]> sigrok.org Git - libsigrok.git/blame_incremental - src/hwdriver.c
rigol-dg: Fix reading current output signal duty cycle value.
[libsigrok.git] / src / hwdriver.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <config.h>
21#include <stdlib.h>
22#include <stdio.h>
23#include <sys/types.h>
24#include <dirent.h>
25#include <string.h>
26#include <glib.h>
27#include <libsigrok/libsigrok.h>
28#include "libsigrok-internal.h"
29
30/** @cond PRIVATE */
31#define LOG_PREFIX "hwdriver"
32/** @endcond */
33
34/**
35 * @file
36 *
37 * Hardware driver handling in libsigrok.
38 */
39
40/**
41 * @defgroup grp_driver Hardware drivers
42 *
43 * Hardware driver handling in libsigrok.
44 *
45 * @{
46 */
47
48/* Please use the same order/grouping as in enum sr_configkey (libsigrok.h). */
49static struct sr_key_info sr_key_info_config[] = {
50 /* Device classes */
51 {SR_CONF_LOGIC_ANALYZER, SR_T_STRING, NULL, "Logic analyzer", NULL},
52 {SR_CONF_OSCILLOSCOPE, SR_T_STRING, NULL, "Oscilloscope", NULL},
53 {SR_CONF_MULTIMETER, SR_T_STRING, NULL, "Multimeter", NULL},
54 {SR_CONF_DEMO_DEV, SR_T_STRING, NULL, "Demo device", NULL},
55 {SR_CONF_SOUNDLEVELMETER, SR_T_STRING, NULL, "Sound level meter", NULL},
56 {SR_CONF_THERMOMETER, SR_T_STRING, NULL, "Thermometer", NULL},
57 {SR_CONF_HYGROMETER, SR_T_STRING, NULL, "Hygrometer", NULL},
58 {SR_CONF_ENERGYMETER, SR_T_STRING, NULL, "Energy meter", NULL},
59 {SR_CONF_DEMODULATOR, SR_T_STRING, NULL, "Demodulator", NULL},
60 {SR_CONF_POWER_SUPPLY, SR_T_STRING, NULL, "Power supply", NULL},
61 {SR_CONF_LCRMETER, SR_T_STRING, NULL, "LCR meter", NULL},
62 {SR_CONF_ELECTRONIC_LOAD, SR_T_STRING, NULL, "Electronic load", NULL},
63 {SR_CONF_SCALE, SR_T_STRING, NULL, "Scale", NULL},
64 {SR_CONF_SIGNAL_GENERATOR, SR_T_STRING, NULL, "Signal generator", NULL},
65 {SR_CONF_POWERMETER, SR_T_STRING, NULL, "Power meter", NULL},
66
67 /* Driver scan options */
68 {SR_CONF_CONN, SR_T_STRING, "conn",
69 "Connection", NULL},
70 {SR_CONF_SERIALCOMM, SR_T_STRING, "serialcomm",
71 "Serial communication", NULL},
72 {SR_CONF_MODBUSADDR, SR_T_UINT64, "modbusaddr",
73 "Modbus slave address", NULL},
74 {SR_CONF_FORCE_DETECT, SR_T_STRING, "force_detect",
75 "Forced detection", NULL},
76
77 /* Device (or channel group) configuration */
78 {SR_CONF_SAMPLERATE, SR_T_UINT64, "samplerate",
79 "Sample rate", NULL},
80 {SR_CONF_CAPTURE_RATIO, SR_T_UINT64, "captureratio",
81 "Pre-trigger capture ratio", NULL},
82 {SR_CONF_PATTERN_MODE, SR_T_STRING, "pattern",
83 "Pattern", NULL},
84 {SR_CONF_RLE, SR_T_BOOL, "rle",
85 "Run length encoding", NULL},
86 {SR_CONF_TRIGGER_SLOPE, SR_T_STRING, "triggerslope",
87 "Trigger slope", NULL},
88 {SR_CONF_AVERAGING, SR_T_BOOL, "averaging",
89 "Averaging", NULL},
90 {SR_CONF_AVG_SAMPLES, SR_T_UINT64, "avg_samples",
91 "Number of samples to average over", NULL},
92 {SR_CONF_TRIGGER_SOURCE, SR_T_STRING, "triggersource",
93 "Trigger source", NULL},
94 {SR_CONF_HORIZ_TRIGGERPOS, SR_T_FLOAT, "horiz_triggerpos",
95 "Horizontal trigger position", NULL},
96 {SR_CONF_BUFFERSIZE, SR_T_UINT64, "buffersize",
97 "Buffer size", NULL},
98 {SR_CONF_TIMEBASE, SR_T_RATIONAL_PERIOD, "timebase",
99 "Time base", NULL},
100 {SR_CONF_FILTER, SR_T_BOOL, "filter",
101 "Filter", NULL},
102 {SR_CONF_VDIV, SR_T_RATIONAL_VOLT, "vdiv",
103 "Volts/div", NULL},
104 {SR_CONF_COUPLING, SR_T_STRING, "coupling",
105 "Coupling", NULL},
106 {SR_CONF_TRIGGER_MATCH, SR_T_INT32, "triggermatch",
107 "Trigger matches", NULL},
108 {SR_CONF_SAMPLE_INTERVAL, SR_T_UINT64, "sample_interval",
109 "Sample interval", NULL},
110 {SR_CONF_NUM_HDIV, SR_T_INT32, "num_hdiv",
111 "Number of horizontal divisions", NULL},
112 {SR_CONF_NUM_VDIV, SR_T_INT32, "num_vdiv",
113 "Number of vertical divisions", NULL},
114 {SR_CONF_SPL_WEIGHT_FREQ, SR_T_STRING, "spl_weight_freq",
115 "Sound pressure level frequency weighting", NULL},
116 {SR_CONF_SPL_WEIGHT_TIME, SR_T_STRING, "spl_weight_time",
117 "Sound pressure level time weighting", NULL},
118 {SR_CONF_SPL_MEASUREMENT_RANGE, SR_T_UINT64_RANGE, "spl_meas_range",
119 "Sound pressure level measurement range", NULL},
120 {SR_CONF_HOLD_MAX, SR_T_BOOL, "hold_max",
121 "Hold max", NULL},
122 {SR_CONF_HOLD_MIN, SR_T_BOOL, "hold_min",
123 "Hold min", NULL},
124 {SR_CONF_VOLTAGE_THRESHOLD, SR_T_DOUBLE_RANGE, "voltage_threshold",
125 "Voltage threshold", NULL },
126 {SR_CONF_EXTERNAL_CLOCK, SR_T_BOOL, "external_clock",
127 "External clock mode", NULL},
128 {SR_CONF_SWAP, SR_T_BOOL, "swap",
129 "Swap channel order", NULL},
130 {SR_CONF_CENTER_FREQUENCY, SR_T_UINT64, "center_frequency",
131 "Center frequency", NULL},
132 {SR_CONF_NUM_LOGIC_CHANNELS, SR_T_INT32, "logic_channels",
133 "Number of logic channels", NULL},
134 {SR_CONF_NUM_ANALOG_CHANNELS, SR_T_INT32, "analog_channels",
135 "Number of analog channels", NULL},
136 {SR_CONF_VOLTAGE, SR_T_FLOAT, "voltage",
137 "Current voltage", NULL},
138 {SR_CONF_VOLTAGE_TARGET, SR_T_FLOAT, "voltage_target",
139 "Voltage target", NULL},
140 {SR_CONF_CURRENT, SR_T_FLOAT, "current",
141 "Current current", NULL},
142 {SR_CONF_CURRENT_LIMIT, SR_T_FLOAT, "current_limit",
143 "Current limit", NULL},
144 {SR_CONF_ENABLED, SR_T_BOOL, "enabled",
145 "Channel enabled", NULL},
146 {SR_CONF_CHANNEL_CONFIG, SR_T_STRING, "channel_config",
147 "Channel modes", NULL},
148 {SR_CONF_OVER_VOLTAGE_PROTECTION_ENABLED, SR_T_BOOL, "ovp_enabled",
149 "Over-voltage protection enabled", NULL},
150 {SR_CONF_OVER_VOLTAGE_PROTECTION_ACTIVE, SR_T_BOOL, "ovp_active",
151 "Over-voltage protection active", NULL},
152 {SR_CONF_OVER_VOLTAGE_PROTECTION_THRESHOLD, SR_T_FLOAT, "ovp_threshold",
153 "Over-voltage protection threshold", NULL},
154 {SR_CONF_OVER_CURRENT_PROTECTION_ENABLED, SR_T_BOOL, "ocp_enabled",
155 "Over-current protection enabled", NULL},
156 {SR_CONF_OVER_CURRENT_PROTECTION_ACTIVE, SR_T_BOOL, "ocp_active",
157 "Over-current protection active", NULL},
158 {SR_CONF_OVER_CURRENT_PROTECTION_THRESHOLD, SR_T_FLOAT, "ocp_threshold",
159 "Over-current protection threshold", NULL},
160 {SR_CONF_CLOCK_EDGE, SR_T_STRING, "clock_edge",
161 "Clock edge", NULL},
162 {SR_CONF_AMPLITUDE, SR_T_FLOAT, "amplitude",
163 "Amplitude", NULL},
164 {SR_CONF_REGULATION, SR_T_STRING, "regulation",
165 "Channel regulation", NULL},
166 {SR_CONF_OVER_TEMPERATURE_PROTECTION, SR_T_BOOL, "otp",
167 "Over-temperature protection", NULL},
168 {SR_CONF_OUTPUT_FREQUENCY, SR_T_FLOAT, "output_frequency",
169 "Output frequency", NULL},
170 {SR_CONF_OUTPUT_FREQUENCY_TARGET, SR_T_FLOAT, "output_frequency_target",
171 "Output frequency target", NULL},
172 {SR_CONF_MEASURED_QUANTITY, SR_T_MQ, "measured_quantity",
173 "Measured quantity", NULL},
174 {SR_CONF_EQUIV_CIRCUIT_MODEL, SR_T_STRING, "equiv_circuit_model",
175 "Equivalent circuit model", NULL},
176 {SR_CONF_OVER_TEMPERATURE_PROTECTION_ACTIVE, SR_T_BOOL, "otp_active",
177 "Over-temperature protection active", NULL},
178 {SR_CONF_UNDER_VOLTAGE_CONDITION, SR_T_BOOL, "uvc",
179 "Under-voltage condition", NULL},
180 {SR_CONF_UNDER_VOLTAGE_CONDITION_ACTIVE, SR_T_BOOL, "uvc_active",
181 "Under-voltage condition active", NULL},
182 {SR_CONF_UNDER_VOLTAGE_CONDITION_THRESHOLD, SR_T_FLOAT, "uvc_threshold",
183 "Under-voltage condition threshold", NULL},
184 {SR_CONF_TRIGGER_LEVEL, SR_T_FLOAT, "triggerlevel",
185 "Trigger level", NULL},
186 {SR_CONF_EXTERNAL_CLOCK_SOURCE, SR_T_STRING, "external_clock_source",
187 "External clock source", NULL},
188 {SR_CONF_OFFSET, SR_T_FLOAT, "offset",
189 "Offset", NULL},
190 {SR_CONF_TRIGGER_PATTERN, SR_T_STRING, "triggerpattern",
191 "Trigger pattern", NULL},
192 {SR_CONF_HIGH_RESOLUTION, SR_T_BOOL, "highresolution",
193 "High resolution", NULL},
194 {SR_CONF_PEAK_DETECTION, SR_T_BOOL, "peakdetection",
195 "Peak detection", NULL},
196 {SR_CONF_LOGIC_THRESHOLD, SR_T_STRING, "logic_threshold",
197 "Logic threshold (predefined)", NULL},
198 {SR_CONF_LOGIC_THRESHOLD_CUSTOM, SR_T_FLOAT, "logic_threshold_custom",
199 "Logic threshold (custom)", NULL},
200 {SR_CONF_RANGE, SR_T_STRING, "range",
201 "Range", NULL},
202 {SR_CONF_DIGITS, SR_T_STRING, "digits",
203 "Digits", NULL},
204 {SR_CONF_PHASE, SR_T_FLOAT, "phase",
205 "Phase", NULL},
206 {SR_CONF_DUTY_CYCLE, SR_T_FLOAT, "output_duty_cycle",
207 "Duty Cycle", NULL},
208
209 /* Special stuff */
210 {SR_CONF_SESSIONFILE, SR_T_STRING, "sessionfile",
211 "Session file", NULL},
212 {SR_CONF_CAPTUREFILE, SR_T_STRING, "capturefile",
213 "Capture file", NULL},
214 {SR_CONF_CAPTURE_UNITSIZE, SR_T_UINT64, "capture_unitsize",
215 "Capture unitsize", NULL},
216 {SR_CONF_POWER_OFF, SR_T_BOOL, "power_off",
217 "Power off", NULL},
218 {SR_CONF_DATA_SOURCE, SR_T_STRING, "data_source",
219 "Data source", NULL},
220 {SR_CONF_PROBE_FACTOR, SR_T_UINT64, "probe_factor",
221 "Probe factor", NULL},
222 {SR_CONF_ADC_POWERLINE_CYCLES, SR_T_FLOAT, "nplc",
223 "Number of ADC powerline cycles", NULL},
224
225 /* Acquisition modes, sample limiting */
226 {SR_CONF_LIMIT_MSEC, SR_T_UINT64, "limit_time",
227 "Time limit", NULL},
228 {SR_CONF_LIMIT_SAMPLES, SR_T_UINT64, "limit_samples",
229 "Sample limit", NULL},
230 {SR_CONF_LIMIT_FRAMES, SR_T_UINT64, "limit_frames",
231 "Frame limit", NULL},
232 {SR_CONF_CONTINUOUS, SR_T_BOOL, "continuous",
233 "Continuous sampling", NULL},
234 {SR_CONF_DATALOG, SR_T_BOOL, "datalog",
235 "Datalog", NULL},
236 {SR_CONF_DEVICE_MODE, SR_T_STRING, "device_mode",
237 "Device mode", NULL},
238 {SR_CONF_TEST_MODE, SR_T_STRING, "test_mode",
239 "Test mode", NULL},
240
241 ALL_ZERO
242};
243
244/* Please use the same order as in enum sr_mq (libsigrok.h). */
245static struct sr_key_info sr_key_info_mq[] = {
246 {SR_MQ_VOLTAGE, 0, "voltage", "Voltage", NULL},
247 {SR_MQ_CURRENT, 0, "current", "Current", NULL},
248 {SR_MQ_RESISTANCE, 0, "resistance", "Resistance", NULL},
249 {SR_MQ_CAPACITANCE, 0, "capacitance", "Capacitance", NULL},
250 {SR_MQ_TEMPERATURE, 0, "temperature", "Temperature", NULL},
251 {SR_MQ_FREQUENCY, 0, "frequency", "Frequency", NULL},
252 {SR_MQ_DUTY_CYCLE, 0, "duty_cycle", "Duty cycle", NULL},
253 {SR_MQ_CONTINUITY, 0, "continuity", "Continuity", NULL},
254 {SR_MQ_PULSE_WIDTH, 0, "pulse_width", "Pulse width", NULL},
255 {SR_MQ_CONDUCTANCE, 0, "conductance", "Conductance", NULL},
256 {SR_MQ_POWER, 0, "power", "Power", NULL},
257 {SR_MQ_GAIN, 0, "gain", "Gain", NULL},
258 {SR_MQ_SOUND_PRESSURE_LEVEL, 0, "spl", "Sound pressure level", NULL},
259 {SR_MQ_CARBON_MONOXIDE, 0, "co", "Carbon monoxide", NULL},
260 {SR_MQ_RELATIVE_HUMIDITY, 0, "rh", "Relative humidity", NULL},
261 {SR_MQ_TIME, 0, "time", "Time", NULL},
262 {SR_MQ_WIND_SPEED, 0, "wind_speed", "Wind speed", NULL},
263 {SR_MQ_PRESSURE, 0, "pressure", "Pressure", NULL},
264 {SR_MQ_PARALLEL_INDUCTANCE, 0, "parallel_inductance", "Parallel inductance", NULL},
265 {SR_MQ_PARALLEL_CAPACITANCE, 0, "parallel_capacitance", "Parallel capacitance", NULL},
266 {SR_MQ_PARALLEL_RESISTANCE, 0, "parallel_resistance", "Parallel resistance", NULL},
267 {SR_MQ_SERIES_INDUCTANCE, 0, "series_inductance", "Series inductance", NULL},
268 {SR_MQ_SERIES_CAPACITANCE, 0, "series_capacitance", "Series capacitance", NULL},
269 {SR_MQ_SERIES_RESISTANCE, 0, "series_resistance", "Series resistance", NULL},
270 {SR_MQ_DISSIPATION_FACTOR, 0, "dissipation_factor", "Dissipation factor", NULL},
271 {SR_MQ_QUALITY_FACTOR, 0, "quality_factor", "Quality factor", NULL},
272 {SR_MQ_PHASE_ANGLE, 0, "phase_angle", "Phase angle", NULL},
273 {SR_MQ_DIFFERENCE, 0, "difference", "Difference", NULL},
274 {SR_MQ_COUNT, 0, "count", "Count", NULL},
275 {SR_MQ_POWER_FACTOR, 0, "power_factor", "Power factor", NULL},
276 {SR_MQ_APPARENT_POWER, 0, "apparent_power", "Apparent power", NULL},
277 {SR_MQ_MASS, 0, "mass", "Mass", NULL},
278 {SR_MQ_HARMONIC_RATIO, 0, "harmonic_ratio", "Harmonic ratio", NULL},
279 {SR_MQ_ENERGY, 0, "energy", "Energy", NULL},
280 {SR_MQ_ELECTRIC_CHARGE, 0, "electric_charge", "Electric charge", NULL},
281 ALL_ZERO
282};
283
284/* Please use the same order as in enum sr_mqflag (libsigrok.h). */
285static struct sr_key_info sr_key_info_mqflag[] = {
286 {SR_MQFLAG_AC, 0, "ac", "AC", NULL},
287 {SR_MQFLAG_DC, 0, "dc", "DC", NULL},
288 {SR_MQFLAG_RMS, 0, "rms", "RMS", NULL},
289 {SR_MQFLAG_DIODE, 0, "diode", "Diode", NULL},
290 {SR_MQFLAG_HOLD, 0, "hold", "Hold", NULL},
291 {SR_MQFLAG_MAX, 0, "max", "Max", NULL},
292 {SR_MQFLAG_MIN, 0, "min", "Min", NULL},
293 {SR_MQFLAG_AUTORANGE, 0, "auto_range", "Auto range", NULL},
294 {SR_MQFLAG_RELATIVE, 0, "relative", "Relative", NULL},
295 {SR_MQFLAG_SPL_FREQ_WEIGHT_A, 0, "spl_freq_weight_a",
296 "Frequency weighted (A)", NULL},
297 {SR_MQFLAG_SPL_FREQ_WEIGHT_C, 0, "spl_freq_weight_c",
298 "Frequency weighted (C)", NULL},
299 {SR_MQFLAG_SPL_FREQ_WEIGHT_Z, 0, "spl_freq_weight_z",
300 "Frequency weighted (Z)", NULL},
301 {SR_MQFLAG_SPL_FREQ_WEIGHT_FLAT, 0, "spl_freq_weight_flat",
302 "Frequency weighted (flat)", NULL},
303 {SR_MQFLAG_SPL_TIME_WEIGHT_S, 0, "spl_time_weight_s",
304 "Time weighted (S)", NULL},
305 {SR_MQFLAG_SPL_TIME_WEIGHT_F, 0, "spl_time_weight_f",
306 "Time weighted (F)", NULL},
307 {SR_MQFLAG_SPL_LAT, 0, "spl_time_average", "Time-averaged (LEQ)", NULL},
308 {SR_MQFLAG_SPL_PCT_OVER_ALARM, 0, "spl_pct_over_alarm",
309 "Percentage over alarm", NULL},
310 {SR_MQFLAG_DURATION, 0, "duration", "Duration", NULL},
311 {SR_MQFLAG_AVG, 0, "average", "Average", NULL},
312 {SR_MQFLAG_REFERENCE, 0, "reference", "Reference", NULL},
313 {SR_MQFLAG_UNSTABLE, 0, "unstable", "Unstable", NULL},
314 {SR_MQFLAG_FOUR_WIRE, 0, "four_wire", "4-Wire", NULL},
315 ALL_ZERO
316};
317
318/* This must handle all the keys from enum sr_datatype (libsigrok.h). */
319/** @private */
320SR_PRIV const GVariantType *sr_variant_type_get(int datatype)
321{
322 switch (datatype) {
323 case SR_T_INT32:
324 return G_VARIANT_TYPE_INT32;
325 case SR_T_UINT64:
326 return G_VARIANT_TYPE_UINT64;
327 case SR_T_STRING:
328 return G_VARIANT_TYPE_STRING;
329 case SR_T_BOOL:
330 return G_VARIANT_TYPE_BOOLEAN;
331 case SR_T_FLOAT:
332 return G_VARIANT_TYPE_DOUBLE;
333 case SR_T_RATIONAL_PERIOD:
334 case SR_T_RATIONAL_VOLT:
335 case SR_T_UINT64_RANGE:
336 case SR_T_DOUBLE_RANGE:
337 return G_VARIANT_TYPE_TUPLE;
338 case SR_T_KEYVALUE:
339 return G_VARIANT_TYPE_DICTIONARY;
340 case SR_T_MQ:
341 return G_VARIANT_TYPE_TUPLE;
342 default:
343 return NULL;
344 }
345}
346
347/** @private */
348SR_PRIV int sr_variant_type_check(uint32_t key, GVariant *value)
349{
350 const struct sr_key_info *info;
351 const GVariantType *type, *expected;
352 char *expected_string, *type_string;
353
354 info = sr_key_info_get(SR_KEY_CONFIG, key);
355 if (!info)
356 return SR_OK;
357
358 expected = sr_variant_type_get(info->datatype);
359 type = g_variant_get_type(value);
360 if (!g_variant_type_equal(type, expected)
361 && !g_variant_type_is_subtype_of(type, expected)) {
362 expected_string = g_variant_type_dup_string(expected);
363 type_string = g_variant_type_dup_string(type);
364 sr_err("Wrong variant type for key '%s': expected '%s', got '%s'",
365 info->name, expected_string, type_string);
366 g_free(expected_string);
367 g_free(type_string);
368 return SR_ERR_ARG;
369 }
370
371 return SR_OK;
372}
373
374/**
375 * Return the list of supported hardware drivers.
376 *
377 * @param[in] ctx Pointer to a libsigrok context struct. Must not be NULL.
378 *
379 * @retval NULL The ctx argument was NULL, or there are no supported drivers.
380 * @retval Other Pointer to the NULL-terminated list of hardware drivers.
381 * The user should NOT g_free() this list, sr_exit() will do that.
382 *
383 * @since 0.4.0
384 */
385SR_API struct sr_dev_driver **sr_driver_list(const struct sr_context *ctx)
386{
387 if (!ctx)
388 return NULL;
389
390 return ctx->driver_list;
391}
392
393/**
394 * Initialize a hardware driver.
395 *
396 * This usually involves memory allocations and variable initializations
397 * within the driver, but _not_ scanning for attached devices.
398 * The API call sr_driver_scan() is used for that.
399 *
400 * @param ctx A libsigrok context object allocated by a previous call to
401 * sr_init(). Must not be NULL.
402 * @param driver The driver to initialize. This must be a pointer to one of
403 * the entries returned by sr_driver_list(). Must not be NULL.
404 *
405 * @retval SR_OK Success
406 * @retval SR_ERR_ARG Invalid parameter(s).
407 * @retval SR_ERR_BUG Internal errors.
408 * @retval other Another negative error code upon other errors.
409 *
410 * @since 0.2.0
411 */
412SR_API int sr_driver_init(struct sr_context *ctx, struct sr_dev_driver *driver)
413{
414 int ret;
415
416 if (!ctx) {
417 sr_err("Invalid libsigrok context, can't initialize.");
418 return SR_ERR_ARG;
419 }
420
421 if (!driver) {
422 sr_err("Invalid driver, can't initialize.");
423 return SR_ERR_ARG;
424 }
425
426 /* No log message here, too verbose and not very useful. */
427
428 if ((ret = driver->init(driver, ctx)) < 0)
429 sr_err("Failed to initialize the driver: %d.", ret);
430
431 return ret;
432}
433
434/**
435 * Enumerate scan options supported by this driver.
436 *
437 * Before calling sr_driver_scan_options_list(), the user must have previously
438 * initialized the driver by calling sr_driver_init().
439 *
440 * @param driver The driver to enumerate options for. This must be a pointer
441 * to one of the entries returned by sr_driver_list(). Must not
442 * be NULL.
443 *
444 * @return A GArray * of uint32_t entries, or NULL on invalid arguments. Each
445 * entry is a configuration key that is supported as a scan option.
446 * The array must be freed by the caller using g_array_free().
447 *
448 * @since 0.4.0
449 */
450SR_API GArray *sr_driver_scan_options_list(const struct sr_dev_driver *driver)
451{
452 GVariant *gvar;
453 const uint32_t *opts;
454 gsize num_opts;
455 GArray *result;
456
457 if (sr_config_list(driver, NULL, NULL, SR_CONF_SCAN_OPTIONS, &gvar) != SR_OK)
458 return NULL;
459
460 opts = g_variant_get_fixed_array(gvar, &num_opts, sizeof(uint32_t));
461
462 result = g_array_sized_new(FALSE, FALSE, sizeof(uint32_t), num_opts);
463
464 g_array_insert_vals(result, 0, opts, num_opts);
465
466 g_variant_unref(gvar);
467
468 return result;
469}
470
471static int check_options(struct sr_dev_driver *driver, GSList *options,
472 uint32_t optlist_key, struct sr_dev_inst *sdi,
473 struct sr_channel_group *cg)
474{
475 struct sr_config *src;
476 const struct sr_key_info *srci;
477 GVariant *gvar_opts;
478 GSList *l;
479 const uint32_t *opts;
480 gsize num_opts, i;
481 int ret;
482
483 if (sr_config_list(driver, sdi, cg, optlist_key, &gvar_opts) != SR_OK) {
484 /* Driver publishes no options for this optlist. */
485 return SR_ERR;
486 }
487
488 ret = SR_OK;
489 opts = g_variant_get_fixed_array(gvar_opts, &num_opts, sizeof(uint32_t));
490 for (l = options; l; l = l->next) {
491 src = l->data;
492 for (i = 0; i < num_opts; i++) {
493 if (opts[i] == src->key)
494 break;
495 }
496 if (i == num_opts) {
497 if (!(srci = sr_key_info_get(SR_KEY_CONFIG, src->key)))
498 /* Shouldn't happen. */
499 sr_err("Invalid option %d.", src->key);
500 else
501 sr_err("Invalid option '%s'.", srci->id);
502 ret = SR_ERR_ARG;
503 break;
504 }
505 if (sr_variant_type_check(src->key, src->data) != SR_OK) {
506 ret = SR_ERR_ARG;
507 break;
508 }
509 }
510 g_variant_unref(gvar_opts);
511
512 return ret;
513}
514
515/**
516 * Tell a hardware driver to scan for devices.
517 *
518 * In addition to the detection, the devices that are found are also
519 * initialized automatically. On some devices, this involves a firmware upload,
520 * or other such measures.
521 *
522 * The order in which the system is scanned for devices is not specified. The
523 * caller should not assume or rely on any specific order.
524 *
525 * Before calling sr_driver_scan(), the user must have previously initialized
526 * the driver by calling sr_driver_init().
527 *
528 * @param driver The driver that should scan. This must be a pointer to one of
529 * the entries returned by sr_driver_list(). Must not be NULL.
530 * @param options A list of 'struct sr_hwopt' options to pass to the driver's
531 * scanner. Can be NULL/empty.
532 *
533 * @return A GSList * of 'struct sr_dev_inst', or NULL if no devices were
534 * found (or errors were encountered). This list must be freed by the
535 * caller using g_slist_free(), but without freeing the data pointed
536 * to in the list.
537 *
538 * @since 0.2.0
539 */
540SR_API GSList *sr_driver_scan(struct sr_dev_driver *driver, GSList *options)
541{
542 GSList *l;
543
544 if (!driver) {
545 sr_err("Invalid driver, can't scan for devices.");
546 return NULL;
547 }
548
549 if (!driver->context) {
550 sr_err("Driver not initialized, can't scan for devices.");
551 return NULL;
552 }
553
554 if (options) {
555 if (check_options(driver, options, SR_CONF_SCAN_OPTIONS, NULL, NULL) != SR_OK)
556 return NULL;
557 }
558
559 l = driver->scan(driver, options);
560
561 sr_spew("Scan found %d devices (%s).", g_slist_length(l), driver->name);
562
563 return l;
564}
565
566/**
567 * Call driver cleanup function for all drivers.
568 *
569 * @param[in] ctx Pointer to a libsigrok context struct. Must not be NULL.
570 *
571 * @private
572 */
573SR_PRIV void sr_hw_cleanup_all(const struct sr_context *ctx)
574{
575 int i;
576 struct sr_dev_driver **drivers;
577
578 if (!ctx)
579 return;
580
581 sr_dbg("Cleaning up all drivers.");
582
583 drivers = sr_driver_list(ctx);
584 for (i = 0; drivers[i]; i++) {
585 if (drivers[i]->cleanup)
586 drivers[i]->cleanup(drivers[i]);
587 drivers[i]->context = NULL;
588 }
589}
590
591/**
592 * Allocate struct sr_config.
593 *
594 * A floating reference can be passed in for data.
595 *
596 * @param key The config key to use.
597 * @param data The GVariant data to use.
598 *
599 * @return The newly allocated struct sr_config. This function is assumed
600 * to never fail.
601 *
602 * @private
603 */
604SR_PRIV struct sr_config *sr_config_new(uint32_t key, GVariant *data)
605{
606 struct sr_config *src;
607
608 src = g_malloc0(sizeof(struct sr_config));
609 src->key = key;
610 src->data = g_variant_ref_sink(data);
611
612 return src;
613}
614
615/**
616 * Free struct sr_config.
617 *
618 * @private
619 */
620SR_PRIV void sr_config_free(struct sr_config *src)
621{
622 if (!src || !src->data) {
623 sr_err("%s: invalid data!", __func__);
624 return;
625 }
626
627 g_variant_unref(src->data);
628 g_free(src);
629}
630
631/** @private */
632SR_PRIV int sr_dev_acquisition_start(struct sr_dev_inst *sdi)
633{
634 if (!sdi || !sdi->driver) {
635 sr_err("%s: Invalid arguments.", __func__);
636 return SR_ERR_ARG;
637 }
638
639 if (sdi->status != SR_ST_ACTIVE) {
640 sr_err("%s: Device instance not active, can't start.",
641 sdi->driver->name);
642 return SR_ERR_DEV_CLOSED;
643 }
644
645 sr_dbg("%s: Starting acquisition.", sdi->driver->name);
646
647 return sdi->driver->dev_acquisition_start(sdi);
648}
649
650/** @private */
651SR_PRIV int sr_dev_acquisition_stop(struct sr_dev_inst *sdi)
652{
653 if (!sdi || !sdi->driver) {
654 sr_err("%s: Invalid arguments.", __func__);
655 return SR_ERR_ARG;
656 }
657
658 if (sdi->status != SR_ST_ACTIVE) {
659 sr_err("%s: Device instance not active, can't stop.",
660 sdi->driver->name);
661 return SR_ERR_DEV_CLOSED;
662 }
663
664 sr_dbg("%s: Stopping acquisition.", sdi->driver->name);
665
666 return sdi->driver->dev_acquisition_stop(sdi);
667}
668
669static void log_key(const struct sr_dev_inst *sdi,
670 const struct sr_channel_group *cg, uint32_t key, unsigned int op,
671 GVariant *data)
672{
673 const char *opstr;
674 const struct sr_key_info *srci;
675 gchar *tmp_str;
676
677 /* Don't log SR_CONF_DEVICE_OPTIONS, it's verbose and not too useful. */
678 if (key == SR_CONF_DEVICE_OPTIONS)
679 return;
680
681 opstr = op == SR_CONF_GET ? "get" : op == SR_CONF_SET ? "set" : "list";
682 srci = sr_key_info_get(SR_KEY_CONFIG, key);
683
684 tmp_str = g_variant_print(data, TRUE);
685 sr_spew("sr_config_%s(): key %d (%s) sdi %p cg %s -> %s", opstr, key,
686 srci ? srci->id : "NULL", sdi, cg ? cg->name : "NULL",
687 data ? tmp_str : "NULL");
688 g_free(tmp_str);
689}
690
691static int check_key(const struct sr_dev_driver *driver,
692 const struct sr_dev_inst *sdi, const struct sr_channel_group *cg,
693 uint32_t key, unsigned int op, GVariant *data)
694{
695 const struct sr_key_info *srci;
696 gsize num_opts, i;
697 GVariant *gvar_opts;
698 const uint32_t *opts;
699 uint32_t pub_opt;
700 const char *suffix;
701 const char *opstr;
702
703 if (sdi && cg)
704 suffix = " for this device instance and channel group";
705 else if (sdi)
706 suffix = " for this device instance";
707 else
708 suffix = "";
709
710 if (!(srci = sr_key_info_get(SR_KEY_CONFIG, key))) {
711 sr_err("Invalid key %d.", key);
712 return SR_ERR_ARG;
713 }
714 opstr = op == SR_CONF_GET ? "get" : op == SR_CONF_SET ? "set" : "list";
715
716 switch (key) {
717 case SR_CONF_LIMIT_MSEC:
718 case SR_CONF_LIMIT_SAMPLES:
719 case SR_CONF_SAMPLERATE:
720 /* Setting any of these to 0 is not useful. */
721 if (op != SR_CONF_SET || !data)
722 break;
723 if (g_variant_get_uint64(data) == 0) {
724 sr_err("Cannot set '%s' to 0.", srci->id);
725 return SR_ERR_ARG;
726 }
727 break;
728 case SR_CONF_CAPTURE_RATIO:
729 /* Capture ratio must always be between 0 and 100. */
730 if (op != SR_CONF_SET || !data)
731 break;
732 if (g_variant_get_uint64(data) > 100) {
733 sr_err("Capture ratio must be 0..100.");
734 return SR_ERR_ARG;
735 }
736 break;
737 }
738
739 if (sr_config_list(driver, sdi, cg, SR_CONF_DEVICE_OPTIONS, &gvar_opts) != SR_OK) {
740 /* Driver publishes no options. */
741 sr_err("No options available%s.", suffix);
742 return SR_ERR_ARG;
743 }
744 opts = g_variant_get_fixed_array(gvar_opts, &num_opts, sizeof(uint32_t));
745 pub_opt = 0;
746 for (i = 0; i < num_opts; i++) {
747 if ((opts[i] & SR_CONF_MASK) == key) {
748 pub_opt = opts[i];
749 break;
750 }
751 }
752 g_variant_unref(gvar_opts);
753 if (!pub_opt) {
754 sr_err("Option '%s' not available%s.", srci->id, suffix);
755 return SR_ERR_ARG;
756 }
757
758 if (!(pub_opt & op)) {
759 sr_err("Option '%s' not available to %s%s.", srci->id, opstr, suffix);
760 return SR_ERR_ARG;
761 }
762
763 return SR_OK;
764}
765
766/**
767 * Query value of a configuration key at the given driver or device instance.
768 *
769 * @param[in] driver The sr_dev_driver struct to query. Must not be NULL.
770 * @param[in] sdi (optional) If the key is specific to a device, this must
771 * contain a pointer to the struct sr_dev_inst to be checked.
772 * Otherwise it must be NULL. If sdi is != NULL, sdi->priv must
773 * also be != NULL.
774 * @param[in] cg The channel group on the device for which to list the
775 * values, or NULL.
776 * @param[in] key The configuration key (SR_CONF_*).
777 * @param[in,out] data Pointer to a GVariant where the value will be stored.
778 * Must not be NULL. The caller is given ownership of the GVariant
779 * and must thus decrease the refcount after use. However if
780 * this function returns an error code, the field should be
781 * considered unused, and should not be unreferenced.
782 *
783 * @retval SR_OK Success.
784 * @retval SR_ERR Error.
785 * @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be
786 * interpreted as an error by the caller; merely as an indication
787 * that it's not applicable.
788 *
789 * @since 0.3.0
790 */
791SR_API int sr_config_get(const struct sr_dev_driver *driver,
792 const struct sr_dev_inst *sdi,
793 const struct sr_channel_group *cg,
794 uint32_t key, GVariant **data)
795{
796 int ret;
797
798 if (!driver || !data)
799 return SR_ERR;
800
801 if (!driver->config_get)
802 return SR_ERR_ARG;
803
804 if (check_key(driver, sdi, cg, key, SR_CONF_GET, NULL) != SR_OK)
805 return SR_ERR_ARG;
806
807 if (sdi && !sdi->priv) {
808 sr_err("Can't get config (sdi != NULL, sdi->priv == NULL).");
809 return SR_ERR;
810 }
811
812 if ((ret = driver->config_get(key, data, sdi, cg)) == SR_OK) {
813 log_key(sdi, cg, key, SR_CONF_GET, *data);
814 /* Got a floating reference from the driver. Sink it here,
815 * caller will need to unref when done with it. */
816 g_variant_ref_sink(*data);
817 }
818
819 if (ret == SR_ERR_CHANNEL_GROUP)
820 sr_err("%s: No channel group specified.",
821 (sdi) ? sdi->driver->name : "unknown");
822
823 return ret;
824}
825
826/**
827 * Set value of a configuration key in a device instance.
828 *
829 * @param[in] sdi The device instance. Must not be NULL. sdi->driver and
830 * sdi->priv must not be NULL either.
831 * @param[in] cg The channel group on the device for which to list the
832 * values, or NULL.
833 * @param[in] key The configuration key (SR_CONF_*).
834 * @param data The new value for the key, as a GVariant with GVariantType
835 * appropriate to that key. A floating reference can be passed
836 * in; its refcount will be sunk and unreferenced after use.
837 *
838 * @retval SR_OK Success.
839 * @retval SR_ERR Error.
840 * @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be
841 * interpreted as an error by the caller; merely as an indication
842 * that it's not applicable.
843 *
844 * @since 0.3.0
845 */
846SR_API int sr_config_set(const struct sr_dev_inst *sdi,
847 const struct sr_channel_group *cg,
848 uint32_t key, GVariant *data)
849{
850 int ret;
851
852 g_variant_ref_sink(data);
853
854 if (!sdi || !sdi->driver || !sdi->priv || !data)
855 ret = SR_ERR;
856 else if (!sdi->driver->config_set)
857 ret = SR_ERR_ARG;
858 else if (sdi->status != SR_ST_ACTIVE) {
859 sr_err("%s: Device instance not active, can't set config.",
860 sdi->driver->name);
861 ret = SR_ERR_DEV_CLOSED;
862 } else if (check_key(sdi->driver, sdi, cg, key, SR_CONF_SET, data) != SR_OK)
863 return SR_ERR_ARG;
864 else if ((ret = sr_variant_type_check(key, data)) == SR_OK) {
865 log_key(sdi, cg, key, SR_CONF_SET, data);
866 ret = sdi->driver->config_set(key, data, sdi, cg);
867 }
868
869 g_variant_unref(data);
870
871 if (ret == SR_ERR_CHANNEL_GROUP)
872 sr_err("%s: No channel group specified.",
873 (sdi) ? sdi->driver->name : "unknown");
874
875 return ret;
876}
877
878/**
879 * Apply configuration settings to the device hardware.
880 *
881 * @param sdi The device instance.
882 *
883 * @return SR_OK upon success or SR_ERR in case of error.
884 *
885 * @since 0.3.0
886 */
887SR_API int sr_config_commit(const struct sr_dev_inst *sdi)
888{
889 int ret;
890
891 if (!sdi || !sdi->driver)
892 ret = SR_ERR;
893 else if (!sdi->driver->config_commit)
894 ret = SR_OK;
895 else if (sdi->status != SR_ST_ACTIVE) {
896 sr_err("%s: Device instance not active, can't commit config.",
897 sdi->driver->name);
898 ret = SR_ERR_DEV_CLOSED;
899 } else
900 ret = sdi->driver->config_commit(sdi);
901
902 return ret;
903}
904
905/**
906 * List all possible values for a configuration key.
907 *
908 * @param[in] driver The sr_dev_driver struct to query. Must not be NULL.
909 * @param[in] sdi (optional) If the key is specific to a device instance, this
910 * must contain a pointer to the struct sr_dev_inst to be checked.
911 * Otherwise it must be NULL. If sdi is != NULL, sdi->priv must
912 * also be != NULL.
913 * @param[in] cg The channel group on the device instance for which to list
914 * the values, or NULL. If this device instance doesn't
915 * have channel groups, this must not be != NULL.
916 * If cg is NULL, this function will return the "common" device
917 * instance options that are channel-group independent. Otherwise
918 * it will return the channel-group specific options.
919 * @param[in] key The configuration key (SR_CONF_*).
920 * @param[in,out] data A pointer to a GVariant where the list will be stored.
921 * The caller is given ownership of the GVariant and must thus
922 * unref the GVariant after use. However if this function
923 * returns an error code, the field should be considered
924 * unused, and should not be unreferenced.
925 *
926 * @retval SR_OK Success.
927 * @retval SR_ERR Error.
928 * @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be
929 * interpreted as an error by the caller; merely as an indication
930 * that it's not applicable.
931 *
932 * @since 0.3.0
933 */
934SR_API int sr_config_list(const struct sr_dev_driver *driver,
935 const struct sr_dev_inst *sdi,
936 const struct sr_channel_group *cg,
937 uint32_t key, GVariant **data)
938{
939 int ret;
940
941 if (!driver || !data)
942 return SR_ERR;
943
944 if (!driver->config_list)
945 return SR_ERR_ARG;
946
947 if (key != SR_CONF_SCAN_OPTIONS && key != SR_CONF_DEVICE_OPTIONS) {
948 if (check_key(driver, sdi, cg, key, SR_CONF_LIST, NULL) != SR_OK)
949 return SR_ERR_ARG;
950 }
951
952 if (sdi && !sdi->priv) {
953 sr_err("Can't list config (sdi != NULL, sdi->priv == NULL).");
954 return SR_ERR;
955 }
956
957 if (key != SR_CONF_SCAN_OPTIONS && key != SR_CONF_DEVICE_OPTIONS && !sdi) {
958 sr_err("Config keys other than SR_CONF_SCAN_OPTIONS and "
959 "SR_CONF_DEVICE_OPTIONS always need an sdi.");
960 return SR_ERR_ARG;
961 }
962
963 if (cg && sdi && !sdi->channel_groups) {
964 sr_err("Can't list config for channel group, there are none.");
965 return SR_ERR_ARG;
966 }
967
968 if (cg && sdi && !g_slist_find(sdi->channel_groups, cg)) {
969 sr_err("If a channel group is specified, it must be a valid one.");
970 return SR_ERR_ARG;
971 }
972
973 if (cg && !sdi) {
974 sr_err("Need sdi when a channel group is specified.");
975 return SR_ERR_ARG;
976 }
977
978 if ((ret = driver->config_list(key, data, sdi, cg)) == SR_OK) {
979 log_key(sdi, cg, key, SR_CONF_LIST, *data);
980 g_variant_ref_sink(*data);
981 }
982
983 if (ret == SR_ERR_CHANNEL_GROUP)
984 sr_err("%s: No channel group specified.",
985 (sdi) ? sdi->driver->name : "unknown");
986
987 return ret;
988}
989
990static struct sr_key_info *get_keytable(int keytype)
991{
992 struct sr_key_info *table;
993
994 switch (keytype) {
995 case SR_KEY_CONFIG:
996 table = sr_key_info_config;
997 break;
998 case SR_KEY_MQ:
999 table = sr_key_info_mq;
1000 break;
1001 case SR_KEY_MQFLAGS:
1002 table = sr_key_info_mqflag;
1003 break;
1004 default:
1005 sr_err("Invalid keytype %d", keytype);
1006 return NULL;
1007 }
1008
1009 return table;
1010}
1011
1012/**
1013 * Get information about a key, by key.
1014 *
1015 * @param[in] keytype The namespace the key is in.
1016 * @param[in] key The key to find.
1017 *
1018 * @return A pointer to a struct sr_key_info, or NULL if the key
1019 * was not found.
1020 *
1021 * @since 0.3.0
1022 */
1023SR_API const struct sr_key_info *sr_key_info_get(int keytype, uint32_t key)
1024{
1025 struct sr_key_info *table;
1026 int i;
1027
1028 if (!(table = get_keytable(keytype)))
1029 return NULL;
1030
1031 for (i = 0; table[i].key; i++) {
1032 if (table[i].key == key)
1033 return &table[i];
1034 }
1035
1036 return NULL;
1037}
1038
1039/**
1040 * Get information about a key, by name.
1041 *
1042 * @param[in] keytype The namespace the key is in.
1043 * @param[in] keyid The key id string.
1044 *
1045 * @return A pointer to a struct sr_key_info, or NULL if the key
1046 * was not found.
1047 *
1048 * @since 0.2.0
1049 */
1050SR_API const struct sr_key_info *sr_key_info_name_get(int keytype, const char *keyid)
1051{
1052 struct sr_key_info *table;
1053 int i;
1054
1055 if (!(table = get_keytable(keytype)))
1056 return NULL;
1057
1058 for (i = 0; table[i].key; i++) {
1059 if (!table[i].id)
1060 continue;
1061 if (!strcmp(table[i].id, keyid))
1062 return &table[i];
1063 }
1064
1065 return NULL;
1066}
1067
1068/** @} */