]> sigrok.org Git - libsigrok.git/blame - src/hardware/sysclk-lwla/protocol.c
sysclk-lwla: Streamline trigger setup logic
[libsigrok.git] / src / hardware / sysclk-lwla / protocol.c
CommitLineData
aeaad0b0
DE
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2014 Daniel Elstner <daniel.kitta@gmail.com>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
6ec6c43b 20#include <config.h>
5874e88d 21#include <string.h>
515ab088 22#include "protocol.h"
aeaad0b0 23
5874e88d
DE
24/* Bit mask for the RLE repeat-count-follows flag. */
25#define RLE_FLAG_LEN_FOLLOWS ((uint64_t)1 << 35)
26
27/* Start address of capture status memory area to read. */
28#define CAP_STAT_ADDR 5
29
30/* Number of 64-bit words read from the capture status memory. */
31#define CAP_STAT_LEN 5
32
6358f0a9 33/* The bitstream filenames are indexed by the clock_config enumeration.
5874e88d 34 */
c2066c21
DE
35static const char bitstream_map[][32] = {
36 "sysclk-lwla1034-off.rbf",
37 "sysclk-lwla1034-int.rbf",
38 "sysclk-lwla1034-extpos.rbf",
39 "sysclk-lwla1034-extneg.rbf",
5874e88d
DE
40};
41
42/* Submit an already filled-in USB transfer.
43 */
44static int submit_transfer(struct dev_context *devc,
45 struct libusb_transfer *xfer)
46{
47 int ret;
48
49 ret = libusb_submit_transfer(xfer);
50
51 if (ret != 0) {
52 sr_err("Submit transfer failed: %s.", libusb_error_name(ret));
53 devc->transfer_error = TRUE;
54 return SR_ERR;
55 }
56
57 return SR_OK;
58}
59
60/* Set up the LWLA in preparation for an acquisition session.
61 */
62static int capture_setup(const struct sr_dev_inst *sdi)
aeaad0b0 63{
aeaad0b0 64 struct dev_context *devc;
29d58767 65 struct acquisition_state *acq;
5874e88d 66 uint64_t divider_count;
e6e54bd2 67 uint64_t trigger_mask;
5874e88d 68 uint64_t memory_limit;
1a46cc62 69 uint16_t command[3 + (10 * 4)];
aeaad0b0 70
5874e88d 71 devc = sdi->priv;
29d58767 72 acq = devc->acquisition;
aeaad0b0 73
5874e88d
DE
74 command[0] = LWLA_WORD(CMD_CAP_SETUP);
75 command[1] = LWLA_WORD(0); /* address */
76 command[2] = LWLA_WORD(10); /* length */
77
78 command[3] = LWLA_WORD_0(devc->channel_mask);
79 command[4] = LWLA_WORD_1(devc->channel_mask);
80 command[5] = LWLA_WORD_2(devc->channel_mask);
81 command[6] = LWLA_WORD_3(devc->channel_mask);
82
83 /* Set the clock divide counter maximum for samplerates of up to
84 * 100 MHz. At the highest samplerate of 125 MHz the clock divider
85 * is bypassed.
86 */
29d58767 87 if (!acq->bypass_clockdiv && devc->samplerate > 0)
5874e88d
DE
88 divider_count = SR_MHZ(100) / devc->samplerate - 1;
89 else
90 divider_count = 0;
91
92 command[7] = LWLA_WORD_0(divider_count);
93 command[8] = LWLA_WORD_1(divider_count);
94 command[9] = LWLA_WORD_2(divider_count);
95 command[10] = LWLA_WORD_3(divider_count);
96
97 command[11] = LWLA_WORD_0(devc->trigger_values);
98 command[12] = LWLA_WORD_1(devc->trigger_values);
99 command[13] = LWLA_WORD_2(devc->trigger_values);
100 command[14] = LWLA_WORD_3(devc->trigger_values);
101
102 command[15] = LWLA_WORD_0(devc->trigger_edge_mask);
103 command[16] = LWLA_WORD_1(devc->trigger_edge_mask);
104 command[17] = LWLA_WORD_2(devc->trigger_edge_mask);
105 command[18] = LWLA_WORD_3(devc->trigger_edge_mask);
106
e6e54bd2
DE
107 trigger_mask = devc->trigger_mask;
108 /* Set bits to select external TRG input edge. */
109 if (devc->cfg_trigger_source == TRIGGER_EXT_TRG)
110 switch (devc->cfg_trigger_slope) {
93b118da
UH
111 case EDGE_POSITIVE:
112 trigger_mask |= (uint64_t)1 << 35;
225d3cb0 113 break;
93b118da
UH
114 case EDGE_NEGATIVE:
115 trigger_mask |= (uint64_t)1 << 34;
225d3cb0 116 break;
e6e54bd2
DE
117 }
118
119 command[19] = LWLA_WORD_0(trigger_mask);
120 command[20] = LWLA_WORD_1(trigger_mask);
121 command[21] = LWLA_WORD_2(trigger_mask);
122 command[22] = LWLA_WORD_3(trigger_mask);
5874e88d
DE
123
124 /* Set the capture memory full threshold. This is slightly less
125 * than the actual maximum, most likely in order to compensate for
126 * pipeline latency.
127 */
128 memory_limit = MEMORY_DEPTH - 16;
129
130 command[23] = LWLA_WORD_0(memory_limit);
131 command[24] = LWLA_WORD_1(memory_limit);
132 command[25] = LWLA_WORD_2(memory_limit);
133 command[26] = LWLA_WORD_3(memory_limit);
134
225d3cb0
DE
135 /* Fill remaining words with zeroes. */
136 memset(&command[27], 0, sizeof(command) - 27 * sizeof(command[0]));
5874e88d 137
ce3ecb70 138 return lwla_send_command(sdi->conn, command, ARRAY_SIZE(command));
5874e88d
DE
139}
140
141/* Issue a register write command as an asynchronous USB transfer.
142 */
143static int issue_write_reg(const struct sr_dev_inst *sdi,
144 unsigned int reg, unsigned int value)
145{
146 struct dev_context *devc;
147 struct acquisition_state *acq;
148
149 devc = sdi->priv;
150 acq = devc->acquisition;
151
152 acq->xfer_buf_out[0] = LWLA_WORD(CMD_WRITE_REG);
153 acq->xfer_buf_out[1] = LWLA_WORD(reg);
154 acq->xfer_buf_out[2] = LWLA_WORD_0(value);
155 acq->xfer_buf_out[3] = LWLA_WORD_1(value);
156
157 acq->xfer_out->length = 4 * sizeof(uint16_t);
158
159 return submit_transfer(devc, acq->xfer_out);
160}
161
162/* Issue a register write command as an asynchronous USB transfer for the
163 * next register/value pair of the currently active register write sequence.
164 */
165static int issue_next_write_reg(const struct sr_dev_inst *sdi)
166{
167 struct dev_context *devc;
168 struct regval_pair *regval;
169 int ret;
170
171 devc = sdi->priv;
172
173 if (devc->reg_write_pos >= devc->reg_write_len) {
174 sr_err("Already written all registers in sequence.");
175 return SR_ERR_BUG;
176 }
177 regval = &devc->reg_write_seq[devc->reg_write_pos];
178
179 ret = issue_write_reg(sdi, regval->reg, regval->val);
180 if (ret != SR_OK)
181 return ret;
182
183 ++devc->reg_write_pos;
184 return SR_OK;
185}
186
187/* Issue a capture status request as an asynchronous USB transfer.
188 */
189static void request_capture_status(const struct sr_dev_inst *sdi)
190{
191 struct dev_context *devc;
192 struct acquisition_state *acq;
193
194 devc = sdi->priv;
195 acq = devc->acquisition;
196
197 acq->xfer_buf_out[0] = LWLA_WORD(CMD_CAP_STATUS);
198 acq->xfer_buf_out[1] = LWLA_WORD(CAP_STAT_ADDR);
199 acq->xfer_buf_out[2] = LWLA_WORD(CAP_STAT_LEN);
200
201 acq->xfer_out->length = 3 * sizeof(uint16_t);
202
203 if (submit_transfer(devc, acq->xfer_out) == SR_OK)
204 devc->state = STATE_STATUS_REQUEST;
205}
206
207/* Issue a request for the capture buffer fill level as
208 * an asynchronous USB transfer.
209 */
210static void request_capture_length(const struct sr_dev_inst *sdi)
211{
212 struct dev_context *devc;
213 struct acquisition_state *acq;
214
215 devc = sdi->priv;
216 acq = devc->acquisition;
217
218 acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_REG);
219 acq->xfer_buf_out[1] = LWLA_WORD(REG_MEM_FILL);
220
221 acq->xfer_out->length = 2 * sizeof(uint16_t);
222
223 if (submit_transfer(devc, acq->xfer_out) == SR_OK)
224 devc->state = STATE_LENGTH_REQUEST;
225}
226
227/* Initiate the capture memory read operation: Reset the acquisition state
228 * and start a sequence of register writes in order to set up the device for
229 * reading from the capture buffer.
230 */
231static void issue_read_start(const struct sr_dev_inst *sdi)
232{
233 struct dev_context *devc;
234 struct acquisition_state *acq;
235 struct regval_pair *regvals;
236
237 devc = sdi->priv;
238 acq = devc->acquisition;
239
240 /* Reset RLE state. */
241 acq->rle = RLE_STATE_DATA;
242 acq->sample = 0;
243 acq->run_len = 0;
244
29d58767 245 acq->samples_done = 0;
5874e88d
DE
246
247 /* For some reason, the start address is 4 rather than 0. */
248 acq->mem_addr_done = 4;
249 acq->mem_addr_next = 4;
250 acq->mem_addr_stop = acq->mem_addr_fill;
251
2cfd16a3
DE
252 /* Sample position in the packet output buffer. */
253 acq->out_index = 0;
5874e88d
DE
254
255 regvals = devc->reg_write_seq;
256
257 regvals[0].reg = REG_DIV_BYPASS;
258 regvals[0].val = 1;
259
260 regvals[1].reg = REG_MEM_CTRL2;
261 regvals[1].val = 2;
262
263 regvals[2].reg = REG_MEM_CTRL4;
264 regvals[2].val = 4;
265
266 devc->reg_write_pos = 0;
267 devc->reg_write_len = 3;
268
269 if (issue_next_write_reg(sdi) == SR_OK)
270 devc->state = STATE_READ_PREPARE;
271}
272
d02d4754
DE
273/* Issue a command as an asynchronous USB transfer which returns the device
274 * to normal state after a read operation. Sets a new device context state
275 * on success.
276 */
5874e88d
DE
277static void issue_read_end(const struct sr_dev_inst *sdi)
278{
279 struct dev_context *devc;
280
281 devc = sdi->priv;
282
283 if (issue_write_reg(sdi, REG_DIV_BYPASS, 0) == SR_OK)
284 devc->state = STATE_READ_END;
285}
286
57ba5f3d 287/* Decode an incoming response to a buffer fill level request and act on it
5874e88d
DE
288 * as appropriate. Note that this function changes the device context state.
289 */
290static void process_capture_length(const struct sr_dev_inst *sdi)
291{
292 struct dev_context *devc;
293 struct acquisition_state *acq;
294
295 devc = sdi->priv;
296 acq = devc->acquisition;
297
298 if (acq->xfer_in->actual_length != 4) {
299 sr_err("Received size %d doesn't match expected size 4.",
300 acq->xfer_in->actual_length);
301 devc->transfer_error = TRUE;
302 return;
303 }
e0df15d4 304 acq->mem_addr_fill = LWLA_TO_UINT32(acq->xfer_buf_in[0]);
5874e88d 305
9497f49e 306 sr_dbg("%zu words in capture buffer.", acq->mem_addr_fill);
5874e88d
DE
307
308 if (acq->mem_addr_fill > 0 && sdi->status == SR_ST_ACTIVE)
309 issue_read_start(sdi);
310 else
311 issue_read_end(sdi);
312}
313
314/* Initiate a sequence of register write commands with the effect of
315 * cancelling a running capture operation. This sets a new device state
316 * if issuing the first command succeeds.
317 */
318static void issue_stop_capture(const struct sr_dev_inst *sdi)
319{
320 struct dev_context *devc;
321 struct regval_pair *regvals;
322
323 devc = sdi->priv;
324
325 if (devc->stopping_in_progress)
326 return;
327
328 regvals = devc->reg_write_seq;
329
330 regvals[0].reg = REG_CMD_CTRL2;
331 regvals[0].val = 10;
332
333 regvals[1].reg = REG_CMD_CTRL3;
334 regvals[1].val = 0;
335
336 regvals[2].reg = REG_CMD_CTRL4;
337 regvals[2].val = 0;
338
339 regvals[3].reg = REG_CMD_CTRL1;
340 regvals[3].val = 0;
341
342 regvals[4].reg = REG_DIV_BYPASS;
343 regvals[4].val = 0;
344
345 devc->reg_write_pos = 0;
346 devc->reg_write_len = 5;
347
348 if (issue_next_write_reg(sdi) == SR_OK) {
349 devc->stopping_in_progress = TRUE;
350 devc->state = STATE_STOP_CAPTURE;
351 }
352}
353
f3f19d11 354/* Decode an incoming capture status response and act on it as appropriate.
5874e88d
DE
355 * Note that this function changes the device state.
356 */
357static void process_capture_status(const struct sr_dev_inst *sdi)
358{
8a3ddd88 359 uint64_t duration;
5874e88d
DE
360 struct dev_context *devc;
361 struct acquisition_state *acq;
9497f49e
DE
362 unsigned int mem_fill;
363 unsigned int flags;
5874e88d
DE
364
365 devc = sdi->priv;
366 acq = devc->acquisition;
367
368 if (acq->xfer_in->actual_length != CAP_STAT_LEN * 8) {
369 sr_err("Received size %d doesn't match expected size %d.",
370 acq->xfer_in->actual_length, CAP_STAT_LEN * 8);
371 devc->transfer_error = TRUE;
372 return;
373 }
374
375 /* TODO: Find out the actual bit width of these fields as stored
376 * in the FPGA. These fields are definitely less than 64 bit wide
377 * internally, and the unused bits occasionally even contain garbage.
378 */
e0df15d4
DE
379 mem_fill = LWLA_TO_UINT32(acq->xfer_buf_in[0]);
380 duration = LWLA_TO_UINT32(acq->xfer_buf_in[4]);
381 flags = LWLA_TO_UINT32(acq->xfer_buf_in[8]) & STATUS_FLAG_MASK;
5874e88d 382
29d58767
DE
383 /* The LWLA1034 runs at 125 MHz if the clock divider is bypassed.
384 * However, the time base used for the duration is apparently not
385 * adjusted for this "boost" mode. Whereas normally the duration
386 * unit is 1 ms, it is 0.8 ms when the clock divider is bypassed.
387 * As 0.8 = 100 MHz / 125 MHz, it seems that the internal cycle
388 * counter period is the same as at the 100 MHz setting.
8a3ddd88 389 */
29d58767
DE
390 if (acq->bypass_clockdiv)
391 acq->duration_now = duration * 4 / 5;
392 else
393 acq->duration_now = duration;
8a3ddd88 394
9497f49e
DE
395 sr_spew("Captured %u words, %" PRIu64 " ms, flags 0x%02X.",
396 mem_fill, acq->duration_now, flags);
397
398 if ((flags & STATUS_TRIGGERED) > (acq->capture_flags & STATUS_TRIGGERED))
399 sr_info("Capture triggered.");
400
401 acq->capture_flags = flags;
5874e88d 402
29d58767 403 if (acq->duration_now >= acq->duration_max) {
9497f49e 404 sr_dbg("Time limit reached, stopping capture.");
5874e88d
DE
405 issue_stop_capture(sdi);
406 return;
407 }
408 devc->state = STATE_STATUS_WAIT;
409
410 if ((acq->capture_flags & STATUS_TRIGGERED) == 0) {
411 sr_spew("Waiting for trigger.");
412 } else if ((acq->capture_flags & STATUS_MEM_AVAIL) == 0) {
413 sr_dbg("Capture memory filled.");
414 request_capture_length(sdi);
415 } else if ((acq->capture_flags & STATUS_CAPTURING) != 0) {
416 sr_spew("Sampling in progress.");
417 }
418}
419
420/* Issue a capture buffer read request as an asynchronous USB transfer.
421 * The address and size of the memory area to read are derived from the
422 * current acquisition state.
423 */
424static void request_read_mem(const struct sr_dev_inst *sdi)
425{
426 struct dev_context *devc;
427 struct acquisition_state *acq;
428 size_t count;
429
430 devc = sdi->priv;
431 acq = devc->acquisition;
432
433 if (acq->mem_addr_next >= acq->mem_addr_stop)
434 return;
435
436 /* Always read a multiple of 8 device words. */
437 count = (acq->mem_addr_stop - acq->mem_addr_next + 7) / 8 * 8;
438 count = MIN(count, READ_CHUNK_LEN);
439
440 acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_MEM);
441 acq->xfer_buf_out[1] = LWLA_WORD_0(acq->mem_addr_next);
442 acq->xfer_buf_out[2] = LWLA_WORD_1(acq->mem_addr_next);
443 acq->xfer_buf_out[3] = LWLA_WORD_0(count);
444 acq->xfer_buf_out[4] = LWLA_WORD_1(count);
445
446 acq->xfer_out->length = 5 * sizeof(uint16_t);
447
448 if (submit_transfer(devc, acq->xfer_out) == SR_OK) {
449 acq->mem_addr_next += count;
450 devc->state = STATE_READ_REQUEST;
451 }
452}
453
5874e88d
DE
454/* Demangle and decompress incoming sample data from the capture buffer.
455 * The data chunk is taken from the acquisition state, and is expected to
456 * contain a multiple of 8 device words.
457 * All data currently in the acquisition buffer will be processed. Packets
458 * of decoded samples are sent off to the session bus whenever the output
459 * buffer becomes full while decoding.
460 */
461static int process_sample_data(const struct sr_dev_inst *sdi)
462{
463 uint64_t sample;
5874e88d
DE
464 uint64_t high_nibbles;
465 uint64_t word;
466 struct dev_context *devc;
467 struct acquisition_state *acq;
468 uint8_t *out_p;
e0df15d4 469 uint32_t *slice;
2cfd16a3
DE
470 struct sr_datafeed_packet packet;
471 struct sr_datafeed_logic logic;
5874e88d
DE
472 size_t expect_len;
473 size_t actual_len;
2cfd16a3
DE
474 size_t out_max_samples;
475 size_t out_run_samples;
476 size_t ri;
5874e88d
DE
477 size_t in_words_left;
478 size_t si;
479
480 devc = sdi->priv;
481 acq = devc->acquisition;
482
483 if (acq->mem_addr_done >= acq->mem_addr_stop
29d58767 484 || acq->samples_done >= acq->samples_max)
5874e88d
DE
485 return SR_OK;
486
487 in_words_left = MIN(acq->mem_addr_stop - acq->mem_addr_done,
488 READ_CHUNK_LEN);
e0df15d4 489 expect_len = LWLA1034_MEMBUF_LEN(in_words_left) * sizeof(uint32_t);
5874e88d
DE
490 actual_len = acq->xfer_in->actual_length;
491
492 if (actual_len != expect_len) {
9497f49e
DE
493 sr_err("Received size %zu does not match expected size %zu.",
494 actual_len, expect_len);
5874e88d
DE
495 devc->transfer_error = TRUE;
496 return SR_ERR;
497 }
498 acq->mem_addr_done += in_words_left;
2cfd16a3
DE
499
500 /* Prepare session packet. */
501 packet.type = SR_DF_LOGIC;
502 packet.payload = &logic;
503 logic.unitsize = UNIT_SIZE;
504 logic.data = acq->out_packet;
505
5874e88d
DE
506 slice = acq->xfer_buf_in;
507 si = 0; /* word index within slice */
508
509 for (;;) {
2cfd16a3
DE
510 /* Calculate number of samples to write into packet. */
511 out_max_samples = MIN(acq->samples_max - acq->samples_done,
512 PACKET_LENGTH - acq->out_index);
513 out_run_samples = MIN(acq->run_len, out_max_samples);
514
5874e88d 515 /* Expand run-length samples into session packet. */
2cfd16a3
DE
516 sample = acq->sample;
517 out_p = &acq->out_packet[acq->out_index * UNIT_SIZE];
518
519 for (ri = 0; ri < out_run_samples; ++ri) {
5874e88d
DE
520 out_p[0] = sample & 0xFF;
521 out_p[1] = (sample >> 8) & 0xFF;
522 out_p[2] = (sample >> 16) & 0xFF;
523 out_p[3] = (sample >> 24) & 0xFF;
524 out_p[4] = (sample >> 32) & 0xFF;
2cfd16a3
DE
525 out_p += UNIT_SIZE;
526 }
527 acq->run_len -= out_run_samples;
528 acq->out_index += out_run_samples;
529 acq->samples_done += out_run_samples;
530
531 /* Packet full or sample count limit reached? */
532 if (out_run_samples == out_max_samples) {
533 logic.length = acq->out_index * UNIT_SIZE;
534 sr_session_send(sdi, &packet);
535 acq->out_index = 0;
536
537 if (acq->samples_done >= acq->samples_max)
538 return SR_OK; /* sample limit reached */
539 if (acq->run_len > 0)
540 continue; /* need another packet */
5874e88d 541 }
5874e88d
DE
542
543 if (in_words_left == 0)
544 break; /* done with current chunk */
545
546 /* Now work on the current slice. */
e0df15d4
DE
547 high_nibbles = LWLA_TO_UINT32(slice[8]);
548 word = LWLA_TO_UINT32(slice[si]);
5874e88d
DE
549 word |= (high_nibbles << (4 * si + 4)) & ((uint64_t)0xF << 32);
550
551 if (acq->rle == RLE_STATE_DATA) {
552 acq->sample = word & ALL_CHANNELS_MASK;
3f239f08 553 acq->run_len = ((word >> NUM_CHANNELS) & 1) + 1;
5874e88d
DE
554 if (word & RLE_FLAG_LEN_FOLLOWS)
555 acq->rle = RLE_STATE_LEN;
556 } else {
557 acq->run_len += word << 1;
558 acq->rle = RLE_STATE_DATA;
559 }
560
561 /* Move to next word. */
e0df15d4
DE
562 si = (si + 1) % 8;
563 if (si == 0)
564 slice += 9;
5874e88d
DE
565 --in_words_left;
566 }
567
2cfd16a3
DE
568 /* Send out partially filled packet if this was the last chunk. */
569 if (acq->mem_addr_done >= acq->mem_addr_stop && acq->out_index > 0) {
570 logic.length = acq->out_index * UNIT_SIZE;
571 sr_session_send(sdi, &packet);
572 acq->out_index = 0;
573 }
5874e88d
DE
574 return SR_OK;
575}
576
577/* Finish an acquisition session. This sends the end packet to the session
578 * bus and removes the listener for asynchronous USB transfers.
579 */
580static void end_acquisition(struct sr_dev_inst *sdi)
581{
582 struct drv_context *drvc;
583 struct dev_context *devc;
584 struct sr_datafeed_packet packet;
585
338143ea 586 drvc = sdi->driver->context;
5874e88d
DE
587 devc = sdi->priv;
588
589 if (devc->state == STATE_IDLE)
590 return;
591
592 devc->state = STATE_IDLE;
593
594 /* Remove USB file descriptors from polling. */
102f1239 595 usb_source_remove(sdi->session, drvc->sr_ctx);
5874e88d
DE
596
597 packet.type = SR_DF_END;
598 sr_session_send(sdi, &packet);
599
600 lwla_free_acquisition_state(devc->acquisition);
601 devc->acquisition = NULL;
602
603 sdi->status = SR_ST_ACTIVE;
604}
605
606/* USB output transfer completion callback.
607 */
55462b8b 608static void LIBUSB_CALL receive_transfer_out(struct libusb_transfer *transfer)
5874e88d
DE
609{
610 struct sr_dev_inst *sdi;
611 struct dev_context *devc;
612
613 sdi = transfer->user_data;
614 devc = sdi->priv;
615
616 if (transfer->status != LIBUSB_TRANSFER_COMPLETED) {
617 sr_err("Transfer to device failed: %d.", transfer->status);
618 devc->transfer_error = TRUE;
619 return;
620 }
621
622 if (devc->reg_write_pos < devc->reg_write_len) {
623 issue_next_write_reg(sdi);
624 } else {
625 switch (devc->state) {
626 case STATE_START_CAPTURE:
627 devc->state = STATE_STATUS_WAIT;
628 break;
629 case STATE_STATUS_REQUEST:
630 devc->state = STATE_STATUS_RESPONSE;
631 submit_transfer(devc, devc->acquisition->xfer_in);
632 break;
633 case STATE_STOP_CAPTURE:
634 if (sdi->status == SR_ST_ACTIVE)
635 request_capture_length(sdi);
636 else
637 end_acquisition(sdi);
638 break;
639 case STATE_LENGTH_REQUEST:
640 devc->state = STATE_LENGTH_RESPONSE;
641 submit_transfer(devc, devc->acquisition->xfer_in);
642 break;
643 case STATE_READ_PREPARE:
644 request_read_mem(sdi);
645 break;
646 case STATE_READ_REQUEST:
647 devc->state = STATE_READ_RESPONSE;
648 submit_transfer(devc, devc->acquisition->xfer_in);
649 break;
650 case STATE_READ_END:
651 end_acquisition(sdi);
652 break;
653 default:
654 sr_err("Unexpected device state %d.", devc->state);
655 break;
656 }
657 }
658}
659
660/* USB input transfer completion callback.
661 */
55462b8b 662static void LIBUSB_CALL receive_transfer_in(struct libusb_transfer *transfer)
5874e88d
DE
663{
664 struct sr_dev_inst *sdi;
665 struct dev_context *devc;
666 struct acquisition_state *acq;
667
668 sdi = transfer->user_data;
669 devc = sdi->priv;
670 acq = devc->acquisition;
671
672 if (transfer->status != LIBUSB_TRANSFER_COMPLETED) {
673 sr_err("Transfer from device failed: %d.", transfer->status);
674 devc->transfer_error = TRUE;
675 return;
676 }
677
678 switch (devc->state) {
679 case STATE_STATUS_RESPONSE:
680 process_capture_status(sdi);
681 break;
682 case STATE_LENGTH_RESPONSE:
683 process_capture_length(sdi);
684 break;
685 case STATE_READ_RESPONSE:
686 if (process_sample_data(sdi) == SR_OK
687 && acq->mem_addr_next < acq->mem_addr_stop
29d58767 688 && acq->samples_done < acq->samples_max)
5874e88d
DE
689 request_read_mem(sdi);
690 else
691 issue_read_end(sdi);
692 break;
693 default:
694 sr_err("Unexpected device state %d.", devc->state);
695 break;
696 }
697}
698
699/* Initialize the LWLA. This downloads a bitstream into the FPGA
700 * and executes a simple device test sequence.
701 */
702SR_PRIV int lwla_init_device(const struct sr_dev_inst *sdi)
703{
704 struct dev_context *devc;
705 int ret;
706 uint32_t value;
707
708 devc = sdi->priv;
709
5874e88d 710 /* Force reload of bitstream */
6358f0a9 711 devc->cur_clock_config = CONF_CLOCK_NONE;
5874e88d 712
6358f0a9 713 ret = lwla_set_clock_config(sdi);
5874e88d
DE
714
715 if (ret != SR_OK)
716 return ret;
717
718 ret = lwla_write_reg(sdi->conn, REG_CMD_CTRL2, 100);
719 if (ret != SR_OK)
720 return ret;
721
722 ret = lwla_read_reg(sdi->conn, REG_CMD_CTRL1, &value);
723 if (ret != SR_OK)
724 return ret;
9497f49e 725 sr_dbg("Received test word 0x%08X back.", value);
5874e88d
DE
726 if (value != 0x12345678)
727 return SR_ERR;
728
729 ret = lwla_read_reg(sdi->conn, REG_CMD_CTRL4, &value);
730 if (ret != SR_OK)
731 return ret;
9497f49e 732 sr_dbg("Received test word 0x%08X back.", value);
5874e88d
DE
733 if (value != 0x12345678)
734 return SR_ERR;
735
736 ret = lwla_read_reg(sdi->conn, REG_CMD_CTRL3, &value);
737 if (ret != SR_OK)
738 return ret;
9497f49e 739 sr_dbg("Received test word 0x%08X back.", value);
5874e88d
DE
740 if (value != 0x87654321)
741 return SR_ERR;
742
743 return ret;
744}
745
6358f0a9
DE
746/* Select the LWLA clock configuration. If the clock source changed from
747 * the previous setting, this will download a new bitstream to the FPGA.
5874e88d 748 */
6358f0a9 749SR_PRIV int lwla_set_clock_config(const struct sr_dev_inst *sdi)
5874e88d
DE
750{
751 struct dev_context *devc;
752 int ret;
6358f0a9 753 enum clock_config choice;
5874e88d
DE
754
755 devc = sdi->priv;
5874e88d 756
6358f0a9
DE
757 if (sdi->status == SR_ST_INACTIVE)
758 choice = CONF_CLOCK_NONE;
759 else if (devc->cfg_clock_source == CLOCK_INTERNAL)
760 choice = CONF_CLOCK_INT;
761 else if (devc->cfg_clock_edge == EDGE_POSITIVE)
762 choice = CONF_CLOCK_EXT_RISE;
763 else
764 choice = CONF_CLOCK_EXT_FALL;
765
766 if (choice != devc->cur_clock_config) {
767 devc->cur_clock_config = CONF_CLOCK_NONE;
768 ret = lwla_send_bitstream(sdi->conn, bitstream_map[choice]);
945e4343 769 if (ret == SR_OK)
6358f0a9 770 devc->cur_clock_config = choice;
945e4343 771 return ret;
aeaad0b0 772 }
5874e88d
DE
773 return SR_OK;
774}
775
776/* Configure the LWLA in preparation for an acquisition session.
777 */
778SR_PRIV int lwla_setup_acquisition(const struct sr_dev_inst *sdi)
779{
780 struct dev_context *devc;
781 struct sr_usb_dev_inst *usb;
29d58767 782 struct acquisition_state *acq;
5874e88d
DE
783 struct regval_pair regvals[7];
784 int ret;
785
786 devc = sdi->priv;
787 usb = sdi->conn;
29d58767
DE
788 acq = devc->acquisition;
789
9497f49e
DE
790 if (devc->limit_msec > 0) {
791 acq->duration_max = devc->limit_msec;
792 sr_info("Acquisition time limit %" PRIu64 " ms.",
793 devc->limit_msec);
794 } else
795 acq->duration_max = MAX_LIMIT_MSEC;
796
797 if (devc->limit_samples > 0) {
798 acq->samples_max = devc->limit_samples;
799 sr_info("Acquisition sample count limit %" PRIu64 ".",
800 devc->limit_samples);
801 } else
802 acq->samples_max = MAX_LIMIT_SAMPLES;
29d58767 803
6358f0a9 804 if (devc->cfg_clock_source == CLOCK_INTERNAL) {
9497f49e
DE
805 sr_info("Internal clock, samplerate %" PRIu64 ".",
806 devc->samplerate);
29d58767
DE
807 if (devc->samplerate == 0)
808 return SR_ERR_BUG;
809 /* At 125 MHz, the clock divider is bypassed. */
810 acq->bypass_clockdiv = (devc->samplerate > SR_MHZ(100));
811
812 /* If only one of the limits is set, derive the other one. */
813 if (devc->limit_msec == 0 && devc->limit_samples > 0)
814 acq->duration_max = devc->limit_samples
815 * 1000 / devc->samplerate + 1;
816 else if (devc->limit_samples == 0 && devc->limit_msec > 0)
817 acq->samples_max = devc->limit_msec
818 * devc->samplerate / 1000;
6358f0a9 819 } else {
29d58767 820 acq->bypass_clockdiv = TRUE;
6358f0a9
DE
821
822 if (devc->cfg_clock_edge == EDGE_NEGATIVE)
823 sr_info("External clock, falling edge.");
824 else
825 sr_info("External clock, rising edge.");
29d58767 826 }
5874e88d
DE
827
828 regvals[0].reg = REG_MEM_CTRL2;
829 regvals[0].val = 2;
830
831 regvals[1].reg = REG_MEM_CTRL2;
832 regvals[1].val = 1;
833
834 regvals[2].reg = REG_CMD_CTRL2;
835 regvals[2].val = 10;
836
837 regvals[3].reg = REG_CMD_CTRL3;
838 regvals[3].val = 0x74;
839
840 regvals[4].reg = REG_CMD_CTRL4;
841 regvals[4].val = 0;
842
843 regvals[5].reg = REG_CMD_CTRL1;
844 regvals[5].val = 0;
845
846 regvals[6].reg = REG_DIV_BYPASS;
29d58767 847 regvals[6].val = acq->bypass_clockdiv;
5874e88d 848
ce3ecb70 849 ret = lwla_write_regs(usb, regvals, ARRAY_SIZE(regvals));
5874e88d
DE
850 if (ret != SR_OK)
851 return ret;
852
853 return capture_setup(sdi);
854}
855
856/* Start the capture operation on the LWLA device. Beginning with this
857 * function, all USB transfers will be asynchronous until the end of the
858 * acquisition session.
859 */
860SR_PRIV int lwla_start_acquisition(const struct sr_dev_inst *sdi)
861{
862 struct dev_context *devc;
863 struct sr_usb_dev_inst *usb;
864 struct acquisition_state *acq;
865 struct regval_pair *regvals;
866
867 devc = sdi->priv;
868 usb = sdi->conn;
869 acq = devc->acquisition;
870
9497f49e
DE
871 acq->duration_now = 0;
872 acq->mem_addr_fill = 0;
873 acq->capture_flags = 0;
29d58767 874
5874e88d
DE
875 libusb_fill_bulk_transfer(acq->xfer_out, usb->devhdl, EP_COMMAND,
876 (unsigned char *)acq->xfer_buf_out, 0,
877 &receive_transfer_out,
1a46cc62 878 (struct sr_dev_inst *)sdi, USB_TIMEOUT_MS);
5874e88d
DE
879
880 libusb_fill_bulk_transfer(acq->xfer_in, usb->devhdl, EP_REPLY,
881 (unsigned char *)acq->xfer_buf_in,
882 sizeof acq->xfer_buf_in,
883 &receive_transfer_in,
1a46cc62 884 (struct sr_dev_inst *)sdi, USB_TIMEOUT_MS);
5874e88d
DE
885
886 regvals = devc->reg_write_seq;
887
888 regvals[0].reg = REG_CMD_CTRL2;
889 regvals[0].val = 10;
890
891 regvals[1].reg = REG_CMD_CTRL3;
892 regvals[1].val = 1;
893
894 regvals[2].reg = REG_CMD_CTRL4;
895 regvals[2].val = 0;
896
897 regvals[3].reg = REG_CMD_CTRL1;
898 regvals[3].val = 0;
899
900 devc->reg_write_pos = 0;
901 devc->reg_write_len = 4;
902
903 devc->state = STATE_START_CAPTURE;
904
905 return issue_next_write_reg(sdi);
906}
907
908/* Allocate an acquisition state object.
909 */
910SR_PRIV struct acquisition_state *lwla_alloc_acquisition_state(void)
911{
912 struct acquisition_state *acq;
913
a95f142e 914 acq = g_malloc0(sizeof(struct acquisition_state));
5874e88d
DE
915
916 acq->xfer_in = libusb_alloc_transfer(0);
917 if (!acq->xfer_in) {
918 sr_err("Transfer malloc failed.");
919 g_free(acq);
920 return NULL;
921 }
922
923 acq->xfer_out = libusb_alloc_transfer(0);
924 if (!acq->xfer_out) {
925 sr_err("Transfer malloc failed.");
926 libusb_free_transfer(acq->xfer_in);
927 g_free(acq);
928 return NULL;
929 }
930
931 return acq;
932}
933
934/* Deallocate an acquisition state object.
935 */
936SR_PRIV void lwla_free_acquisition_state(struct acquisition_state *acq)
937{
938 if (acq) {
939 libusb_free_transfer(acq->xfer_out);
940 libusb_free_transfer(acq->xfer_in);
941 g_free(acq);
942 }
943}
944
945/* USB I/O source callback.
946 */
947SR_PRIV int lwla_receive_data(int fd, int revents, void *cb_data)
948{
949 struct sr_dev_inst *sdi;
950 struct dev_context *devc;
951 struct drv_context *drvc;
952 struct timeval tv;
953 int ret;
954
955 (void)fd;
956
957 sdi = cb_data;
958 devc = sdi->priv;
338143ea 959 drvc = sdi->driver->context;
5874e88d
DE
960
961 if (!devc || !drvc)
962 return FALSE;
963
964 /* No timeout: return immediately. */
965 tv.tv_sec = 0;
966 tv.tv_usec = 0;
967
968 ret = libusb_handle_events_timeout_completed(drvc->sr_ctx->libusb_ctx,
969 &tv, NULL);
970 if (ret != 0)
971 sr_err("Event handling failed: %s.", libusb_error_name(ret));
972
973 /* If no event flags are set the timeout must have expired. */
974 if (revents == 0 && devc->state == STATE_STATUS_WAIT) {
975 if (sdi->status == SR_ST_STOPPING)
976 issue_stop_capture(sdi);
977 else
978 request_capture_status(sdi);
979 }
980
981 /* Check if an error occurred on a transfer. */
982 if (devc->transfer_error)
983 end_acquisition(sdi);
aeaad0b0
DE
984
985 return TRUE;
986}