]> sigrok.org Git - libsigrok.git/blame - src/analog.c
analog: improve output readability by using SI prefix
[libsigrok.git] / src / analog.c
CommitLineData
fb019a0e
BV
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2014 Bert Vermeulen <bert@biot.com>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
6ec6c43b 20#include <config.h>
c2a25ebb
BV
21#include <stdio.h>
22#include <stdint.h>
fb019a0e 23#include <string.h>
c2a25ebb 24#include <ctype.h>
962172e4 25#include <math.h>
c1aae900 26#include <libsigrok/libsigrok.h>
fb019a0e
BV
27#include "libsigrok-internal.h"
28
e00b3f58 29/** @cond PRIVATE */
fb019a0e 30#define LOG_PREFIX "analog"
e00b3f58
UH
31/** @endcond */
32
33/**
34 * @file
35 *
36 * Handling and converting analog data.
37 */
38
39/**
40 * @defgroup grp_analog Analog data handling
41 *
42 * Handling and converting analog data.
43 *
44 * @{
45 */
fb019a0e 46
a5892391
BV
47struct unit_mq_string {
48 uint64_t value;
2c240774 49 const char *str;
a5892391
BV
50};
51
ca7dbb56 52/* Please use the same order as in enum sr_unit (libsigrok.h). */
a5892391
BV
53static struct unit_mq_string unit_strings[] = {
54 { SR_UNIT_VOLT, "V" },
55 { SR_UNIT_AMPERE, "A" },
56 { SR_UNIT_OHM, "\xe2\x84\xa6" },
57 { SR_UNIT_FARAD, "F" },
a5892391
BV
58 { SR_UNIT_KELVIN, "K" },
59 { SR_UNIT_CELSIUS, "\xc2\xb0""C" },
60 { SR_UNIT_FAHRENHEIT, "\xc2\xb0""F" },
61 { SR_UNIT_HERTZ, "Hz" },
62 { SR_UNIT_PERCENTAGE, "%" },
f7bcc686 63 { SR_UNIT_BOOLEAN, "" },
a5892391
BV
64 { SR_UNIT_SECOND, "s" },
65 { SR_UNIT_SIEMENS, "S" },
66 { SR_UNIT_DECIBEL_MW, "dBu" },
67 { SR_UNIT_DECIBEL_VOLT, "dBv" },
f7bcc686 68 { SR_UNIT_UNITLESS, "" },
a5892391
BV
69 { SR_UNIT_DECIBEL_SPL, "dB" },
70 { SR_UNIT_CONCENTRATION, "ppm" },
71 { SR_UNIT_REVOLUTIONS_PER_MINUTE, "RPM" },
72 { SR_UNIT_VOLT_AMPERE, "VA" },
73 { SR_UNIT_WATT, "W" },
74 { SR_UNIT_WATT_HOUR, "Wh" },
75 { SR_UNIT_METER_SECOND, "m/s" },
76 { SR_UNIT_HECTOPASCAL, "hPa" },
77 { SR_UNIT_HUMIDITY_293K, "%rF" },
78 { SR_UNIT_DEGREE, "\xc2\xb0" },
f7bcc686
UH
79 { SR_UNIT_HENRY, "H" },
80 { SR_UNIT_GRAM, "g" },
81 { SR_UNIT_CARAT, "ct" },
82 { SR_UNIT_OUNCE, "oz" },
83 { SR_UNIT_TROY_OUNCE, "oz t" },
84 { SR_UNIT_POUND, "lb" },
85 { SR_UNIT_PENNYWEIGHT, "dwt" },
86 { SR_UNIT_GRAIN, "gr" },
87 { SR_UNIT_TAEL, "tael" },
88 { SR_UNIT_MOMME, "momme" },
89 { SR_UNIT_TOLA, "tola" },
90 { SR_UNIT_PIECE, "pcs" },
a5892391
BV
91 ALL_ZERO
92};
93
ca7dbb56 94/* Please use the same order as in enum sr_mqflag (libsigrok.h). */
a5892391 95static struct unit_mq_string mq_strings[] = {
a5892391
BV
96 { SR_MQFLAG_AC, " AC" },
97 { SR_MQFLAG_DC, " DC" },
98 { SR_MQFLAG_RMS, " RMS" },
99 { SR_MQFLAG_DIODE, " DIODE" },
100 { SR_MQFLAG_HOLD, " HOLD" },
101 { SR_MQFLAG_MAX, " MAX" },
102 { SR_MQFLAG_MIN, " MIN" },
103 { SR_MQFLAG_AUTORANGE, " AUTO" },
104 { SR_MQFLAG_RELATIVE, " REL" },
f7bcc686
UH
105 { SR_MQFLAG_SPL_FREQ_WEIGHT_A, "(A)" },
106 { SR_MQFLAG_SPL_FREQ_WEIGHT_C, "(C)" },
107 { SR_MQFLAG_SPL_FREQ_WEIGHT_Z, "(Z)" },
108 { SR_MQFLAG_SPL_FREQ_WEIGHT_FLAT, "(SPL)" },
109 { SR_MQFLAG_SPL_TIME_WEIGHT_S, " S" },
110 { SR_MQFLAG_SPL_TIME_WEIGHT_F, " F" },
111 { SR_MQFLAG_SPL_LAT, " LAT" },
112 /* Not a standard function for SLMs, so this is a made-up notation. */
113 { SR_MQFLAG_SPL_PCT_OVER_ALARM, "%oA" },
114 { SR_MQFLAG_DURATION, " DURATION" },
a5892391
BV
115 { SR_MQFLAG_AVG, " AVG" },
116 { SR_MQFLAG_REFERENCE, " REF" },
f7bcc686 117 { SR_MQFLAG_UNSTABLE, " UNSTABLE" },
6d5cd3bd 118 { SR_MQFLAG_FOUR_WIRE, " 4-WIRE" },
a5892391
BV
119 ALL_ZERO
120};
121
edb691fc 122SR_PRIV int sr_analog_init(struct sr_datafeed_analog *analog,
41caa319
AJ
123 struct sr_analog_encoding *encoding,
124 struct sr_analog_meaning *meaning,
125 struct sr_analog_spec *spec,
126 int digits)
127{
128 memset(analog, 0, sizeof(*analog));
129 memset(encoding, 0, sizeof(*encoding));
130 memset(meaning, 0, sizeof(*meaning));
131 memset(spec, 0, sizeof(*spec));
132
133 analog->encoding = encoding;
134 analog->meaning = meaning;
135 analog->spec = spec;
136
137 encoding->unitsize = sizeof(float);
138 encoding->is_float = TRUE;
139#ifdef WORDS_BIGENDIAN
140 encoding->is_bigendian = TRUE;
141#else
142 encoding->is_bigendian = FALSE;
143#endif
144 encoding->digits = digits;
145 encoding->is_digits_decimal = TRUE;
146 encoding->scale.p = 1;
147 encoding->scale.q = 1;
148 encoding->offset.p = 0;
149 encoding->offset.q = 1;
150
151 spec->spec_digits = digits;
152
153 return SR_OK;
154}
155
22fb1bff
UH
156/**
157 * Convert an analog datafeed payload to an array of floats.
158 *
159 * @param[in] analog The analog payload to convert. Must not be NULL.
160 * analog->data, analog->meaning, and analog->encoding
161 * must not be NULL.
162 * @param[out] outbuf Memory where to store the result. Must not be NULL.
163 *
164 * Sufficient memory for outbuf must have been pre-allocated by the caller,
165 * who is also responsible for freeing it when no longer needed.
166 *
167 * @retval SR_OK Success.
168 * @retval SR_ERR Unsupported encoding.
169 * @retval SR_ERR_ARG Invalid argument.
170 *
171 * @since 0.4.0
172 */
edb691fc 173SR_API int sr_analog_to_float(const struct sr_datafeed_analog *analog,
4b4fdeea 174 float *outbuf)
fb019a0e
BV
175{
176 float offset;
5cee3d08 177 unsigned int b, i, count;
fb019a0e 178 gboolean bigendian;
5cee3d08
UH
179
180 if (!analog || !(analog->data) || !(analog->meaning)
181 || !(analog->encoding) || !outbuf)
182 return SR_ERR_ARG;
183
184 count = analog->num_samples * g_slist_length(analog->meaning->channels);
fb019a0e
BV
185
186#ifdef WORDS_BIGENDIAN
187 bigendian = TRUE;
188#else
189 bigendian = FALSE;
190#endif
191 if (!analog->encoding->is_float) {
4d376e08
SB
192 float offset = analog->encoding->offset.p / (float)analog->encoding->offset.q;
193 float scale = analog->encoding->scale.p / (float)analog->encoding->scale.q;
194 gboolean is_signed = analog->encoding->is_signed;
195 gboolean is_bigendian = analog->encoding->is_bigendian;
196 int8_t *data8 = (int8_t *)(analog->data);
197 int16_t *data16 = (int16_t *)(analog->data);
198 int32_t *data32 = (int32_t *)(analog->data);
199
200 switch (analog->encoding->unitsize) {
201 case 1:
202 if (is_signed) {
203 for (unsigned int i = 0; i < count; i++) {
204 outbuf[i] = scale * data8[i];
205 outbuf[i] += offset;
206 }
207 } else {
208 for (unsigned int i = 0; i < count; i++) {
209 outbuf[i] = scale * R8(data8 + i);
210 outbuf[i] += offset;
211 }
212 }
213 break;
214 case 2:
215 if (is_signed && is_bigendian) {
216 for (unsigned int i = 0; i < count; i++) {
217 outbuf[i] = scale * RB16S(&data16[i]);
218 outbuf[i] += offset;
219 }
220 } else if (is_bigendian) {
221 for (unsigned int i = 0; i < count; i++) {
222 outbuf[i] = scale * RB16(&data16[i]);
223 outbuf[i] += offset;
224 }
225 } else if (is_signed) {
226 for (unsigned int i = 0; i < count; i++) {
227 outbuf[i] = scale * RL16S(&data16[i]);
228 outbuf[i] += offset;
229 }
230 } else {
231 for (unsigned int i = 0; i < count; i++) {
232 outbuf[i] = scale * RL16(&data16[i]);
233 outbuf[i] += offset;
234 }
235 }
236 break;
237 case 4:
238 if (is_signed && is_bigendian) {
239 for (unsigned int i = 0; i < count; i++) {
240 outbuf[i] = scale * RB32S(&data32[i]);
241 outbuf[i] += offset;
242 }
243 } else if (is_bigendian) {
244 for (unsigned int i = 0; i < count; i++) {
245 outbuf[i] = scale * RB32(&data32[i]);
246 outbuf[i] += offset;
247 }
248 } else if (is_signed) {
249 for (unsigned int i = 0; i < count; i++) {
250 outbuf[i] = scale * RL32S(&data32[i]);
251 outbuf[i] += offset;
252 }
253 } else {
254 for (unsigned int i = 0; i < count; i++) {
255 outbuf[i] = scale * RL32(&data32[i]);
256 outbuf[i] += offset;
257 }
258 }
259 break;
260 default:
261 sr_err("Unsupported unit size '%d' for analog-to-float conversion.",
262 analog->encoding->unitsize);
263 return SR_ERR;
264 }
265 return SR_OK;
fb019a0e
BV
266 }
267
268 if (analog->encoding->unitsize == sizeof(float)
269 && analog->encoding->is_bigendian == bigendian
b07a1b04
ML
270 && analog->encoding->scale.p == 1
271 && analog->encoding->scale.q == 1
4b4fdeea 272 && analog->encoding->offset.p / (float)analog->encoding->offset.q == 0) {
fb019a0e 273 /* The data is already in the right format. */
7d65dd3a 274 memcpy(outbuf, analog->data, count * sizeof(float));
fb019a0e 275 } else {
7d65dd3a 276 for (i = 0; i < count; i += analog->encoding->unitsize) {
fb019a0e
BV
277 for (b = 0; b < analog->encoding->unitsize; b++) {
278 if (analog->encoding->is_bigendian == bigendian)
3e277549
ML
279 ((uint8_t *)outbuf)[i + b] =
280 ((uint8_t *)analog->data)[i * analog->encoding->unitsize + b];
fb019a0e 281 else
3e277549
ML
282 ((uint8_t *)outbuf)[i + (analog->encoding->unitsize - b)] =
283 ((uint8_t *)analog->data)[i * analog->encoding->unitsize + b];
fb019a0e 284 }
b07a1b04
ML
285 if (analog->encoding->scale.p != 1
286 || analog->encoding->scale.q != 1)
4b4fdeea
BV
287 outbuf[i] = (outbuf[i] * analog->encoding->scale.p) / analog->encoding->scale.q;
288 offset = ((float)analog->encoding->offset.p / (float)analog->encoding->offset.q);
289 outbuf[i] += offset;
fb019a0e
BV
290 }
291 }
292
293 return SR_OK;
294}
c2a25ebb 295
962172e4
AJ
296/**
297 * Scale a float value to the appropriate SI prefix.
298 *
299 * @param[in,out] value The float value to convert to appropriate SI prefix.
300 * @param[in,out] digits The number of significant decimal digits in value.
301 *
302 * @return The SI prefix to which value was scaled, as a printable string.
303 *
304 * @since 0.5.0
305 */
306SR_API const char *sr_analog_si_prefix(float *value, int *digits)
307{
308#define NEG_PREFIX_COUNT 5 /* number of prefixes below unity */
309#define POS_PREFIX_COUNT (int)(ARRAY_SIZE(prefixes) - NEG_PREFIX_COUNT - 1)
310 static const char *prefixes[] = { "f","p","n","µ","m","","k","M","G","T" };
311
312 if (value == NULL || digits == NULL || isnan(*value))
313 return prefixes[NEG_PREFIX_COUNT];
314
315 float logval = log10f(fabsf(*value));
316 int prefix = (logval / 3) - (logval < 1);
317
318 if (prefix < -NEG_PREFIX_COUNT) prefix = -NEG_PREFIX_COUNT;
319 if (3 * prefix < -*digits) prefix = (-*digits + 2 * (*digits < 0)) / 3;
320 if (prefix > POS_PREFIX_COUNT) prefix = POS_PREFIX_COUNT;
321
322 *value *= powf(10, -3 * prefix);
323 *digits += 3 * prefix;
324 return prefixes[prefix + NEG_PREFIX_COUNT];
325}
326
22fb1bff 327/**
a5892391
BV
328 * Convert the unit/MQ/MQ flags in the analog struct to a string.
329 *
22fb1bff
UH
330 * @param[in] analog Struct containing the unit, MQ and MQ flags.
331 * Must not be NULL. analog->meaning must not be NULL.
332 * @param[out] result Pointer to store result. Must not be NULL.
a24da9a8
ML
333 *
334 * The string is allocated by the function and must be freed by the caller
335 * after use by calling g_free().
a5892391 336 *
22fb1bff
UH
337 * @retval SR_OK Success.
338 * @retval SR_ERR_ARG Invalid argument.
a5892391
BV
339 *
340 * @since 0.4.0
341 */
edb691fc 342SR_API int sr_analog_unit_to_string(const struct sr_datafeed_analog *analog,
a24da9a8 343 char **result)
a5892391 344{
a24da9a8 345 int i;
5cee3d08
UH
346 GString *buf;
347
348 if (!analog || !(analog->meaning) || !result)
349 return SR_ERR_ARG;
350
351 buf = g_string_new(NULL);
a5892391 352
a5892391
BV
353 for (i = 0; unit_strings[i].value; i++) {
354 if (analog->meaning->unit == unit_strings[i].value) {
a24da9a8 355 g_string_assign(buf, unit_strings[i].str);
a5892391
BV
356 break;
357 }
358 }
359
360 /* More than one MQ flag may apply. */
a24da9a8
ML
361 for (i = 0; mq_strings[i].value; i++)
362 if (analog->meaning->mqflags & mq_strings[i].value)
363 g_string_append(buf, mq_strings[i].str);
364
365 *result = buf->str;
366 g_string_free(buf, FALSE);
a5892391
BV
367
368 return SR_OK;
369}
370
22fb1bff 371/**
90cefe0c
BV
372 * Set sr_rational r to the given value.
373 *
22fb1bff
UH
374 * @param[out] r Rational number struct to set. Must not be NULL.
375 * @param[in] p Numerator.
376 * @param[in] q Denominator.
377 *
378 * @since 0.4.0
90cefe0c 379 */
53e5d3d1 380SR_API void sr_rational_set(struct sr_rational *r, int64_t p, uint64_t q)
90cefe0c 381{
5cee3d08
UH
382 if (!r)
383 return;
384
90cefe0c
BV
385 r->p = p;
386 r->q = q;
387}
388
bdba3626
SB
389#ifndef HAVE___INT128_T
390struct sr_int128_t {
391 int64_t high;
392 uint64_t low;
393};
394
395struct sr_uint128_t {
396 uint64_t high;
397 uint64_t low;
398};
399
400static void mult_int64(struct sr_int128_t *res, const int64_t a,
401 const int64_t b)
402{
403 uint64_t t1, t2, t3, t4;
404
405 t1 = (UINT32_MAX & a) * (UINT32_MAX & b);
406 t2 = (UINT32_MAX & a) * (b >> 32);
407 t3 = (a >> 32) * (UINT32_MAX & b);
408 t4 = (a >> 32) * (b >> 32);
409
410 res->low = t1 + (t2 << 32) + (t3 << 32);
411 res->high = (t1 >> 32) + (uint64_t)((uint32_t)(t2)) + (uint64_t)((uint32_t)(t3));
412 res->high >>= 32;
413 res->high += ((int64_t)t2 >> 32) + ((int64_t)t3 >> 32) + t4;
414}
415
416static void mult_uint64(struct sr_uint128_t *res, const uint64_t a,
417 const uint64_t b)
418{
419 uint64_t t1, t2, t3, t4;
420
421 // (x1 + x2) * (y1 + y2) = x1*y1 + x1*y2 + x2*y1 + x2*y2
422 t1 = (UINT32_MAX & a) * (UINT32_MAX & b);
423 t2 = (UINT32_MAX & a) * (b >> 32);
424 t3 = (a >> 32) * (UINT32_MAX & b);
425 t4 = (a >> 32) * (b >> 32);
426
427 res->low = t1 + (t2 << 32) + (t3 << 32);
428 res->high = (t1 >> 32) + (uint64_t)((uint32_t)(t2)) + (uint64_t)((uint32_t)(t3));
429 res->high >>= 32;
430 res->high += ((int64_t)t2 >> 32) + ((int64_t)t3 >> 32) + t4;
431}
432#endif
433
434/**
435 * Compare two sr_rational for equality
436 *
437 * @param[in] a First value
438 * @param[in] b Second value
439 *
440 * The values are compared for numerical equality, i.e. 2/10 == 1/5
441 *
442 * @retval 1 if both values are equal
443 * @retval 0 otherwise
444 *
445 * @since 0.5.0
446 */
447SR_API int sr_rational_eq(const struct sr_rational *a, const struct sr_rational *b)
448{
449#ifdef HAVE___INT128_T
450 __int128_t m1, m2;
451
452 /* p1/q1 = p2/q2 <=> p1*q2 = p2*q1 */
453 m1 = ((__int128_t)(b->p)) * ((__uint128_t)a->q);
454 m2 = ((__int128_t)(a->p)) * ((__uint128_t)b->q);
455
456 return (m1 == m2);
457
458#else
459 struct sr_int128_t m1, m2;
460
461 mult_int64(&m1, a->q, b->p);
462 mult_int64(&m2, a->p, b->q);
463
464 return (m1.high == m2.high) && (m1.low == m2.low);
465#endif
466}
467
ee1b6054
SB
468/**
469 * Multiply two sr_rational
470 *
471 * @param[in] a First value
472 * @param[in] b Second value
473 * @param[out] res Result
474 *
475 * The resulting nominator/denominator are reduced if the result would not fit
476 * otherwise. If the resulting nominator/denominator are relatively prime,
477 * this may not be possible.
478 *
17d5a11c
SB
479 * It is save to use the same variable for result and input values
480 *
ee1b6054
SB
481 * @retval SR_OK Success.
482 * @retval SR_ERR_ARG Resulting value to large
483 *
484 * @since 0.5.0
485 */
486SR_API int sr_rational_mult(struct sr_rational *res, const struct sr_rational *a,
487 const struct sr_rational *b)
488{
489#ifdef HAVE___INT128_T
490 __int128_t p;
491 __uint128_t q;
492
493 p = (__int128_t)(a->p) * (__int128_t)(b->p);
494 q = (__uint128_t)(a->q) * (__uint128_t)(b->q);
495
496 if ((p > INT64_MAX) || (p < INT64_MIN) || (q > UINT64_MAX)) {
497 while (!((p & 1) || (q & 1))) {
498 p /= 2;
499 q /= 2;
500 }
501 }
502
503 if ((p > INT64_MAX) || (p < INT64_MIN) || (q > UINT64_MAX)) {
504 // TODO: determine gcd to do further reduction
505 return SR_ERR_ARG;
506 }
507
508 res->p = (int64_t)(p);
509 res->q = (uint64_t)(q);
510
511 return SR_OK;
512
513#else
514 struct sr_int128_t p;
515 struct sr_uint128_t q;
516
517 mult_int64(&p, a->p, b->p);
518 mult_uint64(&q, a->q, b->q);
519
520 while (!(p.low & 1) && !(q.low & 1)) {
521 p.low /= 2;
522 if (p.high & 1) p.low |= (1ll << 63);
523 p.high >>= 1;
524 q.low /= 2;
525 if (q.high & 1) q.low |= (1ll << 63);
526 q.high >>= 1;
527 }
528
529 if (q.high)
530 return SR_ERR_ARG;
531 if ((p.high >= 0) && (p.low > INT64_MAX))
532 return SR_ERR_ARG;
533 if (p.high < -1)
534 return SR_ERR_ARG;
535
536 res->p = (int64_t)p.low;
537 res->q = q.low;
538
539 return SR_OK;
540#endif
541}
542
17d5a11c
SB
543/**
544 * Divide rational a by rational b
545 *
546 * @param[in] num numerator
547 * @param[in] div divisor
548 * @param[out] res Result
549 *
550 * The resulting nominator/denominator are reduced if the result would not fit
551 * otherwise. If the resulting nominator/denominator are relatively prime,
552 * this may not be possible.
553 *
554 * It is save to use the same variable for result and input values
555 *
556 * @retval SR_OK Success.
557 * @retval SR_ERR_ARG Division by zero
558 * @retval SR_ERR_ARG Denominator of divisor to large
559 * @retval SR_ERR_ARG Resulting value to large
560 *
561 * @since 0.5.0
562 */
563SR_API int sr_rational_div(struct sr_rational *res, const struct sr_rational *num,
564 const struct sr_rational *div)
565{
566 struct sr_rational t;
567
568 if (div->q > INT64_MAX)
569 return SR_ERR_ARG;
570 if (div->p == 0)
571 return SR_ERR_ARG;
572
573 if (div->p > 0) {
574 t.p = div->q;
575 t.q = div->p;
576 } else {
577 t.p = -div->q;
578 t.q = -div->p;
579 }
580
581 return sr_rational_mult(res, num, &t);
582}
583
e00b3f58 584/** @} */