]> sigrok.org Git - libsigrok.git/blame - hardware/sysclk-lwla/protocol.c
sysclk-lwla: Improve message log output.
[libsigrok.git] / hardware / sysclk-lwla / protocol.c
CommitLineData
aeaad0b0
DE
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2014 Daniel Elstner <daniel.kitta@gmail.com>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include "protocol.h"
5874e88d 21#include <string.h>
aeaad0b0 22
5874e88d
DE
23/* Bit mask covering all 34 channels. */
24#define ALL_CHANNELS_MASK (((uint64_t)1 << NUM_PROBES) - 1)
25
26/* Bit mask for the RLE repeat-count-follows flag. */
27#define RLE_FLAG_LEN_FOLLOWS ((uint64_t)1 << 35)
28
29/* Start address of capture status memory area to read. */
30#define CAP_STAT_ADDR 5
31
32/* Number of 64-bit words read from the capture status memory. */
33#define CAP_STAT_LEN 5
34
35/* The bitstream filenames are indexed by the clock source enumeration.
36 */
37static const char *const bitstream_map[] = {
38 FIRMWARE_DIR "/sysclk-lwla1034-off.bitstream",
39 FIRMWARE_DIR "/sysclk-lwla1034-int.bitstream",
40 FIRMWARE_DIR "/sysclk-lwla1034-extpos.bitstream",
41 FIRMWARE_DIR "/sysclk-lwla1034-extneg.bitstream",
42};
43
44/* Submit an already filled-in USB transfer.
45 */
46static int submit_transfer(struct dev_context *devc,
47 struct libusb_transfer *xfer)
48{
49 int ret;
50
51 ret = libusb_submit_transfer(xfer);
52
53 if (ret != 0) {
54 sr_err("Submit transfer failed: %s.", libusb_error_name(ret));
55 devc->transfer_error = TRUE;
56 return SR_ERR;
57 }
58
59 return SR_OK;
60}
61
62/* Set up the LWLA in preparation for an acquisition session.
63 */
64static int capture_setup(const struct sr_dev_inst *sdi)
aeaad0b0 65{
aeaad0b0 66 struct dev_context *devc;
29d58767 67 struct acquisition_state *acq;
5874e88d
DE
68 uint64_t divider_count;
69 uint64_t memory_limit;
70 uint16_t command[3 + 10*4];
aeaad0b0 71
5874e88d 72 devc = sdi->priv;
29d58767 73 acq = devc->acquisition;
aeaad0b0 74
5874e88d
DE
75 command[0] = LWLA_WORD(CMD_CAP_SETUP);
76 command[1] = LWLA_WORD(0); /* address */
77 command[2] = LWLA_WORD(10); /* length */
78
79 command[3] = LWLA_WORD_0(devc->channel_mask);
80 command[4] = LWLA_WORD_1(devc->channel_mask);
81 command[5] = LWLA_WORD_2(devc->channel_mask);
82 command[6] = LWLA_WORD_3(devc->channel_mask);
83
84 /* Set the clock divide counter maximum for samplerates of up to
85 * 100 MHz. At the highest samplerate of 125 MHz the clock divider
86 * is bypassed.
87 */
29d58767 88 if (!acq->bypass_clockdiv && devc->samplerate > 0)
5874e88d
DE
89 divider_count = SR_MHZ(100) / devc->samplerate - 1;
90 else
91 divider_count = 0;
92
93 command[7] = LWLA_WORD_0(divider_count);
94 command[8] = LWLA_WORD_1(divider_count);
95 command[9] = LWLA_WORD_2(divider_count);
96 command[10] = LWLA_WORD_3(divider_count);
97
98 command[11] = LWLA_WORD_0(devc->trigger_values);
99 command[12] = LWLA_WORD_1(devc->trigger_values);
100 command[13] = LWLA_WORD_2(devc->trigger_values);
101 command[14] = LWLA_WORD_3(devc->trigger_values);
102
103 command[15] = LWLA_WORD_0(devc->trigger_edge_mask);
104 command[16] = LWLA_WORD_1(devc->trigger_edge_mask);
105 command[17] = LWLA_WORD_2(devc->trigger_edge_mask);
106 command[18] = LWLA_WORD_3(devc->trigger_edge_mask);
107
108 command[19] = LWLA_WORD_0(devc->trigger_mask);
109 command[20] = LWLA_WORD_1(devc->trigger_mask);
110 command[21] = LWLA_WORD_2(devc->trigger_mask);
111 command[22] = LWLA_WORD_3(devc->trigger_mask);
112
113 /* Set the capture memory full threshold. This is slightly less
114 * than the actual maximum, most likely in order to compensate for
115 * pipeline latency.
116 */
117 memory_limit = MEMORY_DEPTH - 16;
118
119 command[23] = LWLA_WORD_0(memory_limit);
120 command[24] = LWLA_WORD_1(memory_limit);
121 command[25] = LWLA_WORD_2(memory_limit);
122 command[26] = LWLA_WORD_3(memory_limit);
123
124 /* Fill remaining 64-bit words with zeroes. */
125 memset(&command[27], 0, 16 * sizeof(uint16_t));
126
127 return lwla_send_command(sdi->conn, command, G_N_ELEMENTS(command));
128}
129
130/* Issue a register write command as an asynchronous USB transfer.
131 */
132static int issue_write_reg(const struct sr_dev_inst *sdi,
133 unsigned int reg, unsigned int value)
134{
135 struct dev_context *devc;
136 struct acquisition_state *acq;
137
138 devc = sdi->priv;
139 acq = devc->acquisition;
140
141 acq->xfer_buf_out[0] = LWLA_WORD(CMD_WRITE_REG);
142 acq->xfer_buf_out[1] = LWLA_WORD(reg);
143 acq->xfer_buf_out[2] = LWLA_WORD_0(value);
144 acq->xfer_buf_out[3] = LWLA_WORD_1(value);
145
146 acq->xfer_out->length = 4 * sizeof(uint16_t);
147
148 return submit_transfer(devc, acq->xfer_out);
149}
150
151/* Issue a register write command as an asynchronous USB transfer for the
152 * next register/value pair of the currently active register write sequence.
153 */
154static int issue_next_write_reg(const struct sr_dev_inst *sdi)
155{
156 struct dev_context *devc;
157 struct regval_pair *regval;
158 int ret;
159
160 devc = sdi->priv;
161
162 if (devc->reg_write_pos >= devc->reg_write_len) {
163 sr_err("Already written all registers in sequence.");
164 return SR_ERR_BUG;
165 }
166 regval = &devc->reg_write_seq[devc->reg_write_pos];
167
168 ret = issue_write_reg(sdi, regval->reg, regval->val);
169 if (ret != SR_OK)
170 return ret;
171
172 ++devc->reg_write_pos;
173 return SR_OK;
174}
175
176/* Issue a capture status request as an asynchronous USB transfer.
177 */
178static void request_capture_status(const struct sr_dev_inst *sdi)
179{
180 struct dev_context *devc;
181 struct acquisition_state *acq;
182
183 devc = sdi->priv;
184 acq = devc->acquisition;
185
186 acq->xfer_buf_out[0] = LWLA_WORD(CMD_CAP_STATUS);
187 acq->xfer_buf_out[1] = LWLA_WORD(CAP_STAT_ADDR);
188 acq->xfer_buf_out[2] = LWLA_WORD(CAP_STAT_LEN);
189
190 acq->xfer_out->length = 3 * sizeof(uint16_t);
191
192 if (submit_transfer(devc, acq->xfer_out) == SR_OK)
193 devc->state = STATE_STATUS_REQUEST;
194}
195
196/* Issue a request for the capture buffer fill level as
197 * an asynchronous USB transfer.
198 */
199static void request_capture_length(const struct sr_dev_inst *sdi)
200{
201 struct dev_context *devc;
202 struct acquisition_state *acq;
203
204 devc = sdi->priv;
205 acq = devc->acquisition;
206
207 acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_REG);
208 acq->xfer_buf_out[1] = LWLA_WORD(REG_MEM_FILL);
209
210 acq->xfer_out->length = 2 * sizeof(uint16_t);
211
212 if (submit_transfer(devc, acq->xfer_out) == SR_OK)
213 devc->state = STATE_LENGTH_REQUEST;
214}
215
216/* Initiate the capture memory read operation: Reset the acquisition state
217 * and start a sequence of register writes in order to set up the device for
218 * reading from the capture buffer.
219 */
220static void issue_read_start(const struct sr_dev_inst *sdi)
221{
222 struct dev_context *devc;
223 struct acquisition_state *acq;
224 struct regval_pair *regvals;
225
226 devc = sdi->priv;
227 acq = devc->acquisition;
228
229 /* Reset RLE state. */
230 acq->rle = RLE_STATE_DATA;
231 acq->sample = 0;
232 acq->run_len = 0;
233
29d58767 234 acq->samples_done = 0;
5874e88d
DE
235
236 /* For some reason, the start address is 4 rather than 0. */
237 acq->mem_addr_done = 4;
238 acq->mem_addr_next = 4;
239 acq->mem_addr_stop = acq->mem_addr_fill;
240
2cfd16a3
DE
241 /* Sample position in the packet output buffer. */
242 acq->out_index = 0;
5874e88d
DE
243
244 regvals = devc->reg_write_seq;
245
246 regvals[0].reg = REG_DIV_BYPASS;
247 regvals[0].val = 1;
248
249 regvals[1].reg = REG_MEM_CTRL2;
250 regvals[1].val = 2;
251
252 regvals[2].reg = REG_MEM_CTRL4;
253 regvals[2].val = 4;
254
255 devc->reg_write_pos = 0;
256 devc->reg_write_len = 3;
257
258 if (issue_next_write_reg(sdi) == SR_OK)
259 devc->state = STATE_READ_PREPARE;
260}
261
d02d4754
DE
262/* Issue a command as an asynchronous USB transfer which returns the device
263 * to normal state after a read operation. Sets a new device context state
264 * on success.
265 */
5874e88d
DE
266static void issue_read_end(const struct sr_dev_inst *sdi)
267{
268 struct dev_context *devc;
269
270 devc = sdi->priv;
271
272 if (issue_write_reg(sdi, REG_DIV_BYPASS, 0) == SR_OK)
273 devc->state = STATE_READ_END;
274}
275
276/* Decode an incoming reponse to a buffer fill level request and act on it
277 * as appropriate. Note that this function changes the device context state.
278 */
279static void process_capture_length(const struct sr_dev_inst *sdi)
280{
281 struct dev_context *devc;
282 struct acquisition_state *acq;
283
284 devc = sdi->priv;
285 acq = devc->acquisition;
286
287 if (acq->xfer_in->actual_length != 4) {
288 sr_err("Received size %d doesn't match expected size 4.",
289 acq->xfer_in->actual_length);
290 devc->transfer_error = TRUE;
291 return;
292 }
293 acq->mem_addr_fill = LWLA_READ32(acq->xfer_buf_in);
294
9497f49e 295 sr_dbg("%zu words in capture buffer.", acq->mem_addr_fill);
5874e88d
DE
296
297 if (acq->mem_addr_fill > 0 && sdi->status == SR_ST_ACTIVE)
298 issue_read_start(sdi);
299 else
300 issue_read_end(sdi);
301}
302
303/* Initiate a sequence of register write commands with the effect of
304 * cancelling a running capture operation. This sets a new device state
305 * if issuing the first command succeeds.
306 */
307static void issue_stop_capture(const struct sr_dev_inst *sdi)
308{
309 struct dev_context *devc;
310 struct regval_pair *regvals;
311
312 devc = sdi->priv;
313
314 if (devc->stopping_in_progress)
315 return;
316
317 regvals = devc->reg_write_seq;
318
319 regvals[0].reg = REG_CMD_CTRL2;
320 regvals[0].val = 10;
321
322 regvals[1].reg = REG_CMD_CTRL3;
323 regvals[1].val = 0;
324
325 regvals[2].reg = REG_CMD_CTRL4;
326 regvals[2].val = 0;
327
328 regvals[3].reg = REG_CMD_CTRL1;
329 regvals[3].val = 0;
330
331 regvals[4].reg = REG_DIV_BYPASS;
332 regvals[4].val = 0;
333
334 devc->reg_write_pos = 0;
335 devc->reg_write_len = 5;
336
337 if (issue_next_write_reg(sdi) == SR_OK) {
338 devc->stopping_in_progress = TRUE;
339 devc->state = STATE_STOP_CAPTURE;
340 }
341}
342
343/* Decode an incoming capture status reponse and act on it as appropriate.
344 * Note that this function changes the device state.
345 */
346static void process_capture_status(const struct sr_dev_inst *sdi)
347{
8a3ddd88 348 uint64_t duration;
5874e88d
DE
349 struct dev_context *devc;
350 struct acquisition_state *acq;
9497f49e
DE
351 unsigned int mem_fill;
352 unsigned int flags;
5874e88d
DE
353
354 devc = sdi->priv;
355 acq = devc->acquisition;
356
357 if (acq->xfer_in->actual_length != CAP_STAT_LEN * 8) {
358 sr_err("Received size %d doesn't match expected size %d.",
359 acq->xfer_in->actual_length, CAP_STAT_LEN * 8);
360 devc->transfer_error = TRUE;
361 return;
362 }
363
364 /* TODO: Find out the actual bit width of these fields as stored
365 * in the FPGA. These fields are definitely less than 64 bit wide
366 * internally, and the unused bits occasionally even contain garbage.
367 */
9497f49e
DE
368 mem_fill = LWLA_READ32(&acq->xfer_buf_in[0]);
369 duration = LWLA_READ32(&acq->xfer_buf_in[8]);
370 flags = LWLA_READ32(&acq->xfer_buf_in[16]) & STATUS_FLAG_MASK;
5874e88d 371
29d58767
DE
372 /* The LWLA1034 runs at 125 MHz if the clock divider is bypassed.
373 * However, the time base used for the duration is apparently not
374 * adjusted for this "boost" mode. Whereas normally the duration
375 * unit is 1 ms, it is 0.8 ms when the clock divider is bypassed.
376 * As 0.8 = 100 MHz / 125 MHz, it seems that the internal cycle
377 * counter period is the same as at the 100 MHz setting.
8a3ddd88 378 */
29d58767
DE
379 if (acq->bypass_clockdiv)
380 acq->duration_now = duration * 4 / 5;
381 else
382 acq->duration_now = duration;
8a3ddd88 383
9497f49e
DE
384 sr_spew("Captured %u words, %" PRIu64 " ms, flags 0x%02X.",
385 mem_fill, acq->duration_now, flags);
386
387 if ((flags & STATUS_TRIGGERED) > (acq->capture_flags & STATUS_TRIGGERED))
388 sr_info("Capture triggered.");
389
390 acq->capture_flags = flags;
5874e88d 391
29d58767 392 if (acq->duration_now >= acq->duration_max) {
9497f49e 393 sr_dbg("Time limit reached, stopping capture.");
5874e88d
DE
394 issue_stop_capture(sdi);
395 return;
396 }
397 devc->state = STATE_STATUS_WAIT;
398
399 if ((acq->capture_flags & STATUS_TRIGGERED) == 0) {
400 sr_spew("Waiting for trigger.");
401 } else if ((acq->capture_flags & STATUS_MEM_AVAIL) == 0) {
402 sr_dbg("Capture memory filled.");
403 request_capture_length(sdi);
404 } else if ((acq->capture_flags & STATUS_CAPTURING) != 0) {
405 sr_spew("Sampling in progress.");
406 }
407}
408
409/* Issue a capture buffer read request as an asynchronous USB transfer.
410 * The address and size of the memory area to read are derived from the
411 * current acquisition state.
412 */
413static void request_read_mem(const struct sr_dev_inst *sdi)
414{
415 struct dev_context *devc;
416 struct acquisition_state *acq;
417 size_t count;
418
419 devc = sdi->priv;
420 acq = devc->acquisition;
421
422 if (acq->mem_addr_next >= acq->mem_addr_stop)
423 return;
424
425 /* Always read a multiple of 8 device words. */
426 count = (acq->mem_addr_stop - acq->mem_addr_next + 7) / 8 * 8;
427 count = MIN(count, READ_CHUNK_LEN);
428
429 acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_MEM);
430 acq->xfer_buf_out[1] = LWLA_WORD_0(acq->mem_addr_next);
431 acq->xfer_buf_out[2] = LWLA_WORD_1(acq->mem_addr_next);
432 acq->xfer_buf_out[3] = LWLA_WORD_0(count);
433 acq->xfer_buf_out[4] = LWLA_WORD_1(count);
434
435 acq->xfer_out->length = 5 * sizeof(uint16_t);
436
437 if (submit_transfer(devc, acq->xfer_out) == SR_OK) {
438 acq->mem_addr_next += count;
439 devc->state = STATE_READ_REQUEST;
440 }
441}
442
5874e88d
DE
443/* Demangle and decompress incoming sample data from the capture buffer.
444 * The data chunk is taken from the acquisition state, and is expected to
445 * contain a multiple of 8 device words.
446 * All data currently in the acquisition buffer will be processed. Packets
447 * of decoded samples are sent off to the session bus whenever the output
448 * buffer becomes full while decoding.
449 */
450static int process_sample_data(const struct sr_dev_inst *sdi)
451{
452 uint64_t sample;
5874e88d
DE
453 uint64_t high_nibbles;
454 uint64_t word;
455 struct dev_context *devc;
456 struct acquisition_state *acq;
457 uint8_t *out_p;
458 uint16_t *slice;
2cfd16a3
DE
459 struct sr_datafeed_packet packet;
460 struct sr_datafeed_logic logic;
5874e88d
DE
461 size_t expect_len;
462 size_t actual_len;
2cfd16a3
DE
463 size_t out_max_samples;
464 size_t out_run_samples;
465 size_t ri;
5874e88d
DE
466 size_t in_words_left;
467 size_t si;
468
469 devc = sdi->priv;
470 acq = devc->acquisition;
471
472 if (acq->mem_addr_done >= acq->mem_addr_stop
29d58767 473 || acq->samples_done >= acq->samples_max)
5874e88d
DE
474 return SR_OK;
475
476 in_words_left = MIN(acq->mem_addr_stop - acq->mem_addr_done,
477 READ_CHUNK_LEN);
478 expect_len = LWLA1034_MEMBUF_LEN(in_words_left) * sizeof(uint16_t);
479 actual_len = acq->xfer_in->actual_length;
480
481 if (actual_len != expect_len) {
9497f49e
DE
482 sr_err("Received size %zu does not match expected size %zu.",
483 actual_len, expect_len);
5874e88d
DE
484 devc->transfer_error = TRUE;
485 return SR_ERR;
486 }
487 acq->mem_addr_done += in_words_left;
2cfd16a3
DE
488
489 /* Prepare session packet. */
490 packet.type = SR_DF_LOGIC;
491 packet.payload = &logic;
492 logic.unitsize = UNIT_SIZE;
493 logic.data = acq->out_packet;
494
5874e88d
DE
495 slice = acq->xfer_buf_in;
496 si = 0; /* word index within slice */
497
498 for (;;) {
2cfd16a3
DE
499 /* Calculate number of samples to write into packet. */
500 out_max_samples = MIN(acq->samples_max - acq->samples_done,
501 PACKET_LENGTH - acq->out_index);
502 out_run_samples = MIN(acq->run_len, out_max_samples);
503
5874e88d 504 /* Expand run-length samples into session packet. */
2cfd16a3
DE
505 sample = acq->sample;
506 out_p = &acq->out_packet[acq->out_index * UNIT_SIZE];
507
508 for (ri = 0; ri < out_run_samples; ++ri) {
5874e88d
DE
509 out_p[0] = sample & 0xFF;
510 out_p[1] = (sample >> 8) & 0xFF;
511 out_p[2] = (sample >> 16) & 0xFF;
512 out_p[3] = (sample >> 24) & 0xFF;
513 out_p[4] = (sample >> 32) & 0xFF;
2cfd16a3
DE
514 out_p += UNIT_SIZE;
515 }
516 acq->run_len -= out_run_samples;
517 acq->out_index += out_run_samples;
518 acq->samples_done += out_run_samples;
519
520 /* Packet full or sample count limit reached? */
521 if (out_run_samples == out_max_samples) {
522 logic.length = acq->out_index * UNIT_SIZE;
523 sr_session_send(sdi, &packet);
524 acq->out_index = 0;
525
526 if (acq->samples_done >= acq->samples_max)
527 return SR_OK; /* sample limit reached */
528 if (acq->run_len > 0)
529 continue; /* need another packet */
5874e88d 530 }
5874e88d
DE
531
532 if (in_words_left == 0)
533 break; /* done with current chunk */
534
535 /* Now work on the current slice. */
536 high_nibbles = LWLA_READ32(&slice[8 * 2]);
537 word = LWLA_READ32(&slice[si * 2]);
538 word |= (high_nibbles << (4 * si + 4)) & ((uint64_t)0xF << 32);
539
540 if (acq->rle == RLE_STATE_DATA) {
541 acq->sample = word & ALL_CHANNELS_MASK;
542 acq->run_len = ((word >> NUM_PROBES) & 1) + 1;
543 if (word & RLE_FLAG_LEN_FOLLOWS)
544 acq->rle = RLE_STATE_LEN;
545 } else {
546 acq->run_len += word << 1;
547 acq->rle = RLE_STATE_DATA;
548 }
549
550 /* Move to next word. */
551 if (++si >= 8) {
552 si = 0;
553 slice += 9 * 2;
554 }
555 --in_words_left;
556 }
557
2cfd16a3
DE
558 /* Send out partially filled packet if this was the last chunk. */
559 if (acq->mem_addr_done >= acq->mem_addr_stop && acq->out_index > 0) {
560 logic.length = acq->out_index * UNIT_SIZE;
561 sr_session_send(sdi, &packet);
562 acq->out_index = 0;
563 }
5874e88d
DE
564 return SR_OK;
565}
566
567/* Finish an acquisition session. This sends the end packet to the session
568 * bus and removes the listener for asynchronous USB transfers.
569 */
570static void end_acquisition(struct sr_dev_inst *sdi)
571{
572 struct drv_context *drvc;
573 struct dev_context *devc;
574 struct sr_datafeed_packet packet;
575
576 drvc = sdi->driver->priv;
577 devc = sdi->priv;
578
579 if (devc->state == STATE_IDLE)
580 return;
581
582 devc->state = STATE_IDLE;
583
584 /* Remove USB file descriptors from polling. */
585 usb_source_remove(drvc->sr_ctx);
586
587 packet.type = SR_DF_END;
588 sr_session_send(sdi, &packet);
589
590 lwla_free_acquisition_state(devc->acquisition);
591 devc->acquisition = NULL;
592
593 sdi->status = SR_ST_ACTIVE;
594}
595
596/* USB output transfer completion callback.
597 */
598static void receive_transfer_out(struct libusb_transfer *transfer)
599{
600 struct sr_dev_inst *sdi;
601 struct dev_context *devc;
602
603 sdi = transfer->user_data;
604 devc = sdi->priv;
605
606 if (transfer->status != LIBUSB_TRANSFER_COMPLETED) {
607 sr_err("Transfer to device failed: %d.", transfer->status);
608 devc->transfer_error = TRUE;
609 return;
610 }
611
612 if (devc->reg_write_pos < devc->reg_write_len) {
613 issue_next_write_reg(sdi);
614 } else {
615 switch (devc->state) {
616 case STATE_START_CAPTURE:
617 devc->state = STATE_STATUS_WAIT;
618 break;
619 case STATE_STATUS_REQUEST:
620 devc->state = STATE_STATUS_RESPONSE;
621 submit_transfer(devc, devc->acquisition->xfer_in);
622 break;
623 case STATE_STOP_CAPTURE:
624 if (sdi->status == SR_ST_ACTIVE)
625 request_capture_length(sdi);
626 else
627 end_acquisition(sdi);
628 break;
629 case STATE_LENGTH_REQUEST:
630 devc->state = STATE_LENGTH_RESPONSE;
631 submit_transfer(devc, devc->acquisition->xfer_in);
632 break;
633 case STATE_READ_PREPARE:
634 request_read_mem(sdi);
635 break;
636 case STATE_READ_REQUEST:
637 devc->state = STATE_READ_RESPONSE;
638 submit_transfer(devc, devc->acquisition->xfer_in);
639 break;
640 case STATE_READ_END:
641 end_acquisition(sdi);
642 break;
643 default:
644 sr_err("Unexpected device state %d.", devc->state);
645 break;
646 }
647 }
648}
649
650/* USB input transfer completion callback.
651 */
652static void receive_transfer_in(struct libusb_transfer *transfer)
653{
654 struct sr_dev_inst *sdi;
655 struct dev_context *devc;
656 struct acquisition_state *acq;
657
658 sdi = transfer->user_data;
659 devc = sdi->priv;
660 acq = devc->acquisition;
661
662 if (transfer->status != LIBUSB_TRANSFER_COMPLETED) {
663 sr_err("Transfer from device failed: %d.", transfer->status);
664 devc->transfer_error = TRUE;
665 return;
666 }
667
668 switch (devc->state) {
669 case STATE_STATUS_RESPONSE:
670 process_capture_status(sdi);
671 break;
672 case STATE_LENGTH_RESPONSE:
673 process_capture_length(sdi);
674 break;
675 case STATE_READ_RESPONSE:
676 if (process_sample_data(sdi) == SR_OK
677 && acq->mem_addr_next < acq->mem_addr_stop
29d58767 678 && acq->samples_done < acq->samples_max)
5874e88d
DE
679 request_read_mem(sdi);
680 else
681 issue_read_end(sdi);
682 break;
683 default:
684 sr_err("Unexpected device state %d.", devc->state);
685 break;
686 }
687}
688
689/* Initialize the LWLA. This downloads a bitstream into the FPGA
690 * and executes a simple device test sequence.
691 */
692SR_PRIV int lwla_init_device(const struct sr_dev_inst *sdi)
693{
694 struct dev_context *devc;
695 int ret;
696 uint32_t value;
697
698 devc = sdi->priv;
699
700 /* Select internal clock if it hasn't been set yet */
701 if (devc->selected_clock_source == CLOCK_SOURCE_NONE)
702 devc->selected_clock_source = CLOCK_SOURCE_INT;
703
704 /* Force reload of bitstream */
705 devc->cur_clock_source = CLOCK_SOURCE_NONE;
706
707 ret = lwla_set_clock_source(sdi);
708
709 if (ret != SR_OK)
710 return ret;
711
712 ret = lwla_write_reg(sdi->conn, REG_CMD_CTRL2, 100);
713 if (ret != SR_OK)
714 return ret;
715
716 ret = lwla_read_reg(sdi->conn, REG_CMD_CTRL1, &value);
717 if (ret != SR_OK)
718 return ret;
9497f49e 719 sr_dbg("Received test word 0x%08X back.", value);
5874e88d
DE
720 if (value != 0x12345678)
721 return SR_ERR;
722
723 ret = lwla_read_reg(sdi->conn, REG_CMD_CTRL4, &value);
724 if (ret != SR_OK)
725 return ret;
9497f49e 726 sr_dbg("Received test word 0x%08X back.", value);
5874e88d
DE
727 if (value != 0x12345678)
728 return SR_ERR;
729
730 ret = lwla_read_reg(sdi->conn, REG_CMD_CTRL3, &value);
731 if (ret != SR_OK)
732 return ret;
9497f49e 733 sr_dbg("Received test word 0x%08X back.", value);
5874e88d
DE
734 if (value != 0x87654321)
735 return SR_ERR;
736
737 return ret;
738}
739
740/* Select the LWLA clock source. If the clock source changed from the
741 * previous setting, this will download a new bitstream to the FPGA.
742 */
743SR_PRIV int lwla_set_clock_source(const struct sr_dev_inst *sdi)
744{
745 struct dev_context *devc;
746 int ret;
747 enum clock_source selected;
945e4343 748 size_t idx;
5874e88d
DE
749
750 devc = sdi->priv;
751 selected = devc->selected_clock_source;
752
753 if (devc->cur_clock_source != selected) {
754 devc->cur_clock_source = CLOCK_SOURCE_NONE;
945e4343
DE
755 idx = selected;
756 if (idx >= G_N_ELEMENTS(bitstream_map)) {
757 sr_err("Clock source (%d) out of range", selected);
758 return SR_ERR_BUG;
5874e88d 759 }
945e4343
DE
760 ret = lwla_send_bitstream(sdi->conn, bitstream_map[idx]);
761 if (ret == SR_OK)
762 devc->cur_clock_source = selected;
763 return ret;
aeaad0b0 764 }
5874e88d
DE
765 return SR_OK;
766}
767
768/* Configure the LWLA in preparation for an acquisition session.
769 */
770SR_PRIV int lwla_setup_acquisition(const struct sr_dev_inst *sdi)
771{
772 struct dev_context *devc;
773 struct sr_usb_dev_inst *usb;
29d58767 774 struct acquisition_state *acq;
5874e88d
DE
775 struct regval_pair regvals[7];
776 int ret;
777
778 devc = sdi->priv;
779 usb = sdi->conn;
29d58767
DE
780 acq = devc->acquisition;
781
9497f49e
DE
782 if (devc->limit_msec > 0) {
783 acq->duration_max = devc->limit_msec;
784 sr_info("Acquisition time limit %" PRIu64 " ms.",
785 devc->limit_msec);
786 } else
787 acq->duration_max = MAX_LIMIT_MSEC;
788
789 if (devc->limit_samples > 0) {
790 acq->samples_max = devc->limit_samples;
791 sr_info("Acquisition sample count limit %" PRIu64 ".",
792 devc->limit_samples);
793 } else
794 acq->samples_max = MAX_LIMIT_SAMPLES;
29d58767
DE
795
796 switch (devc->cur_clock_source) {
797 case CLOCK_SOURCE_INT:
9497f49e
DE
798 sr_info("Internal clock, samplerate %" PRIu64 ".",
799 devc->samplerate);
29d58767
DE
800 if (devc->samplerate == 0)
801 return SR_ERR_BUG;
802 /* At 125 MHz, the clock divider is bypassed. */
803 acq->bypass_clockdiv = (devc->samplerate > SR_MHZ(100));
804
805 /* If only one of the limits is set, derive the other one. */
806 if (devc->limit_msec == 0 && devc->limit_samples > 0)
807 acq->duration_max = devc->limit_samples
808 * 1000 / devc->samplerate + 1;
809 else if (devc->limit_samples == 0 && devc->limit_msec > 0)
810 acq->samples_max = devc->limit_msec
811 * devc->samplerate / 1000;
812 break;
813 case CLOCK_SOURCE_EXT_FALL:
9497f49e
DE
814 sr_info("External clock, falling edge.");
815 acq->bypass_clockdiv = TRUE;
816 break;
29d58767 817 case CLOCK_SOURCE_EXT_RISE:
9497f49e 818 sr_info("External clock, rising edge.");
29d58767
DE
819 acq->bypass_clockdiv = TRUE;
820 break;
821 default:
822 sr_err("No valid clock source has been configured.");
823 return SR_ERR;
824 }
5874e88d
DE
825
826 regvals[0].reg = REG_MEM_CTRL2;
827 regvals[0].val = 2;
828
829 regvals[1].reg = REG_MEM_CTRL2;
830 regvals[1].val = 1;
831
832 regvals[2].reg = REG_CMD_CTRL2;
833 regvals[2].val = 10;
834
835 regvals[3].reg = REG_CMD_CTRL3;
836 regvals[3].val = 0x74;
837
838 regvals[4].reg = REG_CMD_CTRL4;
839 regvals[4].val = 0;
840
841 regvals[5].reg = REG_CMD_CTRL1;
842 regvals[5].val = 0;
843
844 regvals[6].reg = REG_DIV_BYPASS;
29d58767 845 regvals[6].val = acq->bypass_clockdiv;
5874e88d
DE
846
847 ret = lwla_write_regs(usb, regvals, G_N_ELEMENTS(regvals));
848 if (ret != SR_OK)
849 return ret;
850
851 return capture_setup(sdi);
852}
853
854/* Start the capture operation on the LWLA device. Beginning with this
855 * function, all USB transfers will be asynchronous until the end of the
856 * acquisition session.
857 */
858SR_PRIV int lwla_start_acquisition(const struct sr_dev_inst *sdi)
859{
860 struct dev_context *devc;
861 struct sr_usb_dev_inst *usb;
862 struct acquisition_state *acq;
863 struct regval_pair *regvals;
864
865 devc = sdi->priv;
866 usb = sdi->conn;
867 acq = devc->acquisition;
868
9497f49e
DE
869 acq->duration_now = 0;
870 acq->mem_addr_fill = 0;
871 acq->capture_flags = 0;
29d58767 872
5874e88d
DE
873 libusb_fill_bulk_transfer(acq->xfer_out, usb->devhdl, EP_COMMAND,
874 (unsigned char *)acq->xfer_buf_out, 0,
875 &receive_transfer_out,
876 (struct sr_dev_inst *)sdi, USB_TIMEOUT);
877
878 libusb_fill_bulk_transfer(acq->xfer_in, usb->devhdl, EP_REPLY,
879 (unsigned char *)acq->xfer_buf_in,
880 sizeof acq->xfer_buf_in,
881 &receive_transfer_in,
882 (struct sr_dev_inst *)sdi, USB_TIMEOUT);
883
884 regvals = devc->reg_write_seq;
885
886 regvals[0].reg = REG_CMD_CTRL2;
887 regvals[0].val = 10;
888
889 regvals[1].reg = REG_CMD_CTRL3;
890 regvals[1].val = 1;
891
892 regvals[2].reg = REG_CMD_CTRL4;
893 regvals[2].val = 0;
894
895 regvals[3].reg = REG_CMD_CTRL1;
896 regvals[3].val = 0;
897
898 devc->reg_write_pos = 0;
899 devc->reg_write_len = 4;
900
901 devc->state = STATE_START_CAPTURE;
902
903 return issue_next_write_reg(sdi);
904}
905
906/* Allocate an acquisition state object.
907 */
908SR_PRIV struct acquisition_state *lwla_alloc_acquisition_state(void)
909{
910 struct acquisition_state *acq;
911
912 acq = g_try_new0(struct acquisition_state, 1);
913 if (!acq) {
914 sr_err("Acquisition state malloc failed.");
915 return NULL;
916 }
917
918 acq->xfer_in = libusb_alloc_transfer(0);
919 if (!acq->xfer_in) {
920 sr_err("Transfer malloc failed.");
921 g_free(acq);
922 return NULL;
923 }
924
925 acq->xfer_out = libusb_alloc_transfer(0);
926 if (!acq->xfer_out) {
927 sr_err("Transfer malloc failed.");
928 libusb_free_transfer(acq->xfer_in);
929 g_free(acq);
930 return NULL;
931 }
932
933 return acq;
934}
935
936/* Deallocate an acquisition state object.
937 */
938SR_PRIV void lwla_free_acquisition_state(struct acquisition_state *acq)
939{
940 if (acq) {
941 libusb_free_transfer(acq->xfer_out);
942 libusb_free_transfer(acq->xfer_in);
943 g_free(acq);
944 }
945}
946
947/* USB I/O source callback.
948 */
949SR_PRIV int lwla_receive_data(int fd, int revents, void *cb_data)
950{
951 struct sr_dev_inst *sdi;
952 struct dev_context *devc;
953 struct drv_context *drvc;
954 struct timeval tv;
955 int ret;
956
957 (void)fd;
958
959 sdi = cb_data;
960 devc = sdi->priv;
961 drvc = sdi->driver->priv;
962
963 if (!devc || !drvc)
964 return FALSE;
965
966 /* No timeout: return immediately. */
967 tv.tv_sec = 0;
968 tv.tv_usec = 0;
969
970 ret = libusb_handle_events_timeout_completed(drvc->sr_ctx->libusb_ctx,
971 &tv, NULL);
972 if (ret != 0)
973 sr_err("Event handling failed: %s.", libusb_error_name(ret));
974
975 /* If no event flags are set the timeout must have expired. */
976 if (revents == 0 && devc->state == STATE_STATUS_WAIT) {
977 if (sdi->status == SR_ST_STOPPING)
978 issue_stop_capture(sdi);
979 else
980 request_capture_status(sdi);
981 }
982
983 /* Check if an error occurred on a transfer. */
984 if (devc->transfer_error)
985 end_acquisition(sdi);
aeaad0b0
DE
986
987 return TRUE;
988}