]> sigrok.org Git - libsigrok.git/blame - hardware/sysclk-lwla/protocol.c
sysclk-lwla: Bypass divider in external clock mode.
[libsigrok.git] / hardware / sysclk-lwla / protocol.c
CommitLineData
aeaad0b0
DE
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2014 Daniel Elstner <daniel.kitta@gmail.com>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include "protocol.h"
5874e88d 21#include <string.h>
aeaad0b0 22
5874e88d
DE
23/* Bit mask covering all 34 channels. */
24#define ALL_CHANNELS_MASK (((uint64_t)1 << NUM_PROBES) - 1)
25
26/* Bit mask for the RLE repeat-count-follows flag. */
27#define RLE_FLAG_LEN_FOLLOWS ((uint64_t)1 << 35)
28
29/* Start address of capture status memory area to read. */
30#define CAP_STAT_ADDR 5
31
32/* Number of 64-bit words read from the capture status memory. */
33#define CAP_STAT_LEN 5
34
35/* The bitstream filenames are indexed by the clock source enumeration.
36 */
37static const char *const bitstream_map[] = {
38 FIRMWARE_DIR "/sysclk-lwla1034-off.bitstream",
39 FIRMWARE_DIR "/sysclk-lwla1034-int.bitstream",
40 FIRMWARE_DIR "/sysclk-lwla1034-extpos.bitstream",
41 FIRMWARE_DIR "/sysclk-lwla1034-extneg.bitstream",
42};
43
44/* Submit an already filled-in USB transfer.
45 */
46static int submit_transfer(struct dev_context *devc,
47 struct libusb_transfer *xfer)
48{
49 int ret;
50
51 ret = libusb_submit_transfer(xfer);
52
53 if (ret != 0) {
54 sr_err("Submit transfer failed: %s.", libusb_error_name(ret));
55 devc->transfer_error = TRUE;
56 return SR_ERR;
57 }
58
59 return SR_OK;
60}
61
62/* Set up the LWLA in preparation for an acquisition session.
63 */
64static int capture_setup(const struct sr_dev_inst *sdi)
aeaad0b0 65{
aeaad0b0 66 struct dev_context *devc;
5874e88d
DE
67 uint64_t divider_count;
68 uint64_t memory_limit;
69 uint16_t command[3 + 10*4];
aeaad0b0 70
5874e88d 71 devc = sdi->priv;
aeaad0b0 72
5874e88d
DE
73 command[0] = LWLA_WORD(CMD_CAP_SETUP);
74 command[1] = LWLA_WORD(0); /* address */
75 command[2] = LWLA_WORD(10); /* length */
76
77 command[3] = LWLA_WORD_0(devc->channel_mask);
78 command[4] = LWLA_WORD_1(devc->channel_mask);
79 command[5] = LWLA_WORD_2(devc->channel_mask);
80 command[6] = LWLA_WORD_3(devc->channel_mask);
81
82 /* Set the clock divide counter maximum for samplerates of up to
83 * 100 MHz. At the highest samplerate of 125 MHz the clock divider
84 * is bypassed.
85 */
d02d4754
DE
86 if (devc->cur_clock_source == CLOCK_SOURCE_INT
87 && devc->samplerate > 0
88 && devc->samplerate < SR_MHZ(100))
5874e88d
DE
89 divider_count = SR_MHZ(100) / devc->samplerate - 1;
90 else
91 divider_count = 0;
92
93 command[7] = LWLA_WORD_0(divider_count);
94 command[8] = LWLA_WORD_1(divider_count);
95 command[9] = LWLA_WORD_2(divider_count);
96 command[10] = LWLA_WORD_3(divider_count);
97
98 command[11] = LWLA_WORD_0(devc->trigger_values);
99 command[12] = LWLA_WORD_1(devc->trigger_values);
100 command[13] = LWLA_WORD_2(devc->trigger_values);
101 command[14] = LWLA_WORD_3(devc->trigger_values);
102
103 command[15] = LWLA_WORD_0(devc->trigger_edge_mask);
104 command[16] = LWLA_WORD_1(devc->trigger_edge_mask);
105 command[17] = LWLA_WORD_2(devc->trigger_edge_mask);
106 command[18] = LWLA_WORD_3(devc->trigger_edge_mask);
107
108 command[19] = LWLA_WORD_0(devc->trigger_mask);
109 command[20] = LWLA_WORD_1(devc->trigger_mask);
110 command[21] = LWLA_WORD_2(devc->trigger_mask);
111 command[22] = LWLA_WORD_3(devc->trigger_mask);
112
113 /* Set the capture memory full threshold. This is slightly less
114 * than the actual maximum, most likely in order to compensate for
115 * pipeline latency.
116 */
117 memory_limit = MEMORY_DEPTH - 16;
118
119 command[23] = LWLA_WORD_0(memory_limit);
120 command[24] = LWLA_WORD_1(memory_limit);
121 command[25] = LWLA_WORD_2(memory_limit);
122 command[26] = LWLA_WORD_3(memory_limit);
123
124 /* Fill remaining 64-bit words with zeroes. */
125 memset(&command[27], 0, 16 * sizeof(uint16_t));
126
127 return lwla_send_command(sdi->conn, command, G_N_ELEMENTS(command));
128}
129
130/* Issue a register write command as an asynchronous USB transfer.
131 */
132static int issue_write_reg(const struct sr_dev_inst *sdi,
133 unsigned int reg, unsigned int value)
134{
135 struct dev_context *devc;
136 struct acquisition_state *acq;
137
138 devc = sdi->priv;
139 acq = devc->acquisition;
140
141 acq->xfer_buf_out[0] = LWLA_WORD(CMD_WRITE_REG);
142 acq->xfer_buf_out[1] = LWLA_WORD(reg);
143 acq->xfer_buf_out[2] = LWLA_WORD_0(value);
144 acq->xfer_buf_out[3] = LWLA_WORD_1(value);
145
146 acq->xfer_out->length = 4 * sizeof(uint16_t);
147
148 return submit_transfer(devc, acq->xfer_out);
149}
150
151/* Issue a register write command as an asynchronous USB transfer for the
152 * next register/value pair of the currently active register write sequence.
153 */
154static int issue_next_write_reg(const struct sr_dev_inst *sdi)
155{
156 struct dev_context *devc;
157 struct regval_pair *regval;
158 int ret;
159
160 devc = sdi->priv;
161
162 if (devc->reg_write_pos >= devc->reg_write_len) {
163 sr_err("Already written all registers in sequence.");
164 return SR_ERR_BUG;
165 }
166 regval = &devc->reg_write_seq[devc->reg_write_pos];
167
168 ret = issue_write_reg(sdi, regval->reg, regval->val);
169 if (ret != SR_OK)
170 return ret;
171
172 ++devc->reg_write_pos;
173 return SR_OK;
174}
175
176/* Issue a capture status request as an asynchronous USB transfer.
177 */
178static void request_capture_status(const struct sr_dev_inst *sdi)
179{
180 struct dev_context *devc;
181 struct acquisition_state *acq;
182
183 devc = sdi->priv;
184 acq = devc->acquisition;
185
186 acq->xfer_buf_out[0] = LWLA_WORD(CMD_CAP_STATUS);
187 acq->xfer_buf_out[1] = LWLA_WORD(CAP_STAT_ADDR);
188 acq->xfer_buf_out[2] = LWLA_WORD(CAP_STAT_LEN);
189
190 acq->xfer_out->length = 3 * sizeof(uint16_t);
191
192 if (submit_transfer(devc, acq->xfer_out) == SR_OK)
193 devc->state = STATE_STATUS_REQUEST;
194}
195
196/* Issue a request for the capture buffer fill level as
197 * an asynchronous USB transfer.
198 */
199static void request_capture_length(const struct sr_dev_inst *sdi)
200{
201 struct dev_context *devc;
202 struct acquisition_state *acq;
203
204 devc = sdi->priv;
205 acq = devc->acquisition;
206
207 acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_REG);
208 acq->xfer_buf_out[1] = LWLA_WORD(REG_MEM_FILL);
209
210 acq->xfer_out->length = 2 * sizeof(uint16_t);
211
212 if (submit_transfer(devc, acq->xfer_out) == SR_OK)
213 devc->state = STATE_LENGTH_REQUEST;
214}
215
216/* Initiate the capture memory read operation: Reset the acquisition state
217 * and start a sequence of register writes in order to set up the device for
218 * reading from the capture buffer.
219 */
220static void issue_read_start(const struct sr_dev_inst *sdi)
221{
222 struct dev_context *devc;
223 struct acquisition_state *acq;
224 struct regval_pair *regvals;
225
226 devc = sdi->priv;
227 acq = devc->acquisition;
228
229 /* Reset RLE state. */
230 acq->rle = RLE_STATE_DATA;
231 acq->sample = 0;
232 acq->run_len = 0;
233
234 acq->captured_samples = 0;
235 acq->transferred_samples = 0;
236
237 /* For some reason, the start address is 4 rather than 0. */
238 acq->mem_addr_done = 4;
239 acq->mem_addr_next = 4;
240 acq->mem_addr_stop = acq->mem_addr_fill;
241
242 /* Byte offset into the packet output buffer. */
243 acq->out_offset = 0;
244
245 regvals = devc->reg_write_seq;
246
247 regvals[0].reg = REG_DIV_BYPASS;
248 regvals[0].val = 1;
249
250 regvals[1].reg = REG_MEM_CTRL2;
251 regvals[1].val = 2;
252
253 regvals[2].reg = REG_MEM_CTRL4;
254 regvals[2].val = 4;
255
256 devc->reg_write_pos = 0;
257 devc->reg_write_len = 3;
258
259 if (issue_next_write_reg(sdi) == SR_OK)
260 devc->state = STATE_READ_PREPARE;
261}
262
d02d4754
DE
263/* Issue a command as an asynchronous USB transfer which returns the device
264 * to normal state after a read operation. Sets a new device context state
265 * on success.
266 */
5874e88d
DE
267static void issue_read_end(const struct sr_dev_inst *sdi)
268{
269 struct dev_context *devc;
270
271 devc = sdi->priv;
272
273 if (issue_write_reg(sdi, REG_DIV_BYPASS, 0) == SR_OK)
274 devc->state = STATE_READ_END;
275}
276
277/* Decode an incoming reponse to a buffer fill level request and act on it
278 * as appropriate. Note that this function changes the device context state.
279 */
280static void process_capture_length(const struct sr_dev_inst *sdi)
281{
282 struct dev_context *devc;
283 struct acquisition_state *acq;
284
285 devc = sdi->priv;
286 acq = devc->acquisition;
287
288 if (acq->xfer_in->actual_length != 4) {
289 sr_err("Received size %d doesn't match expected size 4.",
290 acq->xfer_in->actual_length);
291 devc->transfer_error = TRUE;
292 return;
293 }
294 acq->mem_addr_fill = LWLA_READ32(acq->xfer_buf_in);
295
296 sr_dbg("%lu words in capture buffer.",
297 (unsigned long)acq->mem_addr_fill);
298
299 if (acq->mem_addr_fill > 0 && sdi->status == SR_ST_ACTIVE)
300 issue_read_start(sdi);
301 else
302 issue_read_end(sdi);
303}
304
305/* Initiate a sequence of register write commands with the effect of
306 * cancelling a running capture operation. This sets a new device state
307 * if issuing the first command succeeds.
308 */
309static void issue_stop_capture(const struct sr_dev_inst *sdi)
310{
311 struct dev_context *devc;
312 struct regval_pair *regvals;
313
314 devc = sdi->priv;
315
316 if (devc->stopping_in_progress)
317 return;
318
319 regvals = devc->reg_write_seq;
320
321 regvals[0].reg = REG_CMD_CTRL2;
322 regvals[0].val = 10;
323
324 regvals[1].reg = REG_CMD_CTRL3;
325 regvals[1].val = 0;
326
327 regvals[2].reg = REG_CMD_CTRL4;
328 regvals[2].val = 0;
329
330 regvals[3].reg = REG_CMD_CTRL1;
331 regvals[3].val = 0;
332
333 regvals[4].reg = REG_DIV_BYPASS;
334 regvals[4].val = 0;
335
336 devc->reg_write_pos = 0;
337 devc->reg_write_len = 5;
338
339 if (issue_next_write_reg(sdi) == SR_OK) {
340 devc->stopping_in_progress = TRUE;
341 devc->state = STATE_STOP_CAPTURE;
342 }
343}
344
345/* Decode an incoming capture status reponse and act on it as appropriate.
346 * Note that this function changes the device state.
347 */
348static void process_capture_status(const struct sr_dev_inst *sdi)
349{
8a3ddd88
DE
350 uint64_t duration;
351 uint64_t timescale;
5874e88d
DE
352 struct dev_context *devc;
353 struct acquisition_state *acq;
354
355 devc = sdi->priv;
356 acq = devc->acquisition;
357
358 if (acq->xfer_in->actual_length != CAP_STAT_LEN * 8) {
359 sr_err("Received size %d doesn't match expected size %d.",
360 acq->xfer_in->actual_length, CAP_STAT_LEN * 8);
361 devc->transfer_error = TRUE;
362 return;
363 }
364
365 /* TODO: Find out the actual bit width of these fields as stored
366 * in the FPGA. These fields are definitely less than 64 bit wide
367 * internally, and the unused bits occasionally even contain garbage.
368 */
8a3ddd88
DE
369 acq->mem_addr_fill = LWLA_READ32(&acq->xfer_buf_in[0]);
370 duration = LWLA_READ32(&acq->xfer_buf_in[8]);
371 acq->capture_flags = LWLA_READ32(&acq->xfer_buf_in[16])
5874e88d
DE
372 & STATUS_FLAG_MASK;
373
8a3ddd88
DE
374 /* The 125 MHz setting is special, and uses the same timebase
375 * for the duration field as the 100 MHz setting.
376 */
377 timescale = MIN(devc->samplerate, SR_MHZ(100));
d02d4754 378 acq->captured_samples = duration * timescale / 1000;
8a3ddd88 379
5874e88d
DE
380 sr_spew("Captured %lu words, %" PRIu64 " samples, flags 0x%02X",
381 (unsigned long)acq->mem_addr_fill,
382 acq->captured_samples, acq->capture_flags);
383
384 if (acq->captured_samples >= devc->limit_samples) {
385 issue_stop_capture(sdi);
386 return;
387 }
388 devc->state = STATE_STATUS_WAIT;
389
390 if ((acq->capture_flags & STATUS_TRIGGERED) == 0) {
391 sr_spew("Waiting for trigger.");
392 } else if ((acq->capture_flags & STATUS_MEM_AVAIL) == 0) {
393 sr_dbg("Capture memory filled.");
394 request_capture_length(sdi);
395 } else if ((acq->capture_flags & STATUS_CAPTURING) != 0) {
396 sr_spew("Sampling in progress.");
397 }
398}
399
400/* Issue a capture buffer read request as an asynchronous USB transfer.
401 * The address and size of the memory area to read are derived from the
402 * current acquisition state.
403 */
404static void request_read_mem(const struct sr_dev_inst *sdi)
405{
406 struct dev_context *devc;
407 struct acquisition_state *acq;
408 size_t count;
409
410 devc = sdi->priv;
411 acq = devc->acquisition;
412
413 if (acq->mem_addr_next >= acq->mem_addr_stop)
414 return;
415
416 /* Always read a multiple of 8 device words. */
417 count = (acq->mem_addr_stop - acq->mem_addr_next + 7) / 8 * 8;
418 count = MIN(count, READ_CHUNK_LEN);
419
420 acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_MEM);
421 acq->xfer_buf_out[1] = LWLA_WORD_0(acq->mem_addr_next);
422 acq->xfer_buf_out[2] = LWLA_WORD_1(acq->mem_addr_next);
423 acq->xfer_buf_out[3] = LWLA_WORD_0(count);
424 acq->xfer_buf_out[4] = LWLA_WORD_1(count);
425
426 acq->xfer_out->length = 5 * sizeof(uint16_t);
427
428 if (submit_transfer(devc, acq->xfer_out) == SR_OK) {
429 acq->mem_addr_next += count;
430 devc->state = STATE_READ_REQUEST;
431 }
432}
433
434/* Send a packet of logic samples to the session bus. The payload is taken
435 * from the acquisition state. The return value indicates whether to stop
436 * reading more samples.
437 */
438static gboolean send_logic_packet(const struct sr_dev_inst *sdi)
439{
440 uint64_t samples;
441 struct dev_context *devc;
442 struct acquisition_state *acq;
443 struct sr_datafeed_packet packet;
444 struct sr_datafeed_logic logic;
445 int last;
446
447 devc = sdi->priv;
448 acq = devc->acquisition;
aeaad0b0 449
5874e88d 450 if (acq->transferred_samples >= devc->limit_samples)
aeaad0b0
DE
451 return TRUE;
452
5874e88d
DE
453 packet.type = SR_DF_LOGIC;
454 packet.payload = &logic;
455 logic.unitsize = UNIT_SIZE;
456 logic.data = acq->out_packet;
457 logic.length = acq->out_offset;
458
459 samples = acq->out_offset / UNIT_SIZE;
460 last = FALSE;
461
462 /* Cut the packet short if necessary. */
463 if (acq->transferred_samples + samples >= devc->limit_samples) {
464 samples = devc->limit_samples - acq->transferred_samples;
465 logic.length = samples * UNIT_SIZE;
466 last = TRUE;
467 }
468 acq->transferred_samples += samples;
469 acq->out_offset = 0;
470
471 /* Send off logic datafeed packet. */
472 sr_session_send(sdi, &packet);
473
474 return last;
475}
476
477/* Demangle and decompress incoming sample data from the capture buffer.
478 * The data chunk is taken from the acquisition state, and is expected to
479 * contain a multiple of 8 device words.
480 * All data currently in the acquisition buffer will be processed. Packets
481 * of decoded samples are sent off to the session bus whenever the output
482 * buffer becomes full while decoding.
483 */
484static int process_sample_data(const struct sr_dev_inst *sdi)
485{
486 uint64_t sample;
487 uint64_t run_len;
488 uint64_t high_nibbles;
489 uint64_t word;
490 struct dev_context *devc;
491 struct acquisition_state *acq;
492 uint8_t *out_p;
493 uint16_t *slice;
494 size_t expect_len;
495 size_t actual_len;
496 size_t in_words_left;
497 size_t si;
498
499 devc = sdi->priv;
500 acq = devc->acquisition;
501
502 if (acq->mem_addr_done >= acq->mem_addr_stop
503 || acq->transferred_samples >= devc->limit_samples)
504 return SR_OK;
505
506 in_words_left = MIN(acq->mem_addr_stop - acq->mem_addr_done,
507 READ_CHUNK_LEN);
508 expect_len = LWLA1034_MEMBUF_LEN(in_words_left) * sizeof(uint16_t);
509 actual_len = acq->xfer_in->actual_length;
510
511 if (actual_len != expect_len) {
512 sr_err("Received size %lu does not match expected size %lu.",
513 (unsigned long)actual_len, (unsigned long)expect_len);
514 devc->transfer_error = TRUE;
515 return SR_ERR;
516 }
517 acq->mem_addr_done += in_words_left;
518 slice = acq->xfer_buf_in;
519 si = 0; /* word index within slice */
520
521 for (;;) {
522 sample = acq->sample;
523 /* Expand run-length samples into session packet. */
524 for (run_len = acq->run_len; run_len > 0; --run_len) {
525 out_p = &acq->out_packet[acq->out_offset];
526 out_p[0] = sample & 0xFF;
527 out_p[1] = (sample >> 8) & 0xFF;
528 out_p[2] = (sample >> 16) & 0xFF;
529 out_p[3] = (sample >> 24) & 0xFF;
530 out_p[4] = (sample >> 32) & 0xFF;
531 acq->out_offset += UNIT_SIZE;
532
533 /* Send out packet if it is full. */
534 if (acq->out_offset > PACKET_SIZE - UNIT_SIZE)
535 if (send_logic_packet(sdi))
536 return SR_OK; /* sample limit reached */
537 }
538 acq->run_len = 0;
539
540 if (in_words_left == 0)
541 break; /* done with current chunk */
542
543 /* Now work on the current slice. */
544 high_nibbles = LWLA_READ32(&slice[8 * 2]);
545 word = LWLA_READ32(&slice[si * 2]);
546 word |= (high_nibbles << (4 * si + 4)) & ((uint64_t)0xF << 32);
547
548 if (acq->rle == RLE_STATE_DATA) {
549 acq->sample = word & ALL_CHANNELS_MASK;
550 acq->run_len = ((word >> NUM_PROBES) & 1) + 1;
551 if (word & RLE_FLAG_LEN_FOLLOWS)
552 acq->rle = RLE_STATE_LEN;
553 } else {
554 acq->run_len += word << 1;
555 acq->rle = RLE_STATE_DATA;
556 }
557
558 /* Move to next word. */
559 if (++si >= 8) {
560 si = 0;
561 slice += 9 * 2;
562 }
563 --in_words_left;
564 }
565
566 /* Send out partially filled packet if it is the last one. */
567 if (acq->mem_addr_done >= acq->mem_addr_stop && acq->out_offset > 0)
568 send_logic_packet(sdi);
569
570 return SR_OK;
571}
572
573/* Finish an acquisition session. This sends the end packet to the session
574 * bus and removes the listener for asynchronous USB transfers.
575 */
576static void end_acquisition(struct sr_dev_inst *sdi)
577{
578 struct drv_context *drvc;
579 struct dev_context *devc;
580 struct sr_datafeed_packet packet;
581
582 drvc = sdi->driver->priv;
583 devc = sdi->priv;
584
585 if (devc->state == STATE_IDLE)
586 return;
587
588 devc->state = STATE_IDLE;
589
590 /* Remove USB file descriptors from polling. */
591 usb_source_remove(drvc->sr_ctx);
592
593 packet.type = SR_DF_END;
594 sr_session_send(sdi, &packet);
595
596 lwla_free_acquisition_state(devc->acquisition);
597 devc->acquisition = NULL;
598
599 sdi->status = SR_ST_ACTIVE;
600}
601
602/* USB output transfer completion callback.
603 */
604static void receive_transfer_out(struct libusb_transfer *transfer)
605{
606 struct sr_dev_inst *sdi;
607 struct dev_context *devc;
608
609 sdi = transfer->user_data;
610 devc = sdi->priv;
611
612 if (transfer->status != LIBUSB_TRANSFER_COMPLETED) {
613 sr_err("Transfer to device failed: %d.", transfer->status);
614 devc->transfer_error = TRUE;
615 return;
616 }
617
618 if (devc->reg_write_pos < devc->reg_write_len) {
619 issue_next_write_reg(sdi);
620 } else {
621 switch (devc->state) {
622 case STATE_START_CAPTURE:
623 devc->state = STATE_STATUS_WAIT;
624 break;
625 case STATE_STATUS_REQUEST:
626 devc->state = STATE_STATUS_RESPONSE;
627 submit_transfer(devc, devc->acquisition->xfer_in);
628 break;
629 case STATE_STOP_CAPTURE:
630 if (sdi->status == SR_ST_ACTIVE)
631 request_capture_length(sdi);
632 else
633 end_acquisition(sdi);
634 break;
635 case STATE_LENGTH_REQUEST:
636 devc->state = STATE_LENGTH_RESPONSE;
637 submit_transfer(devc, devc->acquisition->xfer_in);
638 break;
639 case STATE_READ_PREPARE:
640 request_read_mem(sdi);
641 break;
642 case STATE_READ_REQUEST:
643 devc->state = STATE_READ_RESPONSE;
644 submit_transfer(devc, devc->acquisition->xfer_in);
645 break;
646 case STATE_READ_END:
647 end_acquisition(sdi);
648 break;
649 default:
650 sr_err("Unexpected device state %d.", devc->state);
651 break;
652 }
653 }
654}
655
656/* USB input transfer completion callback.
657 */
658static void receive_transfer_in(struct libusb_transfer *transfer)
659{
660 struct sr_dev_inst *sdi;
661 struct dev_context *devc;
662 struct acquisition_state *acq;
663
664 sdi = transfer->user_data;
665 devc = sdi->priv;
666 acq = devc->acquisition;
667
668 if (transfer->status != LIBUSB_TRANSFER_COMPLETED) {
669 sr_err("Transfer from device failed: %d.", transfer->status);
670 devc->transfer_error = TRUE;
671 return;
672 }
673
674 switch (devc->state) {
675 case STATE_STATUS_RESPONSE:
676 process_capture_status(sdi);
677 break;
678 case STATE_LENGTH_RESPONSE:
679 process_capture_length(sdi);
680 break;
681 case STATE_READ_RESPONSE:
682 if (process_sample_data(sdi) == SR_OK
683 && acq->mem_addr_next < acq->mem_addr_stop
684 && acq->transferred_samples < devc->limit_samples)
685 request_read_mem(sdi);
686 else
687 issue_read_end(sdi);
688 break;
689 default:
690 sr_err("Unexpected device state %d.", devc->state);
691 break;
692 }
693}
694
695/* Initialize the LWLA. This downloads a bitstream into the FPGA
696 * and executes a simple device test sequence.
697 */
698SR_PRIV int lwla_init_device(const struct sr_dev_inst *sdi)
699{
700 struct dev_context *devc;
701 int ret;
702 uint32_t value;
703
704 devc = sdi->priv;
705
706 /* Select internal clock if it hasn't been set yet */
707 if (devc->selected_clock_source == CLOCK_SOURCE_NONE)
708 devc->selected_clock_source = CLOCK_SOURCE_INT;
709
710 /* Force reload of bitstream */
711 devc->cur_clock_source = CLOCK_SOURCE_NONE;
712
713 ret = lwla_set_clock_source(sdi);
714
715 if (ret != SR_OK)
716 return ret;
717
718 ret = lwla_write_reg(sdi->conn, REG_CMD_CTRL2, 100);
719 if (ret != SR_OK)
720 return ret;
721
722 ret = lwla_read_reg(sdi->conn, REG_CMD_CTRL1, &value);
723 if (ret != SR_OK)
724 return ret;
725 sr_info("Received test word 0x%08X back.", value);
726 if (value != 0x12345678)
727 return SR_ERR;
728
729 ret = lwla_read_reg(sdi->conn, REG_CMD_CTRL4, &value);
730 if (ret != SR_OK)
731 return ret;
732 sr_info("Received test word 0x%08X back.", value);
733 if (value != 0x12345678)
734 return SR_ERR;
735
736 ret = lwla_read_reg(sdi->conn, REG_CMD_CTRL3, &value);
737 if (ret != SR_OK)
738 return ret;
739 sr_info("Received test word 0x%08X back.", value);
740 if (value != 0x87654321)
741 return SR_ERR;
742
743 return ret;
744}
745
746/* Select the LWLA clock source. If the clock source changed from the
747 * previous setting, this will download a new bitstream to the FPGA.
748 */
749SR_PRIV int lwla_set_clock_source(const struct sr_dev_inst *sdi)
750{
751 struct dev_context *devc;
752 int ret;
753 enum clock_source selected;
945e4343 754 size_t idx;
5874e88d
DE
755
756 devc = sdi->priv;
757 selected = devc->selected_clock_source;
758
759 if (devc->cur_clock_source != selected) {
760 devc->cur_clock_source = CLOCK_SOURCE_NONE;
945e4343
DE
761 idx = selected;
762 if (idx >= G_N_ELEMENTS(bitstream_map)) {
763 sr_err("Clock source (%d) out of range", selected);
764 return SR_ERR_BUG;
5874e88d 765 }
945e4343
DE
766 ret = lwla_send_bitstream(sdi->conn, bitstream_map[idx]);
767 if (ret == SR_OK)
768 devc->cur_clock_source = selected;
769 return ret;
aeaad0b0 770 }
5874e88d
DE
771 return SR_OK;
772}
773
774/* Configure the LWLA in preparation for an acquisition session.
775 */
776SR_PRIV int lwla_setup_acquisition(const struct sr_dev_inst *sdi)
777{
778 struct dev_context *devc;
779 struct sr_usb_dev_inst *usb;
780 struct regval_pair regvals[7];
781 int ret;
d02d4754 782 gboolean bypass;
5874e88d
DE
783
784 devc = sdi->priv;
785 usb = sdi->conn;
786
787 regvals[0].reg = REG_MEM_CTRL2;
788 regvals[0].val = 2;
789
790 regvals[1].reg = REG_MEM_CTRL2;
791 regvals[1].val = 1;
792
793 regvals[2].reg = REG_CMD_CTRL2;
794 regvals[2].val = 10;
795
796 regvals[3].reg = REG_CMD_CTRL3;
797 regvals[3].val = 0x74;
798
799 regvals[4].reg = REG_CMD_CTRL4;
800 regvals[4].val = 0;
801
802 regvals[5].reg = REG_CMD_CTRL1;
803 regvals[5].val = 0;
804
d02d4754
DE
805 switch (devc->cur_clock_source) {
806 case CLOCK_SOURCE_INT:
807 bypass = (devc->samplerate > SR_MHZ(100));
808 break;
809 case CLOCK_SOURCE_EXT_FALL:
810 case CLOCK_SOURCE_EXT_RISE:
811 bypass = TRUE;
812 break;
813 default:
814 bypass = FALSE;
815 break;
816 }
5874e88d 817 regvals[6].reg = REG_DIV_BYPASS;
d02d4754 818 regvals[6].val = bypass;
5874e88d
DE
819
820 ret = lwla_write_regs(usb, regvals, G_N_ELEMENTS(regvals));
821 if (ret != SR_OK)
822 return ret;
823
824 return capture_setup(sdi);
825}
826
827/* Start the capture operation on the LWLA device. Beginning with this
828 * function, all USB transfers will be asynchronous until the end of the
829 * acquisition session.
830 */
831SR_PRIV int lwla_start_acquisition(const struct sr_dev_inst *sdi)
832{
833 struct dev_context *devc;
834 struct sr_usb_dev_inst *usb;
835 struct acquisition_state *acq;
836 struct regval_pair *regvals;
837
838 devc = sdi->priv;
839 usb = sdi->conn;
840 acq = devc->acquisition;
841
842 libusb_fill_bulk_transfer(acq->xfer_out, usb->devhdl, EP_COMMAND,
843 (unsigned char *)acq->xfer_buf_out, 0,
844 &receive_transfer_out,
845 (struct sr_dev_inst *)sdi, USB_TIMEOUT);
846
847 libusb_fill_bulk_transfer(acq->xfer_in, usb->devhdl, EP_REPLY,
848 (unsigned char *)acq->xfer_buf_in,
849 sizeof acq->xfer_buf_in,
850 &receive_transfer_in,
851 (struct sr_dev_inst *)sdi, USB_TIMEOUT);
852
853 regvals = devc->reg_write_seq;
854
855 regvals[0].reg = REG_CMD_CTRL2;
856 regvals[0].val = 10;
857
858 regvals[1].reg = REG_CMD_CTRL3;
859 regvals[1].val = 1;
860
861 regvals[2].reg = REG_CMD_CTRL4;
862 regvals[2].val = 0;
863
864 regvals[3].reg = REG_CMD_CTRL1;
865 regvals[3].val = 0;
866
867 devc->reg_write_pos = 0;
868 devc->reg_write_len = 4;
869
870 devc->state = STATE_START_CAPTURE;
871
872 return issue_next_write_reg(sdi);
873}
874
875/* Allocate an acquisition state object.
876 */
877SR_PRIV struct acquisition_state *lwla_alloc_acquisition_state(void)
878{
879 struct acquisition_state *acq;
880
881 acq = g_try_new0(struct acquisition_state, 1);
882 if (!acq) {
883 sr_err("Acquisition state malloc failed.");
884 return NULL;
885 }
886
887 acq->xfer_in = libusb_alloc_transfer(0);
888 if (!acq->xfer_in) {
889 sr_err("Transfer malloc failed.");
890 g_free(acq);
891 return NULL;
892 }
893
894 acq->xfer_out = libusb_alloc_transfer(0);
895 if (!acq->xfer_out) {
896 sr_err("Transfer malloc failed.");
897 libusb_free_transfer(acq->xfer_in);
898 g_free(acq);
899 return NULL;
900 }
901
902 return acq;
903}
904
905/* Deallocate an acquisition state object.
906 */
907SR_PRIV void lwla_free_acquisition_state(struct acquisition_state *acq)
908{
909 if (acq) {
910 libusb_free_transfer(acq->xfer_out);
911 libusb_free_transfer(acq->xfer_in);
912 g_free(acq);
913 }
914}
915
916/* USB I/O source callback.
917 */
918SR_PRIV int lwla_receive_data(int fd, int revents, void *cb_data)
919{
920 struct sr_dev_inst *sdi;
921 struct dev_context *devc;
922 struct drv_context *drvc;
923 struct timeval tv;
924 int ret;
925
926 (void)fd;
927
928 sdi = cb_data;
929 devc = sdi->priv;
930 drvc = sdi->driver->priv;
931
932 if (!devc || !drvc)
933 return FALSE;
934
935 /* No timeout: return immediately. */
936 tv.tv_sec = 0;
937 tv.tv_usec = 0;
938
939 ret = libusb_handle_events_timeout_completed(drvc->sr_ctx->libusb_ctx,
940 &tv, NULL);
941 if (ret != 0)
942 sr_err("Event handling failed: %s.", libusb_error_name(ret));
943
944 /* If no event flags are set the timeout must have expired. */
945 if (revents == 0 && devc->state == STATE_STATUS_WAIT) {
946 if (sdi->status == SR_ST_STOPPING)
947 issue_stop_capture(sdi);
948 else
949 request_capture_status(sdi);
950 }
951
952 /* Check if an error occurred on a transfer. */
953 if (devc->transfer_error)
954 end_acquisition(sdi);
aeaad0b0
DE
955
956 return TRUE;
957}