]> sigrok.org Git - libsigrok.git/blame_incremental - src/hardware/agilent-dmm/protocol.c
output/csv: use intermediate time_t var, silence compiler warning
[libsigrok.git] / src / hardware / agilent-dmm / protocol.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2012 Bert Vermeulen <bert@biot.com>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <config.h>
21#include <glib.h>
22#include <stdlib.h>
23#include <stdarg.h>
24#include <string.h>
25#include <limits.h>
26#include <math.h>
27#include <libsigrok/libsigrok.h>
28#include "libsigrok-internal.h"
29#include "protocol.h"
30
31#define JOB_TIMEOUT 300
32
33#define INFINITE_INTERVAL INT_MAX
34#define SAMPLERATE_INTERVAL -1
35
36static const struct agdmm_job *job_current(const struct dev_context *devc)
37{
38 return &devc->jobs[devc->current_job];
39}
40
41static void job_done(struct dev_context *devc)
42{
43 devc->job_running = FALSE;
44}
45
46static void job_again(struct dev_context *devc)
47{
48 devc->job_again = TRUE;
49}
50
51static gboolean job_is_running(const struct dev_context *devc)
52{
53 return devc->job_running;
54}
55
56static gboolean job_in_interval(const struct dev_context *devc)
57{
58 int64_t job_start = devc->jobs_start[devc->current_job];
59 int64_t now = g_get_monotonic_time() / 1000;
60 int interval = job_current(devc)->interval;
61 if (interval == SAMPLERATE_INTERVAL)
62 interval = 1000 / devc->cur_samplerate;
63 return (now - job_start) < interval || interval == INFINITE_INTERVAL;
64}
65
66static gboolean job_has_timeout(const struct dev_context *devc)
67{
68 int64_t job_start = devc->jobs_start[devc->current_job];
69 int64_t now = g_get_monotonic_time() / 1000;
70 return job_is_running(devc) && (now - job_start) > JOB_TIMEOUT;
71}
72
73static const struct agdmm_job *job_next(struct dev_context *devc)
74{
75 int current_job = devc->current_job;
76 do {
77 devc->current_job++;
78 if (!job_current(devc)->send)
79 devc->current_job = 0;
80 } while (job_in_interval(devc) && devc->current_job != current_job);
81 return job_current(devc);
82}
83
84static void job_run_again(const struct sr_dev_inst *sdi)
85{
86 struct dev_context *devc = sdi->priv;
87 devc->job_again = FALSE;
88 devc->job_running = TRUE;
89 if (job_current(devc)->send(sdi) == SR_ERR_NA)
90 job_done(devc);
91}
92
93static void job_run(const struct sr_dev_inst *sdi)
94{
95 struct dev_context *devc = sdi->priv;
96 int64_t now = g_get_monotonic_time() / 1000;
97 devc->jobs_start[devc->current_job] = now;
98 job_run_again(sdi);
99}
100
101static void dispatch(const struct sr_dev_inst *sdi)
102{
103 struct dev_context *devc = sdi->priv;
104
105 if (devc->job_again) {
106 job_run_again(sdi);
107 return;
108 }
109
110 if (!job_is_running(devc))
111 job_next(devc);
112 else if (job_has_timeout(devc))
113 job_done(devc);
114
115 if (!job_is_running(devc) && !job_in_interval(devc))
116 job_run(sdi);
117}
118
119static gboolean receive_line(const struct sr_dev_inst *sdi)
120{
121 struct dev_context *devc;
122 const struct agdmm_recv *recvs, *recv;
123 GRegex *reg;
124 GMatchInfo *match;
125 gboolean stop = FALSE;
126 int i;
127
128 devc = sdi->priv;
129
130 /* Strip CRLF */
131 while (devc->buflen) {
132 if (*(devc->buf + devc->buflen - 1) == '\r'
133 || *(devc->buf + devc->buflen - 1) == '\n')
134 *(devc->buf + --devc->buflen) = '\0';
135 else
136 break;
137 }
138 sr_spew("Received '%s'.", devc->buf);
139
140 recv = NULL;
141 recvs = devc->profile->recvs;
142 for (i = 0; (&recvs[i])->recv_regex; i++) {
143 reg = g_regex_new((&recvs[i])->recv_regex, 0, 0, NULL);
144 if (g_regex_match(reg, (char *)devc->buf, 0, &match)) {
145 recv = &recvs[i];
146 break;
147 }
148 g_match_info_unref(match);
149 g_regex_unref(reg);
150 }
151 if (recv) {
152 enum job_type type = recv->recv(sdi, match);
153 if (type == job_current(devc)->type)
154 job_done(devc);
155 else if (type == JOB_AGAIN)
156 job_again(devc);
157 else if (type == JOB_STOP)
158 stop = TRUE;
159 g_match_info_unref(match);
160 g_regex_unref(reg);
161 } else
162 sr_dbg("Unknown line '%s'.", devc->buf);
163
164 /* Done with this. */
165 devc->buflen = 0;
166 return stop;
167}
168
169SR_PRIV int agdmm_receive_data(int fd, int revents, void *cb_data)
170{
171 struct sr_dev_inst *sdi;
172 struct dev_context *devc;
173 struct sr_serial_dev_inst *serial;
174 gboolean stop = FALSE;
175 int len;
176
177 (void)fd;
178
179 if (!(sdi = cb_data))
180 return TRUE;
181
182 if (!(devc = sdi->priv))
183 return TRUE;
184
185 serial = sdi->conn;
186 if (revents == G_IO_IN) {
187 /* Serial data arrived. */
188 while (AGDMM_BUFSIZE - devc->buflen - 1 > 0) {
189 len = serial_read_nonblocking(serial, devc->buf + devc->buflen, 1);
190 if (len < 1)
191 break;
192 devc->buflen += len;
193 *(devc->buf + devc->buflen) = '\0';
194 if (*(devc->buf + devc->buflen - 1) == '\n') {
195 /* End of line */
196 stop = receive_line(sdi);
197 break;
198 }
199 }
200 }
201
202 if (sr_sw_limits_check(&devc->limits) || stop)
203 sr_dev_acquisition_stop(sdi);
204 else
205 dispatch(sdi);
206
207 return TRUE;
208}
209
210static int agdmm_send(const struct sr_dev_inst *sdi, const char *cmd, ...)
211{
212 struct sr_serial_dev_inst *serial;
213 va_list args;
214 char buf[32];
215
216 serial = sdi->conn;
217
218 va_start(args, cmd);
219 vsnprintf(buf, sizeof(buf) - 3, cmd, args);
220 va_end(args);
221 sr_spew("Sending '%s'.", buf);
222 if (!strncmp(buf, "*IDN?", 5))
223 strcat(buf, "\r\n");
224 else
225 strcat(buf, "\n\r\n");
226 if (serial_write_blocking(serial, buf, strlen(buf), SERIAL_WRITE_TIMEOUT_MS) < (int)strlen(buf)) {
227 sr_err("Failed to send.");
228 return SR_ERR;
229 }
230
231 return SR_OK;
232}
233
234static int send_stat(const struct sr_dev_inst *sdi)
235{
236 return agdmm_send(sdi, "STAT?");
237}
238
239static int recv_stat_u123x(const struct sr_dev_inst *sdi, GMatchInfo *match)
240{
241 struct dev_context *devc;
242 char *s;
243
244 devc = sdi->priv;
245 s = g_match_info_fetch(match, 1);
246 sr_spew("STAT response '%s'.", s);
247
248 /* Max, Min or Avg mode -- no way to tell which, so we'll
249 * set both flags to denote it's not a normal measurement. */
250 if (s[0] == '1')
251 devc->cur_mqflags[0] |= SR_MQFLAG_MAX | SR_MQFLAG_MIN;
252 else
253 devc->cur_mqflags[0] &= ~(SR_MQFLAG_MAX | SR_MQFLAG_MIN);
254
255 if (s[1] == '1')
256 devc->cur_mqflags[0] |= SR_MQFLAG_RELATIVE;
257 else
258 devc->cur_mqflags[0] &= ~SR_MQFLAG_RELATIVE;
259
260 /* Triggered or auto hold modes. */
261 if (s[2] == '1' || s[3] == '1')
262 devc->cur_mqflags[0] |= SR_MQFLAG_HOLD;
263 else
264 devc->cur_mqflags[0] &= ~SR_MQFLAG_HOLD;
265
266 /* Temp/aux mode. */
267 if (s[7] == '1')
268 devc->mode_tempaux = TRUE;
269 else
270 devc->mode_tempaux = FALSE;
271
272 /* Continuity mode. */
273 if (s[16] == '1')
274 devc->mode_continuity = TRUE;
275 else
276 devc->mode_continuity = FALSE;
277
278 g_free(s);
279
280 return JOB_STAT;
281}
282
283static int recv_stat_u124x(const struct sr_dev_inst *sdi, GMatchInfo *match)
284{
285 struct dev_context *devc;
286 char *s;
287
288 devc = sdi->priv;
289 s = g_match_info_fetch(match, 1);
290 sr_spew("STAT response '%s'.", s);
291
292 /* Max, Min or Avg mode -- no way to tell which, so we'll
293 * set both flags to denote it's not a normal measurement. */
294 if (s[0] == '1')
295 devc->cur_mqflags[0] |= SR_MQFLAG_MAX | SR_MQFLAG_MIN;
296 else
297 devc->cur_mqflags[0] &= ~(SR_MQFLAG_MAX | SR_MQFLAG_MIN);
298
299 if (s[1] == '1')
300 devc->cur_mqflags[0] |= SR_MQFLAG_RELATIVE;
301 else
302 devc->cur_mqflags[0] &= ~SR_MQFLAG_RELATIVE;
303
304 /* Hold mode. */
305 if (s[7] == '1')
306 devc->cur_mqflags[0] |= SR_MQFLAG_HOLD;
307 else
308 devc->cur_mqflags[0] &= ~SR_MQFLAG_HOLD;
309
310 g_free(s);
311
312 return JOB_STAT;
313}
314
315static int recv_stat_u124xc(const struct sr_dev_inst *sdi, GMatchInfo *match)
316{
317 struct dev_context *devc;
318 char *s;
319
320 devc = sdi->priv;
321 s = g_match_info_fetch(match, 1);
322 sr_spew("STAT response '%s'.", s);
323
324 /* Max, Min or Avg mode -- no way to tell which, so we'll
325 * set both flags to denote it's not a normal measurement. */
326 if (s[0] == '1')
327 devc->cur_mqflags[0] |= SR_MQFLAG_MAX | SR_MQFLAG_MIN | SR_MQFLAG_AVG;
328 else
329 devc->cur_mqflags[0] &= ~(SR_MQFLAG_MAX | SR_MQFLAG_MIN | SR_MQFLAG_AVG);
330
331 /* Null function. */
332 if (s[1] == '1')
333 devc->cur_mqflags[0] |= SR_MQFLAG_RELATIVE;
334 else
335 devc->cur_mqflags[0] &= ~SR_MQFLAG_RELATIVE;
336
337 /* Triggered or auto hold modes. */
338 if (s[7] == '1' || s[11] == '1')
339 devc->cur_mqflags[0] |= SR_MQFLAG_HOLD;
340 else
341 devc->cur_mqflags[0] &= ~SR_MQFLAG_HOLD;
342
343 g_free(s);
344
345 return JOB_STAT;
346}
347
348static int recv_stat_u125x(const struct sr_dev_inst *sdi, GMatchInfo *match)
349{
350 struct dev_context *devc;
351 char *s;
352
353 devc = sdi->priv;
354 s = g_match_info_fetch(match, 1);
355 sr_spew("STAT response '%s'.", s);
356
357 /* dBm/dBV modes. */
358 if ((s[2] & ~0x20) == 'M')
359 devc->mode_dbm_dbv = devc->cur_unit[0] = SR_UNIT_DECIBEL_MW;
360 else if ((s[2] & ~0x20) == 'V')
361 devc->mode_dbm_dbv = devc->cur_unit[0] = SR_UNIT_DECIBEL_VOLT;
362 else
363 devc->mode_dbm_dbv = 0;
364
365 /* Peak hold mode. */
366 if (s[4] == '1')
367 devc->cur_mqflags[0] |= SR_MQFLAG_MAX;
368 else
369 devc->cur_mqflags[0] &= ~SR_MQFLAG_MAX;
370
371 /* Triggered hold mode. */
372 if (s[7] == '1')
373 devc->cur_mqflags[0] |= SR_MQFLAG_HOLD;
374 else
375 devc->cur_mqflags[0] &= ~SR_MQFLAG_HOLD;
376
377 g_free(s);
378
379 return JOB_STAT;
380}
381
382static int recv_stat_u128x(const struct sr_dev_inst *sdi, GMatchInfo *match)
383{
384 struct dev_context *devc;
385 char *s;
386
387 devc = sdi->priv;
388 s = g_match_info_fetch(match, 1);
389 sr_spew("STAT response '%s'.", s);
390
391 /* Max, Min or Avg mode -- no way to tell which, so we'll
392 * set both flags to denote it's not a normal measurement. */
393 if (s[0] == '1')
394 devc->cur_mqflags[0] |= SR_MQFLAG_MAX | SR_MQFLAG_MIN | SR_MQFLAG_AVG;
395 else
396 devc->cur_mqflags[0] &= ~(SR_MQFLAG_MAX | SR_MQFLAG_MIN | SR_MQFLAG_AVG);
397
398 /* dBm/dBV modes. */
399 if ((s[2] & ~0x20) == 'M')
400 devc->mode_dbm_dbv = devc->cur_unit[0] = SR_UNIT_DECIBEL_MW;
401 else if ((s[2] & ~0x20) == 'V')
402 devc->mode_dbm_dbv = devc->cur_unit[0] = SR_UNIT_DECIBEL_VOLT;
403 else
404 devc->mode_dbm_dbv = 0;
405
406 /* Peak hold mode. */
407 if (s[4] == '4')
408 devc->cur_mqflags[0] |= SR_MQFLAG_MAX;
409 else
410 devc->cur_mqflags[0] &= ~SR_MQFLAG_MAX;
411
412 /* Null function. */
413 if (s[1] == '1')
414 devc->cur_mqflags[0] |= SR_MQFLAG_RELATIVE;
415 else
416 devc->cur_mqflags[0] &= ~SR_MQFLAG_RELATIVE;
417
418 /* Triggered or auto hold modes. */
419 if (s[7] == '1' || s[11] == '1')
420 devc->cur_mqflags[0] |= SR_MQFLAG_HOLD;
421 else
422 devc->cur_mqflags[0] &= ~SR_MQFLAG_HOLD;
423
424 g_free(s);
425
426 return JOB_STAT;
427}
428
429static int send_fetc(const struct sr_dev_inst *sdi)
430{
431 struct dev_context *devc = sdi->priv;
432
433 if (devc->mode_squarewave)
434 return SR_ERR_NA;
435
436 if (devc->cur_channel->index > 0)
437 return agdmm_send(sdi, "FETC? @%d", devc->cur_channel->index + 1);
438 else
439 return agdmm_send(sdi, "FETC?");
440}
441
442static int recv_fetc(const struct sr_dev_inst *sdi, GMatchInfo *match)
443{
444 struct dev_context *devc;
445 struct sr_datafeed_packet packet;
446 struct sr_datafeed_analog analog;
447 struct sr_analog_encoding encoding;
448 struct sr_analog_meaning meaning;
449 struct sr_analog_spec spec;
450 struct sr_channel *prev_chan;
451 float fvalue;
452 const char *s;
453 char *mstr;
454 int i, exp;
455
456 sr_spew("FETC reply '%s'.", g_match_info_get_string(match));
457 devc = sdi->priv;
458 i = devc->cur_channel->index;
459
460 if (devc->cur_mq[i] == -1)
461 /* This detects when channel P2 is reporting TEMP as an identical
462 * copy of channel P3. In this case, we just skip P2. */
463 goto skip_value;
464
465 s = g_match_info_get_string(match);
466 if (!strcmp(s, "-9.90000000E+37") || !strcmp(s, "+9.90000000E+37")) {
467 /* An invalid measurement shows up on the display as "O.L", but
468 * comes through like this. Since comparing 38-digit floats
469 * is rather problematic, we'll cut through this here. */
470 fvalue = NAN;
471 } else {
472 mstr = g_match_info_fetch(match, 1);
473 if (sr_atof_ascii(mstr, &fvalue) != SR_OK) {
474 g_free(mstr);
475 sr_dbg("Invalid float.");
476 return SR_ERR;
477 }
478 g_free(mstr);
479 if (devc->cur_exponent[i] != 0)
480 fvalue *= powf(10, devc->cur_exponent[i]);
481 }
482
483 if (devc->cur_unit[i] == SR_UNIT_DECIBEL_MW ||
484 devc->cur_unit[i] == SR_UNIT_DECIBEL_VOLT ||
485 devc->cur_unit[i] == SR_UNIT_PERCENTAGE) {
486 mstr = g_match_info_fetch(match, 2);
487 if (mstr && sr_atoi(mstr, &exp) == SR_OK) {
488 devc->cur_digits[i] = MIN(4 - exp, devc->cur_digits[i]);
489 devc->cur_encoding[i] = MIN(5 - exp, devc->cur_encoding[i]);
490 }
491 g_free(mstr);
492 }
493
494 sr_analog_init(&analog, &encoding, &meaning, &spec,
495 devc->cur_digits[i] - devc->cur_exponent[i]);
496 analog.meaning->mq = devc->cur_mq[i];
497 analog.meaning->unit = devc->cur_unit[i];
498 analog.meaning->mqflags = devc->cur_mqflags[i];
499 analog.meaning->channels = g_slist_append(NULL, devc->cur_channel);
500 analog.num_samples = 1;
501 analog.data = &fvalue;
502 encoding.digits = devc->cur_encoding[i] - devc->cur_exponent[i];
503 packet.type = SR_DF_ANALOG;
504 packet.payload = &analog;
505 sr_session_send(sdi, &packet);
506 g_slist_free(analog.meaning->channels);
507
508 sr_sw_limits_update_samples_read(&devc->limits, 1);
509
510skip_value:
511 prev_chan = devc->cur_channel;
512 devc->cur_channel = sr_next_enabled_channel(sdi, devc->cur_channel);
513 if (devc->cur_channel->index > prev_chan->index)
514 return JOB_AGAIN;
515 else
516 return JOB_FETC;
517}
518
519static int send_conf(const struct sr_dev_inst *sdi)
520{
521 struct dev_context *devc = sdi->priv;
522
523 /* Do not try to send CONF? for internal temperature channel. */
524 if (devc->cur_conf->index >= MIN(devc->profile->nb_channels, 2))
525 return SR_ERR_NA;
526
527 if (devc->cur_conf->index > 0)
528 return agdmm_send(sdi, "CONF? @%d", devc->cur_conf->index + 1);
529 else
530 return agdmm_send(sdi, "CONF?");
531}
532
533static int recv_conf_u123x(const struct sr_dev_inst *sdi, GMatchInfo *match)
534{
535 struct dev_context *devc;
536 char *mstr, *rstr;
537 int i, resolution;
538
539 sr_spew("CONF? response '%s'.", g_match_info_get_string(match));
540 devc = sdi->priv;
541 i = devc->cur_conf->index;
542
543 rstr = g_match_info_fetch(match, 2);
544 if (rstr)
545 sr_atoi(rstr, &resolution);
546 g_free(rstr);
547
548 mstr = g_match_info_fetch(match, 1);
549 if (!strcmp(mstr, "V")) {
550 devc->cur_mq[i] = SR_MQ_VOLTAGE;
551 devc->cur_unit[i] = SR_UNIT_VOLT;
552 devc->cur_mqflags[i] = 0;
553 devc->cur_exponent[i] = 0;
554 devc->cur_digits[i] = 4 - resolution;
555 } else if (!strcmp(mstr, "MV")) {
556 if (devc->mode_tempaux) {
557 devc->cur_mq[i] = SR_MQ_TEMPERATURE;
558 /* No way to detect whether Fahrenheit or Celsius
559 * is used, so we'll just default to Celsius. */
560 devc->cur_unit[i] = SR_UNIT_CELSIUS;
561 devc->cur_mqflags[i] = 0;
562 devc->cur_exponent[i] = 0;
563 devc->cur_digits[i] = 1;
564 } else {
565 devc->cur_mq[i] = SR_MQ_VOLTAGE;
566 devc->cur_unit[i] = SR_UNIT_VOLT;
567 devc->cur_mqflags[i] = 0;
568 devc->cur_exponent[i] = -3;
569 devc->cur_digits[i] = 5 - resolution;
570 }
571 } else if (!strcmp(mstr, "A")) {
572 devc->cur_mq[i] = SR_MQ_CURRENT;
573 devc->cur_unit[i] = SR_UNIT_AMPERE;
574 devc->cur_mqflags[i] = 0;
575 devc->cur_exponent[i] = 0;
576 devc->cur_digits[i] = 3 - resolution;
577 } else if (!strcmp(mstr, "MA")) {
578 devc->cur_mq[i] = SR_MQ_CURRENT;
579 devc->cur_unit[i] = SR_UNIT_AMPERE;
580 devc->cur_mqflags[i] = 0;
581 devc->cur_exponent[i] = -3;
582 devc->cur_digits[i] = 8 - resolution;
583 } else if (!strcmp(mstr, "UA")) {
584 devc->cur_mq[i] = SR_MQ_CURRENT;
585 devc->cur_unit[i] = SR_UNIT_AMPERE;
586 devc->cur_mqflags[i] = 0;
587 devc->cur_exponent[i] = -6;
588 devc->cur_digits[i] = 8 - resolution;
589 } else if (!strcmp(mstr, "FREQ")) {
590 devc->cur_mq[i] = SR_MQ_FREQUENCY;
591 devc->cur_unit[i] = SR_UNIT_HERTZ;
592 devc->cur_mqflags[i] = 0;
593 devc->cur_exponent[i] = 0;
594 devc->cur_digits[i] = 2 - resolution;
595 } else if (!strcmp(mstr, "RES")) {
596 if (devc->mode_continuity) {
597 devc->cur_mq[i] = SR_MQ_CONTINUITY;
598 devc->cur_unit[i] = SR_UNIT_BOOLEAN;
599 } else {
600 devc->cur_mq[i] = SR_MQ_RESISTANCE;
601 devc->cur_unit[i] = SR_UNIT_OHM;
602 }
603 devc->cur_mqflags[i] = 0;
604 devc->cur_exponent[i] = 0;
605 devc->cur_digits[i] = 1 - resolution;
606 } else if (!strcmp(mstr, "DIOD")) {
607 devc->cur_mq[i] = SR_MQ_VOLTAGE;
608 devc->cur_unit[i] = SR_UNIT_VOLT;
609 devc->cur_mqflags[i] = SR_MQFLAG_DIODE | SR_MQFLAG_DC;
610 devc->cur_exponent[i] = 0;
611 devc->cur_digits[i] = 3;
612 } else if (!strcmp(mstr, "TEMP")) {
613 devc->cur_mq[i] = SR_MQ_TEMPERATURE;
614 devc->cur_unit[i] = SR_UNIT_CELSIUS;
615 devc->cur_mqflags[i] = 0;
616 devc->cur_exponent[i] = 0;
617 devc->cur_digits[i] = 1;
618 } else if (!strcmp(mstr, "CAP")) {
619 devc->cur_mq[i] = SR_MQ_CAPACITANCE;
620 devc->cur_unit[i] = SR_UNIT_FARAD;
621 devc->cur_mqflags[i] = 0;
622 devc->cur_exponent[i] = 0;
623 devc->cur_digits[i] = 9 - resolution;
624 } else
625 sr_dbg("Unknown first argument.");
626 g_free(mstr);
627
628 /* This is based on guess, supposing similarity with other models. */
629 devc->cur_encoding[i] = devc->cur_digits[i] + 1;
630
631 if (g_match_info_get_match_count(match) == 4) {
632 mstr = g_match_info_fetch(match, 3);
633 /* Third value, if present, is always AC or DC. */
634 if (!strcmp(mstr, "AC")) {
635 devc->cur_mqflags[i] |= SR_MQFLAG_AC;
636 if (devc->cur_mq[i] == SR_MQ_VOLTAGE)
637 devc->cur_mqflags[i] |= SR_MQFLAG_RMS;
638 } else if (!strcmp(mstr, "DC")) {
639 devc->cur_mqflags[i] |= SR_MQFLAG_DC;
640 } else if (!strcmp(mstr, "ACDC")) {
641 devc->cur_mqflags[i] |= SR_MQFLAG_AC | SR_MQFLAG_DC | SR_MQFLAG_RMS;
642 } else {
643 sr_dbg("Unknown first argument '%s'.", mstr);
644 }
645 g_free(mstr);
646 } else
647 devc->cur_mqflags[i] &= ~(SR_MQFLAG_AC | SR_MQFLAG_DC);
648
649 struct sr_channel *prev_conf = devc->cur_conf;
650 devc->cur_conf = sr_next_enabled_channel(sdi, devc->cur_conf);
651 if (devc->cur_conf->index >= MIN(devc->profile->nb_channels, 2))
652 devc->cur_conf = sr_next_enabled_channel(sdi, devc->cur_conf);
653 if (devc->cur_conf->index > prev_conf->index)
654 return JOB_AGAIN;
655 else
656 return JOB_CONF;
657}
658
659static int recv_conf_u124x_5x(const struct sr_dev_inst *sdi, GMatchInfo *match)
660{
661 struct dev_context *devc;
662 char *mstr, *rstr, *m2;
663 int i, resolution;
664
665 sr_spew("CONF? response '%s'.", g_match_info_get_string(match));
666 devc = sdi->priv;
667 i = devc->cur_conf->index;
668
669 devc->mode_squarewave = 0;
670
671 rstr = g_match_info_fetch(match, 4);
672 if (rstr && sr_atoi(rstr, &resolution) == SR_OK) {
673 devc->cur_digits[i] = -resolution;
674 devc->cur_encoding[i] = -resolution + 1;
675 }
676 g_free(rstr);
677
678 mstr = g_match_info_fetch(match, 1);
679 if (!strncmp(mstr, "VOLT", 4)) {
680 devc->cur_mq[i] = SR_MQ_VOLTAGE;
681 devc->cur_unit[i] = SR_UNIT_VOLT;
682 devc->cur_mqflags[i] = 0;
683 devc->cur_exponent[i] = 0;
684 if (i == 0 && devc->mode_dbm_dbv) {
685 devc->cur_unit[i] = devc->mode_dbm_dbv;
686 devc->cur_digits[i] = 3;
687 devc->cur_encoding[i] = 4;
688 }
689 if (mstr[4] == ':') {
690 if (!strncmp(mstr + 5, "ACDC", 4)) {
691 /* AC + DC offset */
692 devc->cur_mqflags[i] |= SR_MQFLAG_AC | SR_MQFLAG_DC | SR_MQFLAG_RMS;
693 } else if (!strncmp(mstr + 5, "AC", 2)) {
694 devc->cur_mqflags[i] |= SR_MQFLAG_AC | SR_MQFLAG_RMS;
695 } else if (!strncmp(mstr + 5, "DC", 2)) {
696 devc->cur_mqflags[i] |= SR_MQFLAG_DC;
697 } else if (!strncmp(mstr + 5, "HRAT", 4)) {
698 devc->cur_mq[i] = SR_MQ_HARMONIC_RATIO;
699 devc->cur_unit[i] = SR_UNIT_PERCENTAGE;
700 devc->cur_digits[i] = 2;
701 devc->cur_encoding[i] = 3;
702 }
703 } else
704 devc->cur_mqflags[i] |= SR_MQFLAG_DC;
705 } else if (!strncmp(mstr, "CURR", 4)) {
706 devc->cur_mq[i] = SR_MQ_CURRENT;
707 devc->cur_unit[i] = SR_UNIT_AMPERE;
708 devc->cur_mqflags[i] = 0;
709 devc->cur_exponent[i] = 0;
710 if (mstr[4] == ':') {
711 if (!strncmp(mstr + 5, "ACDC", 4)) {
712 /* AC + DC offset */
713 devc->cur_mqflags[i] |= SR_MQFLAG_AC | SR_MQFLAG_DC | SR_MQFLAG_RMS;
714 } else if (!strncmp(mstr + 5, "AC", 2)) {
715 devc->cur_mqflags[i] |= SR_MQFLAG_AC | SR_MQFLAG_RMS;
716 } else if (!strncmp(mstr + 5, "DC", 2)) {
717 devc->cur_mqflags[i] |= SR_MQFLAG_DC;
718 }
719 } else
720 devc->cur_mqflags[i] |= SR_MQFLAG_DC;
721 } else if (!strcmp(mstr, "RES")) {
722 devc->cur_mq[i] = SR_MQ_RESISTANCE;
723 devc->cur_unit[i] = SR_UNIT_OHM;
724 devc->cur_mqflags[i] = 0;
725 devc->cur_exponent[i] = 0;
726 } else if (!strcmp(mstr, "COND")) {
727 devc->cur_mq[i] = SR_MQ_CONDUCTANCE;
728 devc->cur_unit[i] = SR_UNIT_SIEMENS;
729 devc->cur_mqflags[i] = 0;
730 devc->cur_exponent[i] = 0;
731 } else if (!strcmp(mstr, "CAP")) {
732 devc->cur_mq[i] = SR_MQ_CAPACITANCE;
733 devc->cur_unit[i] = SR_UNIT_FARAD;
734 devc->cur_mqflags[i] = 0;
735 devc->cur_exponent[i] = 0;
736 } else if (!strncmp(mstr, "FREQ", 4) || !strncmp(mstr, "FC1", 3)) {
737 devc->cur_mq[i] = SR_MQ_FREQUENCY;
738 devc->cur_unit[i] = SR_UNIT_HERTZ;
739 devc->cur_mqflags[i] = 0;
740 devc->cur_exponent[i] = 0;
741 } else if (!strncmp(mstr, "PULS:PWID", 9)) {
742 devc->cur_mq[i] = SR_MQ_PULSE_WIDTH;
743 devc->cur_unit[i] = SR_UNIT_SECOND;
744 devc->cur_mqflags[i] = 0;
745 devc->cur_exponent[i] = 0;
746 devc->cur_encoding[i] = MIN(devc->cur_encoding[i], 6);
747 } else if (!strncmp(mstr, "PULS:PDUT", 9)) {
748 devc->cur_mq[i] = SR_MQ_DUTY_CYCLE;
749 devc->cur_unit[i] = SR_UNIT_PERCENTAGE;
750 devc->cur_mqflags[i] = 0;
751 devc->cur_exponent[i] = 0;
752 devc->cur_digits[i] = 3;
753 devc->cur_encoding[i] = 4;
754 } else if (!strcmp(mstr, "CONT")) {
755 devc->cur_mq[i] = SR_MQ_CONTINUITY;
756 devc->cur_unit[i] = SR_UNIT_OHM;
757 devc->cur_mqflags[i] = 0;
758 devc->cur_exponent[i] = 0;
759 } else if (!strcmp(mstr, "DIOD")) {
760 devc->cur_mq[i] = SR_MQ_VOLTAGE;
761 devc->cur_unit[i] = SR_UNIT_VOLT;
762 devc->cur_mqflags[i] = SR_MQFLAG_DIODE | SR_MQFLAG_DC;
763 devc->cur_exponent[i] = 0;
764 if (devc->profile->model == KEYSIGHT_U1281 ||
765 devc->profile->model == KEYSIGHT_U1282) {
766 devc->cur_digits[i] = 4;
767 devc->cur_encoding[i] = 5;
768 } else {
769 devc->cur_digits[i] = 3;
770 devc->cur_encoding[i] = 4;
771 }
772 } else if (!strncmp(mstr, "T1", 2) || !strncmp(mstr, "T2", 2) ||
773 !strncmp(mstr, "TEMP", 4)) {
774 devc->cur_mq[i] = SR_MQ_TEMPERATURE;
775 m2 = g_match_info_fetch(match, 2);
776 if (!m2 && devc->profile->nb_channels == 3)
777 /*
778 * TEMP without param is for secondary display (channel P2)
779 * and is identical to channel P3, so discard it.
780 */
781 devc->cur_mq[i] = -1;
782 else if (m2 && !strcmp(m2, "FAR"))
783 devc->cur_unit[i] = SR_UNIT_FAHRENHEIT;
784 else
785 devc->cur_unit[i] = SR_UNIT_CELSIUS;
786 g_free(m2);
787 devc->cur_mqflags[i] = 0;
788 devc->cur_exponent[i] = 0;
789 devc->cur_digits[i] = 1;
790 devc->cur_encoding[i] = 2;
791 } else if (!strcmp(mstr, "SCOU")) {
792 /*
793 * Switch counter, not supported. Not sure what values
794 * come from FETC in this mode, or how they would map
795 * into libsigrok.
796 */
797 } else if (!strncmp(mstr, "CPER:", 5)) {
798 devc->cur_mq[i] = SR_MQ_CURRENT;
799 devc->cur_unit[i] = SR_UNIT_PERCENTAGE;
800 devc->cur_mqflags[i] = 0;
801 devc->cur_exponent[i] = 0;
802 devc->cur_digits[i] = 2;
803 devc->cur_encoding[i] = 3;
804 } else if (!strcmp(mstr, "SQU")) {
805 /*
806 * Square wave output, not supported. FETC just return
807 * an error in this mode, so don't even call it.
808 */
809 devc->mode_squarewave = 1;
810 } else if (!strcmp(mstr, "NCV")) {
811 devc->cur_mq[i] = SR_MQ_VOLTAGE;
812 devc->cur_unit[i] = SR_UNIT_VOLT;
813 devc->cur_mqflags[i] = SR_MQFLAG_AC;
814 if (devc->profile->model == KEYSIGHT_U1281 ||
815 devc->profile->model == KEYSIGHT_U1282) {
816 devc->cur_exponent[i] = -3;
817 devc->cur_digits[i] = -1;
818 devc->cur_encoding[i] = 0;
819 } else {
820 devc->cur_exponent[i] = 0;
821 devc->cur_digits[i] = 2;
822 devc->cur_encoding[i] = 3;
823 }
824 } else {
825 sr_dbg("Unknown first argument '%s'.", mstr);
826 }
827 g_free(mstr);
828
829 struct sr_channel *prev_conf = devc->cur_conf;
830 devc->cur_conf = sr_next_enabled_channel(sdi, devc->cur_conf);
831 if (devc->cur_conf->index >= MIN(devc->profile->nb_channels, 2))
832 devc->cur_conf = sr_next_enabled_channel(sdi, devc->cur_conf);
833 if (devc->cur_conf->index > prev_conf->index)
834 return JOB_AGAIN;
835 else
836 return JOB_CONF;
837}
838
839static int send_log(const struct sr_dev_inst *sdi)
840{
841 const char *source[] = { "LOG:HAND", "LOG:TRIG", "LOG:AUTO", "LOG:EXPO" };
842 struct dev_context *devc = sdi->priv;
843 return agdmm_send(sdi, "%s %d",
844 source[devc->data_source - 1], devc->cur_sample);
845}
846
847static int recv_log(const struct sr_dev_inst *sdi, GMatchInfo *match,
848 const int mqs[], const int units[], const int exponents[],
849 unsigned int num_functions)
850{
851 struct dev_context *devc;
852 struct sr_datafeed_packet packet;
853 struct sr_datafeed_analog analog;
854 struct sr_analog_encoding encoding;
855 struct sr_analog_meaning meaning;
856 struct sr_analog_spec spec;
857 char *mstr;
858 unsigned function;
859 int value, negative, overload, exponent, alternate_unit, mq, unit;
860 int mqflags = 0;
861 float fvalue;
862
863 sr_spew("LOG response '%s'.", g_match_info_get_string(match));
864
865 devc = sdi->priv;
866
867 mstr = g_match_info_fetch(match, 2);
868 if (sr_atoi(mstr, (int*)&function) != SR_OK || function >= num_functions) {
869 g_free(mstr);
870 sr_dbg("Invalid function.");
871 return SR_ERR;
872 }
873 g_free(mstr);
874
875 mstr = g_match_info_fetch(match, 3);
876 if (sr_atoi(mstr, &value) != SR_OK) {
877 g_free(mstr);
878 sr_dbg("Invalid value.");
879 return SR_ERR;
880 }
881 g_free(mstr);
882
883 mstr = g_match_info_fetch(match, 1);
884 negative = mstr[7] & 2 ? -1 : 1;
885 overload = mstr[8] & 4;
886 exponent = (mstr[9] & 0xF) + exponents[function];
887 alternate_unit = mstr[10] & 1;
888
889 if (mstr[ 8] & 1) mqflags |= SR_MQFLAG_DC;
890 if (mstr[ 8] & 2) mqflags |= SR_MQFLAG_AC;
891 if (mstr[11] & 4) mqflags |= SR_MQFLAG_RELATIVE;
892 if (mstr[12] & 1) mqflags |= SR_MQFLAG_AVG;
893 if (mstr[12] & 2) mqflags |= SR_MQFLAG_MIN;
894 if (mstr[12] & 4) mqflags |= SR_MQFLAG_MAX;
895 if (function == 5) mqflags |= SR_MQFLAG_DIODE | SR_MQFLAG_DC;
896 g_free(mstr);
897
898 mq = mqs[function];
899 unit = units[function];
900 if (alternate_unit) {
901 if (mq == SR_MQ_RESISTANCE)
902 mq = SR_MQ_CONTINUITY;
903 if (unit == SR_UNIT_DECIBEL_MW)
904 unit = SR_UNIT_DECIBEL_VOLT;
905 if (unit == SR_UNIT_CELSIUS) {
906 unit = SR_UNIT_FAHRENHEIT;
907 if (devc->profile->model == KEYSIGHT_U1281 ||
908 devc->profile->model == KEYSIGHT_U1282)
909 exponent--;
910 }
911 }
912
913 if (overload)
914 fvalue = NAN;
915 else
916 fvalue = negative * value * powf(10, exponent);
917
918 sr_analog_init(&analog, &encoding, &meaning, &spec, -exponent);
919 analog.meaning->mq = mq;
920 analog.meaning->unit = unit;
921 analog.meaning->mqflags = mqflags;
922 analog.meaning->channels = g_slist_append(NULL, devc->cur_channel);
923 analog.num_samples = 1;
924 analog.data = &fvalue;
925 packet.type = SR_DF_ANALOG;
926 packet.payload = &analog;
927 sr_session_send(sdi, &packet);
928 g_slist_free(analog.meaning->channels);
929
930 sr_sw_limits_update_samples_read(&devc->limits, 1);
931 devc->cur_sample++;
932
933 return JOB_LOG;
934}
935
936static int recv_log_u124xc(const struct sr_dev_inst *sdi, GMatchInfo *match)
937{
938 static const int mqs[] = { SR_MQ_VOLTAGE, SR_MQ_VOLTAGE, SR_MQ_CURRENT, SR_MQ_CURRENT, SR_MQ_RESISTANCE, SR_MQ_VOLTAGE, SR_MQ_TEMPERATURE, SR_MQ_CAPACITANCE, SR_MQ_FREQUENCY, SR_MQ_HARMONIC_RATIO, SR_MQ_CURRENT };
939 static const int units[] = { SR_UNIT_VOLT, SR_UNIT_VOLT, SR_UNIT_AMPERE, SR_UNIT_AMPERE, SR_UNIT_OHM, SR_UNIT_VOLT, SR_UNIT_CELSIUS, SR_UNIT_FARAD, SR_UNIT_HERTZ, SR_UNIT_PERCENTAGE, SR_UNIT_PERCENTAGE };
940 static const int exponents[] = { -5, -4, -7, -3, -2, -3, -1, -10, -2, -2, -2 };
941
942 return recv_log(sdi, match, mqs, units, exponents, ARRAY_SIZE(mqs));
943}
944
945static int recv_log_u128x(const struct sr_dev_inst *sdi, GMatchInfo *match)
946{
947 static const int mqs[] = { SR_MQ_VOLTAGE, SR_MQ_VOLTAGE, SR_MQ_CURRENT, SR_MQ_CURRENT, SR_MQ_RESISTANCE, SR_MQ_VOLTAGE, SR_MQ_TEMPERATURE, SR_MQ_CAPACITANCE, SR_MQ_FREQUENCY, SR_MQ_DUTY_CYCLE, SR_MQ_PULSE_WIDTH, SR_MQ_VOLTAGE, SR_MQ_CURRENT, SR_MQ_CONDUCTANCE };
948 static const int units[] = { SR_UNIT_VOLT, SR_UNIT_VOLT, SR_UNIT_AMPERE, SR_UNIT_AMPERE, SR_UNIT_OHM, SR_UNIT_VOLT, SR_UNIT_CELSIUS, SR_UNIT_FARAD, SR_UNIT_HERTZ, SR_UNIT_PERCENTAGE, SR_UNIT_SECOND, SR_UNIT_DECIBEL_MW, SR_UNIT_PERCENTAGE, SR_UNIT_SIEMENS };
949 static const int exponents[] = { -6, -4, -9, -4, -3, -4, -1, -12, -3, -3, -6, -3, -2, -11 };
950
951 return recv_log(sdi, match, mqs, units, exponents, ARRAY_SIZE(mqs));
952}
953
954/* This comes in whenever the rotary switch is changed to a new position.
955 * We could use it to determine the major measurement mode, but we already
956 * have the output of CONF? for that, which is more detailed. However
957 * we do need to catch this here, or it'll show up in some other output. */
958static int recv_switch(const struct sr_dev_inst *sdi, GMatchInfo *match)
959{
960 struct dev_context *devc = sdi->priv;
961
962 sr_spew("Switch '%s'.", g_match_info_get_string(match));
963
964 devc->current_job = 0;
965 devc->job_running = FALSE;
966 memset(devc->jobs_start, 0, sizeof(devc->jobs_start));
967 devc->cur_mq[0] = -1;
968 if (devc->profile->nb_channels > 2)
969 devc->cur_mq[1] = -1;
970
971 return SR_OK;
972}
973
974static int recv_err(const struct sr_dev_inst *sdi, GMatchInfo *match)
975{
976 struct dev_context *devc = sdi->priv;
977
978 (void) match;
979
980 if (devc->data_source != DATA_SOURCE_LIVE)
981 return JOB_STOP; /* In log mode, stop acquisition after receiving *E. */
982 else
983 return JOB_AGAIN;
984}
985
986/* Poll CONF/STAT at 1Hz and values at samplerate. */
987SR_PRIV const struct agdmm_job agdmm_jobs_live[] = {
988 { JOB_FETC, SAMPLERATE_INTERVAL, send_fetc },
989 { JOB_CONF, 1000, send_conf },
990 { JOB_STAT, 1000, send_stat },
991 ALL_ZERO
992};
993
994/* Poll LOG as fast as possible. */
995SR_PRIV const struct agdmm_job agdmm_jobs_log[] = {
996 { JOB_LOG, 0, send_log },
997 ALL_ZERO
998};
999
1000SR_PRIV const struct agdmm_recv agdmm_recvs_u123x[] = {
1001 { "^\"(\\d\\d.{18}\\d)\"$", recv_stat_u123x },
1002 { "^\\*([0-9])$", recv_switch },
1003 { "^([-+][0-9]\\.[0-9]{8}E[-+][0-9]{2})$", recv_fetc },
1004 { "^\"(V|MV|A|UA|FREQ),(\\d),(AC|DC)\"$", recv_conf_u123x },
1005 { "^\"(RES|CAP),(\\d)\"$", recv_conf_u123x},
1006 { "^\"(DIOD)\"$", recv_conf_u123x },
1007 ALL_ZERO
1008};
1009
1010SR_PRIV const struct agdmm_recv agdmm_recvs_u124x[] = {
1011 { "^\"(\\d\\d.{18}\\d)\"$", recv_stat_u124x },
1012 { "^\\*([0-9])$", recv_switch },
1013 { "^([-+][0-9]\\.[0-9]{8}E[-+][0-9]{2})$", recv_fetc },
1014 { "^\"(VOLT|CURR|RES|CAP|FREQ) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{6,8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
1015 { "^\"(VOLT:[ACD]+) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{6,8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
1016 { "^\"(CURR:[ACD]+) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{6,8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
1017 { "^\"(CPER:[40]-20mA) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{6,8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
1018 { "^\"(T[0-9]:[A-Z]+) ([A-Z]+)\"$", recv_conf_u124x_5x },
1019 { "^\"(TEMP:[A-Z]+) ([A-Z]+)\"$", recv_conf_u124x_5x },
1020 { "^\"(DIOD)\"$", recv_conf_u124x_5x },
1021 ALL_ZERO
1022};
1023
1024SR_PRIV const struct agdmm_recv agdmm_recvs_u124xc[] = {
1025 { "^\"(\\d\\d.{18}\\d)\"$", recv_stat_u124xc },
1026 { "^\\*([0-9])$", recv_switch },
1027 { "^([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))$", recv_fetc },
1028 { "^\"(VOLT|VOLT:AC|VOLT:HRAT|CURR|CURR:AC|RES|CONT|CAP|FREQ|FREQ:AC) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
1029 { "^\"(CPER:[40]-20mA) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
1030 { "^\"(TEMP:[A-Z]+) ([A-Z]+)\"$", recv_conf_u124x_5x },
1031 { "^\"(NCV) (HI|LO)\"$", recv_conf_u124x_5x },
1032 { "^\"(DIOD|TEMP)\"$", recv_conf_u124x_5x },
1033 { "^\"((\\d{2})(\\d{5})\\d{7})\"$", recv_log_u124xc },
1034 { "^\\*E$", recv_err },
1035 ALL_ZERO
1036};
1037
1038SR_PRIV const struct agdmm_recv agdmm_recvs_u125x[] = {
1039 { "^\"(\\d\\d.{18}\\d)\"$", recv_stat_u125x },
1040 { "^\\*([0-9])$", recv_switch },
1041 { "^([-+][0-9]\\.[0-9]{8}E[-+][0-9]{2})$", recv_fetc },
1042 { "^\"(VOLT|CURR|RES|CONT|COND|CAP|FREQ) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{6}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
1043 { "^\"(VOLT:[ACD]+) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{6}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
1044 { "^\"(CURR:[ACD]+) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{6}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
1045 { "^\"(CPER:[40]-20mA) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{6}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
1046 { "^\"(PULS:PWID|PULS:PWID:[ACD]+) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{6}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
1047 { "^\"(TEMP:[A-Z]+) ([A-Z]+)\"$", recv_conf_u124x_5x },
1048 { "^\"(T[0-9]:[A-Z]+) ([A-Z]+)\"$", recv_conf_u124x_5x },
1049 { "^\"(DIOD|PULS:[PN]DUT)\"$", recv_conf_u124x_5x },
1050 ALL_ZERO
1051};
1052
1053SR_PRIV const struct agdmm_recv agdmm_recvs_u127x[] = {
1054 { "^\"(\\d\\d.{18}\\d)\"$", recv_stat_u123x },
1055 { "^\\*([0-9]+)$", recv_switch },
1056 { "^([-+][0-9]\\.[0-9]{8}E[-+][0-9]{2})$", recv_fetc },
1057 { "^\"(V|MV|A|MA|UA|FREQ),(\\d),(AC|DC|ACDC)\"$", recv_conf_u123x },
1058 { "^\"(RES|CAP),(\\d)\"$", recv_conf_u123x},
1059 { "^\"(DIOD|TEMP)\"$", recv_conf_u123x },
1060 ALL_ZERO
1061};
1062
1063SR_PRIV const struct agdmm_recv agdmm_recvs_u128x[] = {
1064 { "^\"(\\d\\d.{18}\\d)\"$", recv_stat_u128x },
1065 { "^\\*([0-9])$", recv_switch },
1066 { "^([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))$", recv_fetc },
1067 { "^\"(VOLT|CURR|RES|CONT|COND|CAP|FREQ|FC1|FC100) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
1068 { "^\"(VOLT:[ACD]+) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
1069 { "^\"(CURR:[ACD]+) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
1070 { "^\"(FREQ:[ACD]+) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
1071 { "^\"(CPER:[40]-20mA) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
1072 { "^\"(PULS:PWID|PULS:PWID:[ACD]+) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
1073 { "^\"(TEMP:[A-Z]+) ([A-Z]+)\"$", recv_conf_u124x_5x },
1074 { "^\"(NCV) (HIGH|LOW)\"$", recv_conf_u124x_5x },
1075 { "^\"(DIOD|SQU|PULS:PDUT|TEMP)\"$", recv_conf_u124x_5x },
1076 { "^\"((\\d{2})(\\d{5})\\d{7})\"$", recv_log_u128x },
1077 { "^\\*E$", recv_err },
1078 ALL_ZERO
1079};