster_ts(dram_cluster);
1870 tsdiff = ts - devc->interp.last.ts;
1871 if (tsdiff > 0) {
1872 sample = devc->interp.last.sample;
1873 count = tsdiff * devc->interp.samples_per_event;
1874 (void)check_and_submit_sample(devc, sample, count);
1875 }
1876 devc->interp.last.ts = ts + EVENTS_PER_CLUSTER;
1877
1878 /*
1879 * Grab sample data from the current cluster and prepare their
1880 * submission to the session feed. Handle samplerate dependent
1881 * memory layout of sample data. Accumulation of data chunks
1882 * before submission is transparent to this code path, specific
1883 * buffer depth is neither assumed nor required here.
1884 */
1885 sample = 0;
1886 for (evt = 0; evt < events_in_cluster; evt++) {
1887 item16 = sigma_dram_cluster_data(dram_cluster, evt);
1888 if (devc->interp.samples_per_event == 4) {
1889 sample = sigma_deinterlace_data_4x4(item16, 0);
1890 check_and_submit_sample(devc, sample, 1);
1891 devc->interp.last.sample = sample;
1892 sample = sigma_deinterlace_data_4x4(item16, 1);
1893 check_and_submit_sample(devc, sample, 1);
1894 devc->interp.last.sample = sample;
1895 sample = sigma_deinterlace_data_4x4(item16, 2);
1896 check_and_submit_sample(devc, sample, 1);
1897 devc->interp.last.sample = sample;
1898 sample = sigma_deinterlace_data_4x4(item16, 3);
1899 check_and_submit_sample(devc, sample, 1);
1900 devc->interp.last.sample = sample;
1901 } else if (devc->interp.samples_per_event == 2) {
1902 sample = sigma_deinterlace_data_2x8(item16, 0);
1903 check_and_submit_sample(devc, sample, 1);
1904 devc->interp.last.sample = sample;
1905 sample = sigma_deinterlace_data_2x8(item16, 1);
1906 check_and_submit_sample(devc, sample, 1);
1907 devc->interp.last.sample = sample;
1908 } else {
1909 sample = item16;
1910 check_and_submit_sample(devc, sample, 1);
1911 devc->interp.last.sample = sample;
1912 }
1913 sigma_location_increment(&devc->interp.iter);
1914 sigma_location_check(devc);
1915 }
1916}
1917
1918/*
1919 * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
1920 * Each event is 20ns apart, and can contain multiple samples.
1921 *
1922 * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
1923 * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
1924 * For 50 MHz and below, events contain one sample for each channel,
1925 * spread 20 ns apart.
1926 */
1927static int decode_chunk_ts(struct dev_context *devc,
1928 struct sigma_dram_line *dram_line,
1929 size_t events_in_line)
1930{
1931 struct sigma_dram_cluster *dram_cluster;
1932 size_t clusters_in_line;
1933 size_t events_in_cluster;
1934 size_t cluster;
1935
1936 clusters_in_line = events_in_line;
1937 clusters_in_line += EVENTS_PER_CLUSTER - 1;
1938 clusters_in_line /= EVENTS_PER_CLUSTER;
1939
1940 /* For each full DRAM cluster. */
1941 for (cluster = 0; cluster < clusters_in_line; cluster++) {
1942 dram_cluster = &dram_line->cluster[cluster];
1943
1944 /* The last cluster might not be full. */
1945 if ((cluster == clusters_in_line - 1) &&
1946 (events_in_line % EVENTS_PER_CLUSTER)) {
1947 events_in_cluster = events_in_line % EVENTS_PER_CLUSTER;
1948 } else {
1949 events_in_cluster = EVENTS_PER_CLUSTER;
1950 }
1951
1952 sigma_decode_dram_cluster(devc, dram_cluster,
1953 events_in_cluster);
1954 }
1955
1956 return SR_OK;
1957}
1958
1959static int download_capture(struct sr_dev_inst *sdi)
1960{
1961 struct dev_context *devc;
1962 struct sigma_sample_interp *interp;
1963 uint32_t stoppos, triggerpos;
1964 uint8_t modestatus;
1965 int ret;
1966 size_t chunks_per_receive_call;
1967
1968 devc = sdi->priv;
1969 interp = &devc->interp;
1970
1971 /*
1972 * Check the mode register. Force stop the current acquisition
1973 * if it has not yet terminated before. Will block until the
1974 * acquisition stops, assuming that this won't take long. Should
1975 * execute exactly once, then keep finding its condition met.
1976 *
1977 * Ask the hardware to stop data acquisition. Reception of the
1978 * FORCESTOP request makes the hardware "disable RLE" (store
1979 * clusters to DRAM regardless of whether pin state changes) and
1980 * raise the POSTTRIGGERED flag.
1981 */
1982 ret = sigma_get_register(devc, READ_MODE, &modestatus);
1983 if (ret != SR_OK) {
1984 sr_err("Could not determine current device state.");
1985 return FALSE;
1986 }
1987 if (!(modestatus & RMR_POSTTRIGGERED)) {
1988 sr_info("Downloading sample data.");
1989 devc->state = SIGMA_DOWNLOAD;
1990
1991 modestatus = WMR_FORCESTOP | WMR_SDRAMWRITEEN;
1992 ret = sigma_set_register(devc, WRITE_MODE, modestatus);
1993 if (ret != SR_OK)
1994 return FALSE;
1995 do {
1996 ret = sigma_get_register(devc, READ_MODE, &modestatus);
1997 if (ret != SR_OK) {
1998 sr_err("Could not poll for post-trigger state.");
1999 return FALSE;
2000 }
2001 } while (!(modestatus & RMR_POSTTRIGGERED));
2002 }
2003
2004 /*
2005 * Switch the hardware from DRAM write (data acquisition) to
2006 * DRAM read (sample memory download). Prepare resources for
2007 * sample memory content retrieval. Should execute exactly once,
2008 * then keep finding its condition met.
2009 *
2010 * Get the current positions (acquisition write pointer, and
2011 * trigger match location). With disabled triggers, use a value
2012 * for the location that will never match during interpretation.
2013 * Determine which area of the sample memory to retrieve,
2014 * allocate a receive buffer, and setup counters/pointers.
2015 */
2016 if (!interp->fetch.lines_per_read) {
2017 ret = sigma_set_register(devc, WRITE_MODE, WMR_SDRAMREADEN);
2018 if (ret != SR_OK)
2019 return FALSE;
2020
2021 ret = sigma_read_pos(devc, &stoppos, &triggerpos, &modestatus);
2022 if (ret != SR_OK) {
2023 sr_err("Could not query capture positions/state.");
2024 return FALSE;
2025 }
2026 if (!devc->use_triggers)
2027 triggerpos = ~0;
2028 if (!(modestatus & RMR_TRIGGERED))
2029 triggerpos = ~0;
2030
2031 ret = alloc_sample_buffer(devc, stoppos, triggerpos, modestatus);
2032 if (ret != SR_OK)
2033 return FALSE;
2034
2035 ret = alloc_submit_buffer(sdi);
2036 if (ret != SR_OK)
2037 return FALSE;
2038 ret = setup_submit_limit(devc);
2039 if (ret != SR_OK)
2040 return FALSE;
2041 }
2042
2043 /*
2044 * Get another set of sample memory rows, and interpret its
2045 * content. Will execute as many times as it takes to complete
2046 * the memory region that the recent acquisition spans.
2047 *
2048 * The size of a receive call's workload and the main loop's
2049 * receive call poll period determine the UI responsiveness and
2050 * the overall transfer time for the sample memory content.
2051 */
2052 chunks_per_receive_call = 50;
2053 while (interp->fetch.lines_done < interp->fetch.lines_total) {
2054 size_t dl_events_in_line;
2055
2056 /* Read another chunk of sample memory (several lines). */
2057 ret = fetch_sample_buffer(devc);
2058 if (ret != SR_OK)
2059 return FALSE;
2060
2061 /* Process lines of sample data. Last line may be short. */
2062 while (interp->fetch.lines_rcvd--) {
2063 dl_events_in_line = EVENTS_PER_ROW;
2064 if (interp->iter.line == interp->stop.line) {
2065 dl_events_in_line = interp->stop.raw & ROW_MASK;
2066 }
2067 decode_chunk_ts(devc, interp->fetch.curr_line,
2068 dl_events_in_line);
2069 interp->fetch.curr_line++;
2070 interp->fetch.lines_done++;
2071 }
2072
2073 /* Keep returning to application code for large data sets. */
2074 if (!--chunks_per_receive_call) {
2075 ret = flush_submit_buffer(devc);
2076 if (ret != SR_OK)
2077 return FALSE;
2078 break;
2079 }
2080 }
2081
2082 /*
2083 * Release previously allocated resources, and adjust state when
2084 * all of the sample memory was retrieved, and interpretation has
2085 * completed. Should execute exactly once.
2086 */
2087 if (interp->fetch.lines_done >= interp->fetch.lines_total) {
2088 ret = flush_submit_buffer(devc);
2089 if (ret != SR_OK)
2090 return FALSE;
2091 free_submit_buffer(devc);
2092 free_sample_buffer(devc);
2093
2094 ret = std_session_send_df_end(sdi);
2095 if (ret != SR_OK)
2096 return FALSE;
2097
2098 devc->state = SIGMA_IDLE;
2099 sr_dev_acquisition_stop(sdi);
2100 }
2101
2102 return TRUE;
2103}
2104
2105/*
2106 * Periodically check the Sigma status when in CAPTURE mode. This routine
2107 * checks whether the configured sample count or sample time have passed,
2108 * and will stop acquisition and download the acquired samples.
2109 */
2110static int sigma_capture_mode(struct sr_dev_inst *sdi)
2111{
2112 struct dev_context *devc;
2113 int ret;
2114 uint32_t stoppos, triggerpos;
2115 uint8_t mode;
2116 gboolean full, wrapped, triggered, complete;
2117
2118 devc = sdi->priv;
2119
2120 /*
2121 * Get and interpret current acquisition status. Some of these
2122 * thresholds are rather arbitrary.
2123 */
2124 ret = sigma_read_pos(devc, &stoppos, &triggerpos, &mode);
2125 if (ret != SR_OK)
2126 return FALSE;
2127 stoppos >>= ROW_SHIFT;
2128 full = stoppos >= ROW_COUNT - 2;
2129 wrapped = mode & RMR_ROUND;
2130 triggered = mode & RMR_TRIGGERED;
2131 complete = mode & RMR_POSTTRIGGERED;
2132
2133 /*
2134 * Acquisition completed in the hardware? Start or continue
2135 * sample memory content download.
2136 * (Can user initiated button presses result in auto stop?
2137 * Will they "trigger", and later result in expired time limit
2138 * of post trigger conditions?)
2139 */
2140 if (complete)
2141 return download_capture(sdi);
2142
2143 /*
2144 * Previously configured acquisition period exceeded? Start
2145 * sample download. Start the timeout period late when triggers
2146 * are used (unknown period from acquisition start to trigger
2147 * match).
2148 */
2149 if (sr_sw_limits_check(&devc->limit.acquire))
2150 return download_capture(sdi);
2151 if (devc->late_trigger_timeout && triggered) {
2152 sr_sw_limits_acquisition_start(&devc->limit.acquire);
2153 devc->late_trigger_timeout = FALSE;
2154 }
2155
2156 /*
2157 * No trigger specified, and sample memory exhausted? Start
2158 * download (may otherwise keep acquiring, even for infinite
2159 * amounts of time without a user specified time/count limit).
2160 * This handles situations when users specify limits which
2161 * exceed the device's capabilities.
2162 */
2163 (void)full;
2164 if (!devc->use_triggers && wrapped)
2165 return download_capture(sdi);
2166
2167 return TRUE;
2168}
2169
2170SR_PRIV int sigma_receive_data(int fd, int revents, void *cb_data)
2171{
2172 struct sr_dev_inst *sdi;
2173 struct dev_context *devc;
2174
2175 (void)fd;
2176 (void)revents;
2177
2178 sdi = cb_data;
2179 devc = sdi->priv;
2180
2181 if (devc->state == SIGMA_IDLE)
2182 return TRUE;
2183
2184 /*
2185 * When the application has requested to stop the acquisition,
2186 * then immediately start downloading sample data. Continue a
2187 * previously initiated download until completion. Otherwise
2188 * keep checking configured limits which will terminate the
2189 * acquisition and initiate download.
2190 */
2191 if (devc->state == SIGMA_STOPPING)
2192 return download_capture(sdi);
2193 if (devc->state == SIGMA_DOWNLOAD)
2194 return download_capture(sdi);
2195 if (devc->state == SIGMA_CAPTURE)
2196 return sigma_capture_mode(sdi);
2197
2198 return TRUE;
2199}
2200
2201/* Build a LUT entry used by the trigger functions. */
2202static void build_lut_entry(uint16_t *lut_entry,
2203 uint16_t spec_value, uint16_t spec_mask)
2204{
2205 size_t quad, bitidx, ch;
2206 uint16_t quadmask, bitmask;
2207 gboolean spec_value_low, bit_idx_low;
2208
2209 /*
2210 * For each quad-channel-group, for each bit in the LUT (each
2211 * bit pattern of the channel signals, aka LUT address), for
2212 * each channel in the quad, setup the bit in the LUT entry.
2213 *
2214 * Start from all-ones in the LUT (true, always matches), then
2215 * "pessimize the truthness" for specified conditions.
2216 */
2217 for (quad = 0; quad < 4; quad++) {
2218 lut_entry[quad] = ~0;
2219 for (bitidx = 0; bitidx < 16; bitidx++) {
2220 for (ch = 0; ch < 4; ch++) {
2221 quadmask = BIT(ch);
2222 bitmask = quadmask << (quad * 4);
2223 if (!(spec_mask & bitmask))
2224 continue;
2225 /*
2226 * This bit is part of the spec. The
2227 * condition which gets checked here
2228 * (got checked in all implementations
2229 * so far) is uncertain. A bit position
2230 * in the current index' number(!) is
2231 * checked?
2232 */
2233 spec_value_low = !(spec_value & bitmask);
2234 bit_idx_low = !(bitidx & quadmask);
2235 if (spec_value_low == bit_idx_low)
2236 continue;
2237 lut_entry[quad] &= ~BIT(bitidx);
2238 }
2239 }
2240 }
2241}
2242
2243/* Add a logical function to LUT mask. */
2244static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
2245 size_t index, gboolean neg, uint16_t *mask)
2246{
2247 int x[2][2], a, b, aset, bset, rset;
2248 size_t bitidx;
2249
2250 /*
2251 * Beware! The x, a, b, aset, bset, rset variables strictly
2252 * require the limited 0..1 range. They are not interpreted
2253 * as logically true, instead bit arith is done on them.
2254 */
2255
2256 /* Construct a pattern which detects the condition. */
2257 memset(x, 0, sizeof(x));
2258 switch (oper) {
2259 case OP_LEVEL:
2260 x[0][1] = 1;
2261 x[1][1] = 1;
2262 break;
2263 case OP_NOT:
2264 x[0][0] = 1;
2265 x[1][0] = 1;
2266 break;
2267 case OP_RISE:
2268 x[0][1] = 1;
2269 break;
2270 case OP_FALL:
2271 x[1][0] = 1;
2272 break;
2273 case OP_RISEFALL:
2274 x[0][1] = 1;
2275 x[1][0] = 1;
2276 break;
2277 case OP_NOTRISE:
2278 x[1][1] = 1;
2279 x[0][0] = 1;
2280 x[1][0] = 1;
2281 break;
2282 case OP_NOTFALL:
2283 x[1][1] = 1;
2284 x[0][0] = 1;
2285 x[0][1] = 1;
2286 break;
2287 case OP_NOTRISEFALL:
2288 x[1][1] = 1;
2289 x[0][0] = 1;
2290 break;
2291 }
2292
2293 /* Transpose the pattern if the condition is negated. */
2294 if (neg) {
2295 size_t i, j;
2296 int tmp;
2297
2298 for (i = 0; i < 2; i++) {
2299 for (j = 0; j < 2; j++) {
2300 tmp = x[i][j];
2301 x[i][j] = x[1 - i][1 - j];
2302 x[1 - i][1 - j] = tmp;
2303 }
2304 }
2305 }
2306
2307 /* Update the LUT mask with the function's condition. */
2308 for (bitidx = 0; bitidx < 16; bitidx++) {
2309 a = (bitidx & BIT(2 * index + 0)) ? 1 : 0;
2310 b = (bitidx & BIT(2 * index + 1)) ? 1 : 0;
2311
2312 aset = (*mask & BIT(bitidx)) ? 1 : 0;
2313 bset = x[b][a];
2314
2315 if (func == FUNC_AND || func == FUNC_NAND)
2316 rset = aset & bset;
2317 else if (func == FUNC_OR || func == FUNC_NOR)
2318 rset = aset | bset;
2319 else if (func == FUNC_XOR || func == FUNC_NXOR)
2320 rset = aset ^ bset;
2321 else
2322 rset = 0;
2323
2324 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
2325 rset = 1 - rset;
2326
2327 if (rset)
2328 *mask |= BIT(bitidx);
2329 else
2330 *mask &= ~BIT(bitidx);
2331 }
2332}
2333
2334/*
2335 * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
2336 * simple pin change and state triggers. Only two transitions (rise/fall) can be
2337 * set at any time, but a full mask and value can be set (0/1).
2338 */
2339SR_PRIV int sigma_build_basic_trigger(struct dev_context *devc,
2340 struct triggerlut *lut)
2341{
2342 uint16_t masks[2];
2343 size_t bitidx, condidx;
2344 uint16_t value, mask;
2345
2346 /* Setup something that "won't match" in the absence of a spec. */
2347 memset(lut, 0, sizeof(*lut));
2348 if (!devc->use_triggers)
2349 return SR_OK;
2350
2351 /* Start assuming simple triggers. Edges are handled below. */
2352 lut->m4 = 0xa000;
2353 lut->m3q = 0xffff;
2354
2355 /* Process value/mask triggers. */
2356 value = devc->trigger.simplevalue;
2357 mask = devc->trigger.simplemask;
2358 build_lut_entry(lut->m2d, value, mask);
2359
2360 /* Scan for and process rise/fall triggers. */
2361 memset(&masks, 0, sizeof(masks));
2362 condidx = 0;
2363 for (bitidx = 0; bitidx < 16; bitidx++) {
2364 mask = BIT(bitidx);
2365 value = devc->trigger.risingmask | devc->trigger.fallingmask;
2366 if (!(value & mask))
2367 continue;
2368 if (condidx == 0)
2369 build_lut_entry(lut->m0d, mask, mask);
2370 if (condidx == 1)
2371 build_lut_entry(lut->m1d, mask, mask);
2372 masks[condidx++] = mask;
2373 if (condidx == ARRAY_SIZE(masks))
2374 break;
2375 }
2376
2377 /* Add glue logic for rise/fall triggers. */
2378 if (masks[0] || masks[1]) {
2379 lut->m3q = 0;
2380 if (masks[0] & devc->trigger.risingmask)
2381 add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3q);
2382 if (masks[0] & devc->trigger.fallingmask)
2383 add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3q);
2384 if (masks[1] & devc->trigger.risingmask)
2385 add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3q);
2386 if (masks[1] & devc->trigger.fallingmask)
2387 add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3q);
2388 }
2389
2390 /* Triggertype: event. */
2391 lut->params.selres = TRGSEL_SELCODE_NEVER;
2392 lut->params.selinc = TRGSEL_SELCODE_LEVEL;
2393 lut->params.sela = 0; /* Counter >= CMPA && LEVEL */
2394 lut->params.cmpa = 0; /* Count 0 -> 1 already triggers. */
2395
2396 return SR_OK;
2397}