]> sigrok.org Git - libsigrok.git/blame - src/hardware/asix-sigma/protocol.c
asix-sigma: rephrase trigger LUT upload to hardware for readability
[libsigrok.git] / src / hardware / asix-sigma / protocol.c
CommitLineData
28a35d8a 1/*
50985c20 2 * This file is part of the libsigrok project.
28a35d8a 3 *
868501fa 4 * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
911f1834
UH
5 * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6 * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
9334ed6c 7 * Copyright (C) 2020 Gerhard Sittig <gerhard.sittig@gmx.net>
28a35d8a
HE
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
911f1834 23/*
6352d030 24 * ASIX SIGMA/SIGMA2 logic analyzer driver
911f1834
UH
25 */
26
6ec6c43b 27#include <config.h>
3ba56876 28#include "protocol.h"
28a35d8a 29
b1648dea 30/*
b65649f6
GS
31 * The ASIX SIGMA hardware supports fixed 200MHz and 100MHz sample rates
32 * (by means of separate firmware images). As well as 50MHz divided by
33 * an integer divider in the 1..256 range (by the "typical" firmware).
34 * Which translates to a strict lower boundary of around 195kHz.
35 *
36 * This driver "suggests" a subset of the available rates by listing a
37 * few discrete values, while setter routines accept any user specified
38 * rate that is supported by the hardware.
b1648dea 39 */
abcd4771 40static const uint64_t samplerates[] = {
b65649f6
GS
41 /* 50MHz and integer divider. 1/2/5 steps (where possible). */
42 SR_KHZ(200), SR_KHZ(500),
43 SR_MHZ(1), SR_MHZ(2), SR_MHZ(5),
44 SR_MHZ(10), SR_MHZ(25), SR_MHZ(50),
45 /* 100MHz/200MHz, fixed rates in special firmware. */
46 SR_MHZ(100), SR_MHZ(200),
28a35d8a
HE
47};
48
abcd4771
GS
49SR_PRIV GVariant *sigma_get_samplerates_list(void)
50{
51 return std_gvar_samplerates(samplerates, ARRAY_SIZE(samplerates));
52}
39c64c6a 53
742368a2 54static const char *firmware_files[] = {
80e717b3
GS
55 [SIGMA_FW_50MHZ] = "asix-sigma-50.fw", /* 50MHz, 8bit divider. */
56 [SIGMA_FW_100MHZ] = "asix-sigma-100.fw", /* 100MHz, fixed. */
57 [SIGMA_FW_200MHZ] = "asix-sigma-200.fw", /* 200MHz, fixed. */
58 [SIGMA_FW_SYNC] = "asix-sigma-50sync.fw", /* Sync from external pin. */
59 [SIGMA_FW_FREQ] = "asix-sigma-phasor.fw", /* Frequency counter. */
f6564c8d
HE
60};
61
742368a2
GS
62#define SIGMA_FIRMWARE_SIZE_LIMIT (256 * 1024)
63
7fe1f91f
GS
64static int sigma_ftdi_open(const struct sr_dev_inst *sdi)
65{
66 struct dev_context *devc;
67 int vid, pid;
68 const char *serno;
69 int ret;
70
71 devc = sdi->priv;
72 if (!devc)
73 return SR_ERR_ARG;
74
75 if (devc->ftdi.is_open)
76 return SR_OK;
77
78 vid = devc->id.vid;
79 pid = devc->id.pid;
80 serno = sdi->serial_num;
81 if (!vid || !pid || !serno || !*serno)
82 return SR_ERR_ARG;
83
84 ret = ftdi_init(&devc->ftdi.ctx);
85 if (ret < 0) {
86 sr_err("Cannot initialize FTDI context (%d): %s.",
87 ret, ftdi_get_error_string(&devc->ftdi.ctx));
88 return SR_ERR_IO;
89 }
90 ret = ftdi_usb_open_desc_index(&devc->ftdi.ctx,
91 vid, pid, NULL, serno, 0);
92 if (ret < 0) {
93 sr_err("Cannot open device (%d): %s.",
94 ret, ftdi_get_error_string(&devc->ftdi.ctx));
95 return SR_ERR_IO;
96 }
97 devc->ftdi.is_open = TRUE;
98
99 return SR_OK;
100}
101
102static int sigma_ftdi_close(struct dev_context *devc)
103{
104 int ret;
105
106 ret = ftdi_usb_close(&devc->ftdi.ctx);
107 devc->ftdi.is_open = FALSE;
108 devc->ftdi.must_close = FALSE;
109 ftdi_deinit(&devc->ftdi.ctx);
110
111 return ret == 0 ? SR_OK : SR_ERR_IO;
112}
113
114SR_PRIV int sigma_check_open(const struct sr_dev_inst *sdi)
115{
116 struct dev_context *devc;
117 int ret;
118
119 if (!sdi)
120 return SR_ERR_ARG;
121 devc = sdi->priv;
122 if (!devc)
123 return SR_ERR_ARG;
124
125 if (devc->ftdi.is_open)
126 return SR_OK;
127
128 ret = sigma_ftdi_open(sdi);
129 if (ret != SR_OK)
130 return ret;
131 devc->ftdi.must_close = TRUE;
132
133 return ret;
134}
135
136SR_PRIV int sigma_check_close(struct dev_context *devc)
137{
138 int ret;
139
140 if (!devc)
141 return SR_ERR_ARG;
142
143 if (devc->ftdi.must_close) {
144 ret = sigma_ftdi_close(devc);
145 if (ret != SR_OK)
146 return ret;
147 devc->ftdi.must_close = FALSE;
148 }
149
150 return SR_OK;
151}
152
153SR_PRIV int sigma_force_open(const struct sr_dev_inst *sdi)
154{
155 struct dev_context *devc;
156 int ret;
157
158 if (!sdi)
159 return SR_ERR_ARG;
160 devc = sdi->priv;
161 if (!devc)
162 return SR_ERR_ARG;
163
164 ret = sigma_ftdi_open(sdi);
165 if (ret != SR_OK)
166 return ret;
167 devc->ftdi.must_close = FALSE;
168
169 return SR_OK;
170}
171
172SR_PRIV int sigma_force_close(struct dev_context *devc)
173{
174 return sigma_ftdi_close(devc);
175}
176
88a5f9ea
GS
177/*
178 * BEWARE! Error propagation is important, as are kinds of return values.
179 *
180 * - Raw USB tranport communicates the number of sent or received bytes,
181 * or negative error codes in the external library's(!) range of codes.
182 * - Internal routines at the "sigrok driver level" communicate success
183 * or failure in terms of SR_OK et al error codes.
184 * - Main loop style receive callbacks communicate booleans which arrange
185 * for repeated calls to drive progress during acquisition.
186 *
187 * Careful consideration by maintainers is essential, because all of the
188 * above kinds of values are assignment compatbile from the compiler's
189 * point of view. Implementation errors will go unnoticed at build time.
190 */
191
192static int sigma_read_raw(struct dev_context *devc, void *buf, size_t size)
28a35d8a
HE
193{
194 int ret;
fefa1800 195
7fe1f91f 196 ret = ftdi_read_data(&devc->ftdi.ctx, (unsigned char *)buf, size);
28a35d8a 197 if (ret < 0) {
88a5f9ea 198 sr_err("USB data read failed: %s",
7fe1f91f 199 ftdi_get_error_string(&devc->ftdi.ctx));
28a35d8a
HE
200 }
201
202 return ret;
203}
204
88a5f9ea 205static int sigma_write_raw(struct dev_context *devc, const void *buf, size_t size)
28a35d8a
HE
206{
207 int ret;
fefa1800 208
7fe1f91f 209 ret = ftdi_write_data(&devc->ftdi.ctx, buf, size);
88a5f9ea
GS
210 if (ret < 0) {
211 sr_err("USB data write failed: %s",
7fe1f91f 212 ftdi_get_error_string(&devc->ftdi.ctx));
88a5f9ea
GS
213 } else if ((size_t)ret != size) {
214 sr_err("USB data write length mismatch.");
215 }
28a35d8a
HE
216
217 return ret;
218}
219
88a5f9ea
GS
220static int sigma_read_sr(struct dev_context *devc, void *buf, size_t size)
221{
222 int ret;
223
224 ret = sigma_read_raw(devc, buf, size);
225 if (ret < 0 || (size_t)ret != size)
226 return SR_ERR_IO;
227
228 return SR_OK;
229}
230
231static int sigma_write_sr(struct dev_context *devc, const void *buf, size_t size)
232{
233 int ret;
234
235 ret = sigma_write_raw(devc, buf, size);
236 if (ret < 0 || (size_t)ret != size)
237 return SR_ERR_IO;
238
239 return SR_OK;
240}
241
e8686e3a 242/*
88a5f9ea
GS
243 * Implementor's note: The local write buffer's size shall suffice for
244 * any know FPGA register transaction that is involved in the supported
245 * feature set of this sigrok device driver. If the length check trips,
246 * that's a programmer's error and needs adjustment in the complete call
247 * stack of the respective code path.
e8686e3a 248 */
0f017b7d
GS
249#define SIGMA_MAX_REG_DEPTH 32
250
251/*
252 * Implementor's note: The FPGA command set supports register access
253 * with automatic address adjustment. This operation is documented to
254 * wrap within a 16-address range, it cannot cross boundaries where the
255 * register address' nibble overflows. An internal helper assumes that
256 * callers remain within this auto-adjustment range, and thus multi
257 * register access requests can never exceed that count.
258 */
259#define SIGMA_MAX_REG_COUNT 16
260
9b4d261f
GS
261SR_PRIV int sigma_write_register(struct dev_context *devc,
262 uint8_t reg, uint8_t *data, size_t len)
28a35d8a 263{
0f017b7d 264 uint8_t buf[2 + SIGMA_MAX_REG_DEPTH * 2], *wrptr;
88a5f9ea 265 size_t idx;
28a35d8a 266
0f017b7d 267 if (len > SIGMA_MAX_REG_DEPTH) {
88a5f9ea 268 sr_err("Short write buffer for %zu bytes to reg %u.", len, reg);
e8686e3a
AG
269 return SR_ERR_BUG;
270 }
271
a53b8e4d 272 wrptr = buf;
0f017b7d
GS
273 write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(reg));
274 write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(reg));
a53b8e4d 275 for (idx = 0; idx < len; idx++) {
0f017b7d
GS
276 write_u8_inc(&wrptr, REG_DATA_LOW | LO4(data[idx]));
277 write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | HI4(data[idx]));
28a35d8a
HE
278 }
279
88a5f9ea 280 return sigma_write_sr(devc, buf, wrptr - buf);
28a35d8a
HE
281}
282
9b4d261f
GS
283SR_PRIV int sigma_set_register(struct dev_context *devc,
284 uint8_t reg, uint8_t value)
28a35d8a 285{
9b4d261f 286 return sigma_write_register(devc, reg, &value, sizeof(value));
28a35d8a
HE
287}
288
9b4d261f
GS
289static int sigma_read_register(struct dev_context *devc,
290 uint8_t reg, uint8_t *data, size_t len)
28a35d8a 291{
a53b8e4d 292 uint8_t buf[3], *wrptr;
88a5f9ea 293 int ret;
28a35d8a 294
a53b8e4d 295 wrptr = buf;
0f017b7d
GS
296 write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(reg));
297 write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(reg));
a53b8e4d 298 write_u8_inc(&wrptr, REG_READ_ADDR);
88a5f9ea
GS
299 ret = sigma_write_sr(devc, buf, wrptr - buf);
300 if (ret != SR_OK)
301 return ret;
28a35d8a 302
88a5f9ea 303 return sigma_read_sr(devc, data, len);
28a35d8a
HE
304}
305
0f017b7d
GS
306static int sigma_get_register(struct dev_context *devc,
307 uint8_t reg, uint8_t *data)
308{
309 return sigma_read_register(devc, reg, data, sizeof(*data));
310}
311
312static int sigma_get_registers(struct dev_context *devc,
313 uint8_t reg, uint8_t *data, size_t count)
314{
315 uint8_t buf[2 + SIGMA_MAX_REG_COUNT], *wrptr;
316 size_t idx;
317 int ret;
318
319 if (count > SIGMA_MAX_REG_COUNT) {
320 sr_err("Short command buffer for %zu reg reads at %u.", count, reg);
321 return SR_ERR_BUG;
322 }
323
324 wrptr = buf;
325 write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(reg));
326 write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(reg));
327 for (idx = 0; idx < count; idx++)
328 write_u8_inc(&wrptr, REG_READ_ADDR | REG_ADDR_INC);
329 ret = sigma_write_sr(devc, buf, wrptr - buf);
330 if (ret != SR_OK)
331 return ret;
332
333 return sigma_read_sr(devc, data, count);
334}
335
9b4d261f 336static int sigma_read_pos(struct dev_context *devc,
88a5f9ea 337 uint32_t *stoppos, uint32_t *triggerpos, uint8_t *mode)
28a35d8a 338{
88a5f9ea 339 uint8_t result[7];
0f017b7d 340 const uint8_t *rdptr;
88a5f9ea
GS
341 uint32_t v32;
342 uint8_t v8;
343 int ret;
28a35d8a 344
0f017b7d
GS
345 /*
346 * Read 7 registers starting at trigger position LSB.
347 * Which yields two 24bit counter values, and mode flags.
348 */
349 ret = sigma_get_registers(devc, READ_TRIGGER_POS_LOW,
350 result, sizeof(result));
88a5f9ea
GS
351 if (ret != SR_OK)
352 return ret;
28a35d8a 353
a53b8e4d 354 rdptr = &result[0];
88a5f9ea
GS
355 v32 = read_u24le_inc(&rdptr);
356 if (triggerpos)
357 *triggerpos = v32;
358 v32 = read_u24le_inc(&rdptr);
359 if (stoppos)
360 *stoppos = v32;
361 v8 = read_u8_inc(&rdptr);
362 if (mode)
363 *mode = v8;
28a35d8a 364
dc400817 365 /*
a53b8e4d
GS
366 * These positions consist of "the memory row" in the MSB fields,
367 * and "an event index" within the row in the LSB fields. Part
368 * of the memory row's content is sample data, another part is
369 * timestamps.
2c33b092 370 *
a53b8e4d
GS
371 * The retrieved register values point to after the captured
372 * position. So they need to get decremented, and adjusted to
373 * cater for the timestamps when the decrement carries over to
374 * a different memory row.
dc400817 375 */
88a5f9ea 376 if (stoppos && (--*stoppos & ROW_MASK) == ROW_MASK)
a53b8e4d 377 *stoppos -= CLUSTERS_PER_ROW;
88a5f9ea 378 if (triggerpos && (--*triggerpos & ROW_MASK) == ROW_MASK)
a53b8e4d 379 *triggerpos -= CLUSTERS_PER_ROW;
57bbf56b 380
a53b8e4d 381 return SR_OK;
28a35d8a
HE
382}
383
9b4d261f
GS
384static int sigma_read_dram(struct dev_context *devc,
385 uint16_t startchunk, size_t numchunks, uint8_t *data)
28a35d8a 386{
0f017b7d 387 uint8_t buf[128], *wrptr, regval;
07411a60 388 size_t chunk;
88a5f9ea 389 int sel, ret;
07411a60 390 gboolean is_last;
28a35d8a 391
a53b8e4d 392 if (2 + 3 * numchunks > ARRAY_SIZE(buf)) {
88a5f9ea 393 sr_err("Short write buffer for %zu DRAM row reads.", numchunks);
a53b8e4d
GS
394 return SR_ERR_BUG;
395 }
396
07411a60 397 /* Communicate DRAM start address (memory row, aka samples line). */
a53b8e4d 398 wrptr = buf;
0f017b7d 399 write_u16be_inc(&wrptr, startchunk);
88a5f9ea
GS
400 ret = sigma_write_register(devc, WRITE_MEMROW, buf, wrptr - buf);
401 if (ret != SR_OK)
402 return ret;
28a35d8a 403
07411a60
GS
404 /*
405 * Access DRAM content. Fetch from DRAM to FPGA's internal RAM,
406 * then transfer via USB. Interleave the FPGA's DRAM access and
407 * USB transfer, use alternating buffers (0/1) in the process.
408 */
a53b8e4d
GS
409 wrptr = buf;
410 write_u8_inc(&wrptr, REG_DRAM_BLOCK);
411 write_u8_inc(&wrptr, REG_DRAM_WAIT_ACK);
07411a60
GS
412 for (chunk = 0; chunk < numchunks; chunk++) {
413 sel = chunk % 2;
414 is_last = chunk == numchunks - 1;
0f017b7d
GS
415 if (!is_last) {
416 regval = REG_DRAM_BLOCK | REG_DRAM_SEL_BOOL(!sel);
417 write_u8_inc(&wrptr, regval);
418 }
419 regval = REG_DRAM_BLOCK_DATA | REG_DRAM_SEL_BOOL(sel);
420 write_u8_inc(&wrptr, regval);
07411a60 421 if (!is_last)
a53b8e4d 422 write_u8_inc(&wrptr, REG_DRAM_WAIT_ACK);
28a35d8a 423 }
88a5f9ea
GS
424 ret = sigma_write_sr(devc, buf, wrptr - buf);
425 if (ret != SR_OK)
426 return ret;
28a35d8a 427
88a5f9ea 428 return sigma_read_sr(devc, data, numchunks * ROW_LENGTH_BYTES);
28a35d8a
HE
429}
430
4ae1f451 431/* Upload trigger look-up tables to Sigma. */
9b4d261f
GS
432SR_PRIV int sigma_write_trigger_lut(struct dev_context *devc,
433 struct triggerlut *lut)
ee492173 434{
0f017b7d 435 int lut_addr;
ee492173 436 uint16_t bit;
72ea3b84 437 uint8_t m3d, m2d, m1d, m0d;
a53b8e4d 438 uint8_t buf[6], *wrptr, regval;
88a5f9ea 439 int ret;
ee492173 440
72ea3b84
GS
441 /*
442 * Translate the LUT part of the trigger configuration from the
443 * application's perspective to the hardware register's bitfield
444 * layout. Send the LUT to the device. This configures the logic
445 * which combines pin levels or edges.
446 */
0f017b7d
GS
447 for (lut_addr = 0; lut_addr < 16; lut_addr++) {
448 bit = 1 << lut_addr;
ee492173 449
72ea3b84
GS
450 /* - M4 M3S M3Q */
451 m3d = 0;
452 if (lut->m4 & bit)
453 m3d |= 1 << 2;
454 if (lut->m3s & bit)
455 m3d |= 1 << 1;
456 if (lut->m3 & bit)
457 m3d |= 1 << 0;
ee492173 458
72ea3b84
GS
459 /* M2D3 M2D2 M2D1 M2D0 */
460 m2d = 0;
ee492173 461 if (lut->m2d[3] & bit)
72ea3b84
GS
462 m2d |= 1 << 3;
463 if (lut->m2d[2] & bit)
464 m2d |= 1 << 2;
465 if (lut->m2d[1] & bit)
466 m2d |= 1 << 1;
467 if (lut->m2d[0] & bit)
468 m2d |= 1 << 0;
ee492173 469
72ea3b84
GS
470 /* M1D3 M1D2 M1D1 M1D0 */
471 m1d = 0;
472 if (lut->m1d[3] & bit)
473 m1d |= 1 << 3;
474 if (lut->m1d[2] & bit)
475 m1d |= 1 << 2;
476 if (lut->m1d[1] & bit)
477 m1d |= 1 << 1;
478 if (lut->m1d[0] & bit)
479 m1d |= 1 << 0;
ee492173 480
72ea3b84
GS
481 /* M0D3 M0D2 M0D1 M0D0 */
482 m0d = 0;
ee492173 483 if (lut->m0d[3] & bit)
72ea3b84
GS
484 m0d |= 1 << 3;
485 if (lut->m0d[2] & bit)
486 m0d |= 1 << 2;
487 if (lut->m0d[1] & bit)
488 m0d |= 1 << 1;
489 if (lut->m0d[0] & bit)
490 m0d |= 1 << 0;
ee492173 491
a53b8e4d 492 /*
72ea3b84
GS
493 * Send 16bits with M3D/M2D and M1D/M0D bit masks to the
494 * TriggerSelect register, then strobe the LUT write by
495 * passing A3-A0 to TriggerSelect2. Hold RESET during LUT
496 * programming.
a53b8e4d
GS
497 */
498 wrptr = buf;
72ea3b84
GS
499 write_u8_inc(&wrptr, (m3d << 4) | (m2d << 0));
500 write_u8_inc(&wrptr, (m1d << 4) | (m0d << 0));
419f1095
GS
501 ret = sigma_write_register(devc, WRITE_TRIGGER_SELECT,
502 buf, wrptr - buf);
88a5f9ea
GS
503 if (ret != SR_OK)
504 return ret;
419f1095
GS
505 ret = sigma_set_register(devc, WRITE_TRIGGER_SELECT2,
506 TRGSEL2_RESET | TRGSEL2_LUT_WRITE |
0f017b7d 507 (lut_addr & TRGSEL2_LUT_ADDR_MASK));
88a5f9ea
GS
508 if (ret != SR_OK)
509 return ret;
ee492173
HE
510 }
511
72ea3b84
GS
512 /*
513 * Send the parameters. This covers counters and durations.
514 */
a53b8e4d
GS
515 wrptr = buf;
516 regval = 0;
0f017b7d
GS
517 regval |= (lut->params.selc & TRGSEL_SELC_MASK) << TRGSEL_SELC_SHIFT;
518 regval |= (lut->params.selpresc & TRGSEL_SELPRESC_MASK) << TRGSEL_SELPRESC_SHIFT;
a53b8e4d
GS
519 write_u8_inc(&wrptr, regval);
520 regval = 0;
0f017b7d
GS
521 regval |= (lut->params.selinc & TRGSEL_SELINC_MASK) << TRGSEL_SELINC_SHIFT;
522 regval |= (lut->params.selres & TRGSEL_SELRES_MASK) << TRGSEL_SELRES_SHIFT;
523 regval |= (lut->params.sela & TRGSEL_SELA_MASK) << TRGSEL_SELA_SHIFT;
524 regval |= (lut->params.selb & TRGSEL_SELB_MASK) << TRGSEL_SELB_SHIFT;
a53b8e4d 525 write_u8_inc(&wrptr, regval);
0f017b7d
GS
526 write_u16be_inc(&wrptr, lut->params.cmpb);
527 write_u16be_inc(&wrptr, lut->params.cmpa);
88a5f9ea
GS
528 ret = sigma_write_register(devc, WRITE_TRIGGER_SELECT, buf, wrptr - buf);
529 if (ret != SR_OK)
530 return ret;
ee492173 531
e46b8fb1 532 return SR_OK;
ee492173
HE
533}
534
d5fa188a 535/*
dc0906e2
GS
536 * See Xilinx UG332 for Spartan-3 FPGA configuration. The SIGMA device
537 * uses FTDI bitbang mode for netlist download in slave serial mode.
538 * (LATER: The OMEGA device's cable contains a more capable FTDI chip
539 * and uses MPSSE mode for bitbang. -- Can we also use FT232H in FT245
540 * compatible bitbang mode? For maximum code re-use and reduced libftdi
541 * dependency? See section 3.5.5 of FT232H: D0 clk, D1 data (out), D2
542 * data (in), D3 select, D4-7 GPIOL. See section 3.5.7 for MCU FIFO.)
543 *
544 * 750kbps rate (four times the speed of sigmalogan) works well for
545 * netlist download. All pins except INIT_B are output pins during
546 * configuration download.
547 *
548 * Some pins are inverted as a byproduct of level shifting circuitry.
549 * That's why high CCLK level (from the cable's point of view) is idle
550 * from the FPGA's perspective.
551 *
552 * The vendor's literature discusses a "suicide sequence" which ends
553 * regular FPGA execution and should be sent before entering bitbang
554 * mode and sending configuration data. Set D7 and toggle D2, D3, D4
555 * a few times.
556 */
557#define BB_PIN_CCLK (1 << 0) /* D0, CCLK */
558#define BB_PIN_PROG (1 << 1) /* D1, PROG */
559#define BB_PIN_D2 (1 << 2) /* D2, (part of) SUICIDE */
560#define BB_PIN_D3 (1 << 3) /* D3, (part of) SUICIDE */
561#define BB_PIN_D4 (1 << 4) /* D4, (part of) SUICIDE (unused?) */
562#define BB_PIN_INIT (1 << 5) /* D5, INIT, input pin */
563#define BB_PIN_DIN (1 << 6) /* D6, DIN */
564#define BB_PIN_D7 (1 << 7) /* D7, (part of) SUICIDE */
565
566#define BB_BITRATE (750 * 1000)
567#define BB_PINMASK (0xff & ~BB_PIN_INIT)
568
569/*
570 * Initiate slave serial mode for configuration download. Which is done
571 * by pulsing PROG_B and sensing INIT_B. Make sure CCLK is idle before
c749d1ca
GS
572 * initiating the configuration download.
573 *
574 * Run a "suicide sequence" first to terminate the regular FPGA operation
575 * before reconfiguration. The FTDI cable is single channel, and shares
576 * pins which are used for data communication in FIFO mode with pins that
577 * are used for FPGA configuration in bitbang mode. Hardware defaults for
578 * unconfigured hardware, and runtime conditions after FPGA configuration
579 * need to cooperate such that re-configuration of the FPGA can start.
d5fa188a 580 */
c749d1ca 581static int sigma_fpga_init_bitbang_once(struct dev_context *devc)
d5fa188a 582{
a53b8e4d 583 const uint8_t suicide[] = {
dc0906e2
GS
584 BB_PIN_D7 | BB_PIN_D2,
585 BB_PIN_D7 | BB_PIN_D2,
586 BB_PIN_D7 | BB_PIN_D3,
587 BB_PIN_D7 | BB_PIN_D2,
588 BB_PIN_D7 | BB_PIN_D3,
589 BB_PIN_D7 | BB_PIN_D2,
590 BB_PIN_D7 | BB_PIN_D3,
591 BB_PIN_D7 | BB_PIN_D2,
d5fa188a 592 };
a53b8e4d 593 const uint8_t init_array[] = {
dc0906e2
GS
594 BB_PIN_CCLK,
595 BB_PIN_CCLK | BB_PIN_PROG,
596 BB_PIN_CCLK | BB_PIN_PROG,
597 BB_PIN_CCLK,
598 BB_PIN_CCLK,
599 BB_PIN_CCLK,
600 BB_PIN_CCLK,
601 BB_PIN_CCLK,
602 BB_PIN_CCLK,
603 BB_PIN_CCLK,
d5fa188a 604 };
dc0906e2 605 int retries, ret;
d5fa188a
MV
606 uint8_t data;
607
608 /* Section 2. part 1), do the FPGA suicide. */
88a5f9ea
GS
609 ret = SR_OK;
610 ret |= sigma_write_sr(devc, suicide, sizeof(suicide));
611 ret |= sigma_write_sr(devc, suicide, sizeof(suicide));
612 ret |= sigma_write_sr(devc, suicide, sizeof(suicide));
613 ret |= sigma_write_sr(devc, suicide, sizeof(suicide));
614 if (ret != SR_OK)
615 return SR_ERR_IO;
c749d1ca 616 g_usleep(10 * 1000);
d5fa188a 617
dc0906e2 618 /* Section 2. part 2), pulse PROG. */
88a5f9ea
GS
619 ret = sigma_write_sr(devc, init_array, sizeof(init_array));
620 if (ret != SR_OK)
621 return ret;
c749d1ca 622 g_usleep(10 * 1000);
7fe1f91f 623 ftdi_usb_purge_buffers(&devc->ftdi.ctx);
d5fa188a 624
88a5f9ea
GS
625 /*
626 * Wait until the FPGA asserts INIT_B. Check in a maximum number
627 * of bursts with a given delay between them. Read as many pin
628 * capture results as the combination of FTDI chip and FTID lib
629 * may provide. Cope with absence of pin capture data in a cycle.
630 * This approach shall result in fast reponse in case of success,
631 * low cost of execution during wait, reliable error handling in
632 * the transport layer, and robust response to failure or absence
633 * of result data (hardware inactivity after stimulus).
634 */
dc0906e2
GS
635 retries = 10;
636 while (retries--) {
88a5f9ea
GS
637 do {
638 ret = sigma_read_raw(devc, &data, sizeof(data));
639 if (ret < 0)
640 return SR_ERR_IO;
641 if (ret == sizeof(data) && (data & BB_PIN_INIT))
642 return SR_OK;
643 } while (ret == sizeof(data));
644 if (retries)
645 g_usleep(10 * 1000);
d5fa188a
MV
646 }
647
648 return SR_ERR_TIMEOUT;
649}
650
c749d1ca
GS
651/*
652 * This is belt and braces. Re-run the bitbang initiation sequence a few
653 * times should first attempts fail. Failure is rare but can happen (was
654 * observed during driver development).
655 */
656static int sigma_fpga_init_bitbang(struct dev_context *devc)
657{
658 size_t retries;
659 int ret;
660
661 retries = 10;
662 while (retries--) {
663 ret = sigma_fpga_init_bitbang_once(devc);
664 if (ret == SR_OK)
665 return ret;
666 if (ret != SR_ERR_TIMEOUT)
667 return ret;
668 }
669 return ret;
670}
671
64fe661b
MV
672/*
673 * Configure the FPGA for logic-analyzer mode.
674 */
675static int sigma_fpga_init_la(struct dev_context *devc)
676{
0f017b7d 677 uint8_t buf[20], *wrptr;
a53b8e4d 678 uint8_t data_55, data_aa, mode;
64fe661b 679 uint8_t result[3];
a53b8e4d 680 const uint8_t *rdptr;
64fe661b
MV
681 int ret;
682
a53b8e4d
GS
683 wrptr = buf;
684
685 /* Read ID register. */
0f017b7d
GS
686 write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(READ_ID));
687 write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(READ_ID));
a53b8e4d
GS
688 write_u8_inc(&wrptr, REG_READ_ADDR);
689
690 /* Write 0x55 to scratch register, read back. */
691 data_55 = 0x55;
0f017b7d
GS
692 write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(WRITE_TEST));
693 write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(WRITE_TEST));
694 write_u8_inc(&wrptr, REG_DATA_LOW | LO4(data_55));
695 write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | HI4(data_55));
a53b8e4d
GS
696 write_u8_inc(&wrptr, REG_READ_ADDR);
697
698 /* Write 0xaa to scratch register, read back. */
699 data_aa = 0xaa;
0f017b7d
GS
700 write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(WRITE_TEST));
701 write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(WRITE_TEST));
702 write_u8_inc(&wrptr, REG_DATA_LOW | LO4(data_aa));
703 write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | HI4(data_aa));
a53b8e4d
GS
704 write_u8_inc(&wrptr, REG_READ_ADDR);
705
706 /* Initiate SDRAM initialization in mode register. */
707 mode = WMR_SDRAMINIT;
0f017b7d
GS
708 write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(WRITE_MODE));
709 write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(WRITE_MODE));
710 write_u8_inc(&wrptr, REG_DATA_LOW | LO4(mode));
711 write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | HI4(mode));
a53b8e4d 712
dc0906e2
GS
713 /*
714 * Send the command sequence which contains 3 READ requests.
715 * Expect to see the corresponding 3 response bytes.
716 */
88a5f9ea
GS
717 ret = sigma_write_sr(devc, buf, wrptr - buf);
718 if (ret != SR_OK) {
719 sr_err("Could not request LA start response.");
720 return ret;
721 }
722 ret = sigma_read_sr(devc, result, ARRAY_SIZE(result));
723 if (ret != SR_OK) {
724 sr_err("Could not receive LA start response.");
a53b8e4d
GS
725 return SR_ERR_IO;
726 }
727 rdptr = result;
728 if (read_u8_inc(&rdptr) != 0xa6) {
729 sr_err("Unexpected ID response.");
730 return SR_ERR_DATA;
731 }
732 if (read_u8_inc(&rdptr) != data_55) {
733 sr_err("Unexpected scratch read-back (55).");
734 return SR_ERR_DATA;
735 }
736 if (read_u8_inc(&rdptr) != data_aa) {
737 sr_err("Unexpected scratch read-back (aa).");
738 return SR_ERR_DATA;
739 }
64fe661b
MV
740
741 return SR_OK;
64fe661b
MV
742}
743
a80226bb
MV
744/*
745 * Read the firmware from a file and transform it into a series of bitbang
746 * pulses used to program the FPGA. Note that the *bb_cmd must be free()'d
747 * by the caller of this function.
748 */
8e2d6c9d 749static int sigma_fw_2_bitbang(struct sr_context *ctx, const char *name,
9b4d261f 750 uint8_t **bb_cmd, gsize *bb_cmd_size)
a80226bb 751{
dc0906e2
GS
752 uint8_t *firmware;
753 size_t file_size;
754 uint8_t *p;
755 size_t l;
a80226bb 756 uint32_t imm;
dc0906e2
GS
757 size_t bb_size;
758 uint8_t *bb_stream, *bbs, byte, mask, v;
a80226bb 759
387825dc 760 /* Retrieve the on-disk firmware file content. */
742368a2
GS
761 firmware = sr_resource_load(ctx, SR_RESOURCE_FIRMWARE, name,
762 &file_size, SIGMA_FIRMWARE_SIZE_LIMIT);
8e2d6c9d 763 if (!firmware)
dc0906e2 764 return SR_ERR_IO;
a80226bb 765
387825dc 766 /* Unscramble the file content (XOR with "random" sequence). */
dc0906e2
GS
767 p = firmware;
768 l = file_size;
a80226bb 769 imm = 0x3f6df2ab;
dc0906e2 770 while (l--) {
a80226bb 771 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
dc0906e2 772 *p++ ^= imm & 0xff;
a80226bb
MV
773 }
774
775 /*
387825dc
GS
776 * Generate a sequence of bitbang samples. With two samples per
777 * FPGA configuration bit, providing the level for the DIN signal
778 * as well as two edges for CCLK. See Xilinx UG332 for details
779 * ("slave serial" mode).
780 *
781 * Note that CCLK is inverted in hardware. That's why the
782 * respective bit is first set and then cleared in the bitbang
783 * sample sets. So that the DIN level will be stable when the
784 * data gets sampled at the rising CCLK edge, and the signals'
785 * setup time constraint will be met.
786 *
787 * The caller will put the FPGA into download mode, will send
788 * the bitbang samples, and release the allocated memory.
a80226bb 789 */
a80226bb 790 bb_size = file_size * 8 * 2;
dc0906e2 791 bb_stream = g_try_malloc(bb_size);
a80226bb 792 if (!bb_stream) {
88a5f9ea 793 sr_err("Memory allocation failed during firmware upload.");
dc0906e2
GS
794 g_free(firmware);
795 return SR_ERR_MALLOC;
a80226bb 796 }
a80226bb 797 bbs = bb_stream;
dc0906e2
GS
798 p = firmware;
799 l = file_size;
800 while (l--) {
801 byte = *p++;
802 mask = 0x80;
803 while (mask) {
804 v = (byte & mask) ? BB_PIN_DIN : 0;
805 mask >>= 1;
806 *bbs++ = v | BB_PIN_CCLK;
a80226bb
MV
807 *bbs++ = v;
808 }
809 }
dc0906e2 810 g_free(firmware);
a80226bb
MV
811
812 /* The transformation completed successfully, return the result. */
813 *bb_cmd = bb_stream;
814 *bb_cmd_size = bb_size;
815
dc0906e2 816 return SR_OK;
a80226bb
MV
817}
818
9b4d261f
GS
819static int upload_firmware(struct sr_context *ctx, struct dev_context *devc,
820 enum sigma_firmware_idx firmware_idx)
28a35d8a
HE
821{
822 int ret;
a53b8e4d
GS
823 uint8_t *buf;
824 uint8_t pins;
28a35d8a 825 size_t buf_size;
a9016883 826 const char *firmware;
a9016883 827
80e717b3
GS
828 /* Check for valid firmware file selection. */
829 if (firmware_idx >= ARRAY_SIZE(firmware_files))
830 return SR_ERR_ARG;
4b25cbff 831 firmware = firmware_files[firmware_idx];
80e717b3
GS
832 if (!firmware || !*firmware)
833 return SR_ERR_ARG;
834
835 /* Avoid downloading the same firmware multiple times. */
836 if (devc->firmware_idx == firmware_idx) {
a9016883
GS
837 sr_info("Not uploading firmware file '%s' again.", firmware);
838 return SR_OK;
839 }
28a35d8a 840
1bb9dc82
GS
841 devc->state.state = SIGMA_CONFIG;
842
dc0906e2 843 /* Set the cable to bitbang mode. */
7fe1f91f 844 ret = ftdi_set_bitmode(&devc->ftdi.ctx, BB_PINMASK, BITMODE_BITBANG);
8bbf7627 845 if (ret < 0) {
88a5f9ea 846 sr_err("Could not setup cable mode for upload: %s",
7fe1f91f 847 ftdi_get_error_string(&devc->ftdi.ctx));
7bcf2168 848 return SR_ERR;
28a35d8a 849 }
7fe1f91f 850 ret = ftdi_set_baudrate(&devc->ftdi.ctx, BB_BITRATE);
8bbf7627 851 if (ret < 0) {
88a5f9ea 852 sr_err("Could not setup bitrate for upload: %s",
7fe1f91f 853 ftdi_get_error_string(&devc->ftdi.ctx));
7bcf2168 854 return SR_ERR;
28a35d8a
HE
855 }
856
dc0906e2 857 /* Initiate FPGA configuration mode. */
d5fa188a 858 ret = sigma_fpga_init_bitbang(devc);
88a5f9ea
GS
859 if (ret) {
860 sr_err("Could not initiate firmware upload to hardware");
d5fa188a 861 return ret;
88a5f9ea 862 }
28a35d8a 863
dc0906e2 864 /* Prepare wire format of the firmware image. */
8e2d6c9d 865 ret = sigma_fw_2_bitbang(ctx, firmware, &buf, &buf_size);
8bbf7627 866 if (ret != SR_OK) {
88a5f9ea 867 sr_err("Could not prepare file %s for upload.", firmware);
b53738ba 868 return ret;
28a35d8a
HE
869 }
870
dc0906e2 871 /* Write the FPGA netlist to the cable. */
499b17e9 872 sr_info("Uploading firmware file '%s'.", firmware);
88a5f9ea 873 ret = sigma_write_sr(devc, buf, buf_size);
28a35d8a 874 g_free(buf);
88a5f9ea
GS
875 if (ret != SR_OK) {
876 sr_err("Could not upload firmware file '%s'.", firmware);
877 return ret;
878 }
28a35d8a 879
dc0906e2 880 /* Leave bitbang mode and discard pending input data. */
7fe1f91f 881 ret = ftdi_set_bitmode(&devc->ftdi.ctx, 0, BITMODE_RESET);
8bbf7627 882 if (ret < 0) {
88a5f9ea 883 sr_err("Could not setup cable mode after upload: %s",
7fe1f91f 884 ftdi_get_error_string(&devc->ftdi.ctx));
e46b8fb1 885 return SR_ERR;
28a35d8a 886 }
7fe1f91f 887 ftdi_usb_purge_buffers(&devc->ftdi.ctx);
88a5f9ea 888 while (sigma_read_raw(devc, &pins, sizeof(pins)) > 0)
28a35d8a
HE
889 ;
890
64fe661b
MV
891 /* Initialize the FPGA for logic-analyzer mode. */
892 ret = sigma_fpga_init_la(devc);
88a5f9ea
GS
893 if (ret != SR_OK) {
894 sr_err("Hardware response after firmware upload failed.");
64fe661b 895 return ret;
88a5f9ea 896 }
28a35d8a 897
dc0906e2 898 /* Keep track of successful firmware download completion. */
1bb9dc82 899 devc->state.state = SIGMA_IDLE;
80e717b3 900 devc->firmware_idx = firmware_idx;
47f4f073 901 sr_info("Firmware uploaded.");
e3fff420 902
e46b8fb1 903 return SR_OK;
f6564c8d
HE
904}
905
9a0a606a 906/*
5e78a564
GS
907 * The driver supports user specified time or sample count limits. The
908 * device's hardware supports neither, and hardware compression prevents
909 * reliable detection of "fill levels" (currently reached sample counts)
910 * from register values during acquisition. That's why the driver needs
911 * to apply some heuristics:
9a0a606a 912 *
5e78a564
GS
913 * - The (optional) sample count limit and the (normalized) samplerate
914 * get mapped to an estimated duration for these samples' acquisition.
915 * - The (optional) time limit gets checked as well. The lesser of the
916 * two limits will terminate the data acquisition phase. The exact
917 * sample count limit gets enforced in session feed submission paths.
918 * - Some slack needs to be given to account for hardware pipelines as
919 * well as late storage of last chunks after compression thresholds
920 * are tripped. The resulting data set will span at least the caller
921 * specified period of time, which shall be perfectly acceptable.
922 *
923 * With RLE compression active, up to 64K sample periods can pass before
924 * a cluster accumulates. Which translates to 327ms at 200kHz. Add two
925 * times that period for good measure, one is not enough to flush the
926 * hardware pipeline (observation from an earlier experiment).
9a0a606a 927 */
5e78a564 928SR_PRIV int sigma_set_acquire_timeout(struct dev_context *devc)
9a0a606a 929{
5e78a564
GS
930 int ret;
931 GVariant *data;
932 uint64_t user_count, user_msecs;
9a0a606a 933 uint64_t worst_cluster_time_ms;
5e78a564 934 uint64_t count_msecs, acquire_msecs;
9a0a606a 935
5e78a564
GS
936 sr_sw_limits_init(&devc->acq_limits);
937
938 /* Get sample count limit, convert to msecs. */
939 ret = sr_sw_limits_config_get(&devc->cfg_limits,
940 SR_CONF_LIMIT_SAMPLES, &data);
941 if (ret != SR_OK)
942 return ret;
943 user_count = g_variant_get_uint64(data);
944 g_variant_unref(data);
945 count_msecs = 0;
946 if (user_count)
947 count_msecs = 1000 * user_count / devc->samplerate + 1;
948
949 /* Get time limit, which is in msecs. */
950 ret = sr_sw_limits_config_get(&devc->cfg_limits,
951 SR_CONF_LIMIT_MSEC, &data);
952 if (ret != SR_OK)
953 return ret;
954 user_msecs = g_variant_get_uint64(data);
955 g_variant_unref(data);
956
957 /* Get the lesser of them, with both being optional. */
958 acquire_msecs = ~0ull;
959 if (user_count && count_msecs < acquire_msecs)
960 acquire_msecs = count_msecs;
961 if (user_msecs && user_msecs < acquire_msecs)
962 acquire_msecs = user_msecs;
963 if (acquire_msecs == ~0ull)
964 return SR_OK;
965
966 /* Add some slack, and use that timeout for acquisition. */
967 worst_cluster_time_ms = 1000 * 65536 / devc->samplerate;
968 acquire_msecs += 2 * worst_cluster_time_ms;
969 data = g_variant_new_uint64(acquire_msecs);
970 ret = sr_sw_limits_config_set(&devc->acq_limits,
971 SR_CONF_LIMIT_MSEC, data);
972 g_variant_unref(data);
973 if (ret != SR_OK)
974 return ret;
975
976 sr_sw_limits_acquisition_start(&devc->acq_limits);
977 return SR_OK;
9a0a606a
GS
978}
979
5e78a564
GS
980/*
981 * Check whether a caller specified samplerate matches the device's
982 * hardware constraints (can be used for acquisition). Optionally yield
983 * a value that approximates the original spec.
984 *
985 * This routine assumes that input specs are in the 200kHz to 200MHz
986 * range of supported rates, and callers typically want to normalize a
987 * given value to the hardware capabilities. Values in the 50MHz range
988 * get rounded up by default, to avoid a more expensive check for the
989 * closest match, while higher sampling rate is always desirable during
990 * measurement. Input specs which exactly match hardware capabilities
991 * remain unaffected. Because 100/200MHz rates also limit the number of
992 * available channels, they are not suggested by this routine, instead
993 * callers need to pick them consciously.
994 */
995SR_PRIV int sigma_normalize_samplerate(uint64_t want_rate, uint64_t *have_rate)
996{
997 uint64_t div, rate;
998
999 /* Accept exact matches for 100/200MHz. */
1000 if (want_rate == SR_MHZ(200) || want_rate == SR_MHZ(100)) {
1001 if (have_rate)
1002 *have_rate = want_rate;
1003 return SR_OK;
1004 }
1005
1006 /* Accept 200kHz to 50MHz range, and map to near value. */
1007 if (want_rate >= SR_KHZ(200) && want_rate <= SR_MHZ(50)) {
1008 div = SR_MHZ(50) / want_rate;
1009 rate = SR_MHZ(50) / div;
1010 if (have_rate)
1011 *have_rate = rate;
1012 return SR_OK;
1013 }
1014
1015 return SR_ERR_ARG;
1016}
1017
abcd4771
GS
1018SR_PRIV uint64_t sigma_get_samplerate(const struct sr_dev_inst *sdi)
1019{
1020 /* TODO Retrieve value from hardware. */
1021 (void)sdi;
1022 return samplerates[0];
1023}
1024
5e78a564 1025SR_PRIV int sigma_set_samplerate(const struct sr_dev_inst *sdi)
f6564c8d 1026{
2c9c0df8 1027 struct dev_context *devc;
8e2d6c9d 1028 struct drv_context *drvc;
5e78a564 1029 uint64_t samplerate;
2c9c0df8 1030 int ret;
ac9534f4 1031 int num_channels;
f6564c8d 1032
2c9c0df8 1033 devc = sdi->priv;
8e2d6c9d 1034 drvc = sdi->driver->context;
f4abaa9f 1035
5e78a564
GS
1036 /* Accept any caller specified rate which the hardware supports. */
1037 ret = sigma_normalize_samplerate(devc->samplerate, &samplerate);
1038 if (ret != SR_OK)
1039 return ret;
f6564c8d 1040
2f7e529c
GS
1041 /*
1042 * Depending on the samplerates of 200/100/50- MHz, specific
1043 * firmware is required and higher rates might limit the set
1044 * of available channels.
1045 */
ac9534f4 1046 num_channels = devc->num_channels;
59df0c77 1047 if (samplerate <= SR_MHZ(50)) {
80e717b3 1048 ret = upload_firmware(drvc->sr_ctx, devc, SIGMA_FW_50MHZ);
ac9534f4 1049 num_channels = 16;
6b2d3385 1050 } else if (samplerate == SR_MHZ(100)) {
80e717b3 1051 ret = upload_firmware(drvc->sr_ctx, devc, SIGMA_FW_100MHZ);
ac9534f4 1052 num_channels = 8;
6b2d3385 1053 } else if (samplerate == SR_MHZ(200)) {
80e717b3 1054 ret = upload_firmware(drvc->sr_ctx, devc, SIGMA_FW_200MHZ);
ac9534f4 1055 num_channels = 4;
f78898e9 1056 }
f6564c8d 1057
2f7e529c 1058 /*
5e78a564
GS
1059 * The samplerate affects the number of available logic channels
1060 * as well as a sample memory layout detail (the number of samples
1061 * which the device will communicate within an "event").
2f7e529c 1062 */
6b2d3385 1063 if (ret == SR_OK) {
ac9534f4 1064 devc->num_channels = num_channels;
6b2d3385 1065 devc->samples_per_event = 16 / devc->num_channels;
6b2d3385 1066 }
f6564c8d 1067
e8397563 1068 return ret;
28a35d8a
HE
1069}
1070
98b43eb3
GS
1071/*
1072 * Arrange for a session feed submit buffer. A queue where a number of
1073 * samples gets accumulated to reduce the number of send calls. Which
1074 * also enforces an optional sample count limit for data acquisition.
1075 *
1076 * The buffer holds up to CHUNK_SIZE bytes. The unit size is fixed (the
1077 * driver provides a fixed channel layout regardless of samplerate).
1078 */
1079
1080#define CHUNK_SIZE (4 * 1024 * 1024)
1081
1082struct submit_buffer {
1083 size_t unit_size;
1084 size_t max_samples, curr_samples;
1085 uint8_t *sample_data;
1086 uint8_t *write_pointer;
1087 struct sr_dev_inst *sdi;
1088 struct sr_datafeed_packet packet;
1089 struct sr_datafeed_logic logic;
98b43eb3
GS
1090};
1091
1092static int alloc_submit_buffer(struct sr_dev_inst *sdi)
1093{
1094 struct dev_context *devc;
1095 struct submit_buffer *buffer;
1096 size_t size;
1097
1098 devc = sdi->priv;
1099
1100 buffer = g_malloc0(sizeof(*buffer));
1101 devc->buffer = buffer;
1102
1103 buffer->unit_size = sizeof(uint16_t);
1104 size = CHUNK_SIZE;
1105 size /= buffer->unit_size;
1106 buffer->max_samples = size;
1107 size *= buffer->unit_size;
1108 buffer->sample_data = g_try_malloc0(size);
1109 if (!buffer->sample_data)
1110 return SR_ERR_MALLOC;
1111 buffer->write_pointer = buffer->sample_data;
5e78a564 1112 sr_sw_limits_init(&devc->feed_limits);
98b43eb3
GS
1113
1114 buffer->sdi = sdi;
1115 memset(&buffer->logic, 0, sizeof(buffer->logic));
1116 buffer->logic.unitsize = buffer->unit_size;
1117 buffer->logic.data = buffer->sample_data;
1118 memset(&buffer->packet, 0, sizeof(buffer->packet));
1119 buffer->packet.type = SR_DF_LOGIC;
1120 buffer->packet.payload = &buffer->logic;
1121
1122 return SR_OK;
1123}
1124
5e78a564 1125static int setup_submit_limit(struct dev_context *devc)
98b43eb3 1126{
5e78a564 1127 struct sr_sw_limits *limits;
98b43eb3
GS
1128 int ret;
1129 GVariant *data;
1130 uint64_t total;
1131
5e78a564 1132 limits = &devc->feed_limits;
98b43eb3 1133
5e78a564
GS
1134 ret = sr_sw_limits_config_get(&devc->cfg_limits,
1135 SR_CONF_LIMIT_SAMPLES, &data);
1136 if (ret != SR_OK)
1137 return ret;
1138 total = g_variant_get_uint64(data);
1139 g_variant_unref(data);
1140
1141 sr_sw_limits_init(limits);
98b43eb3
GS
1142 if (total) {
1143 data = g_variant_new_uint64(total);
5e78a564 1144 ret = sr_sw_limits_config_set(limits,
98b43eb3
GS
1145 SR_CONF_LIMIT_SAMPLES, data);
1146 g_variant_unref(data);
1147 if (ret != SR_OK)
1148 return ret;
1149 }
1150
5e78a564 1151 sr_sw_limits_acquisition_start(limits);
98b43eb3
GS
1152
1153 return SR_OK;
1154}
1155
1156static void free_submit_buffer(struct dev_context *devc)
1157{
1158 struct submit_buffer *buffer;
1159
1160 if (!devc)
1161 return;
1162
1163 buffer = devc->buffer;
1164 if (!buffer)
1165 return;
1166 devc->buffer = NULL;
1167
1168 g_free(buffer->sample_data);
1169 g_free(buffer);
1170}
1171
1172static int flush_submit_buffer(struct dev_context *devc)
1173{
1174 struct submit_buffer *buffer;
1175 int ret;
1176
1177 buffer = devc->buffer;
1178
1179 /* Is queued sample data available? */
1180 if (!buffer->curr_samples)
1181 return SR_OK;
1182
1183 /* Submit to the session feed. */
1184 buffer->logic.length = buffer->curr_samples * buffer->unit_size;
1185 ret = sr_session_send(buffer->sdi, &buffer->packet);
1186 if (ret != SR_OK)
1187 return ret;
1188
1189 /* Rewind queue position. */
1190 buffer->curr_samples = 0;
1191 buffer->write_pointer = buffer->sample_data;
1192
1193 return SR_OK;
1194}
1195
1196static int addto_submit_buffer(struct dev_context *devc,
1197 uint16_t sample, size_t count)
1198{
1199 struct submit_buffer *buffer;
5e78a564 1200 struct sr_sw_limits *limits;
98b43eb3
GS
1201 int ret;
1202
1203 buffer = devc->buffer;
5e78a564
GS
1204 limits = &devc->feed_limits;
1205 if (sr_sw_limits_check(limits))
98b43eb3
GS
1206 count = 0;
1207
1208 /*
1209 * Individually accumulate and check each sample, such that
1210 * accumulation between flushes won't exceed local storage, and
1211 * enforcement of user specified limits is exact.
1212 */
1213 while (count--) {
a53b8e4d 1214 write_u16le_inc(&buffer->write_pointer, sample);
98b43eb3
GS
1215 buffer->curr_samples++;
1216 if (buffer->curr_samples == buffer->max_samples) {
1217 ret = flush_submit_buffer(devc);
1218 if (ret != SR_OK)
1219 return ret;
1220 }
5e78a564
GS
1221 sr_sw_limits_update_samples_read(limits, 1);
1222 if (sr_sw_limits_check(limits))
98b43eb3
GS
1223 break;
1224 }
1225
1226 return SR_OK;
1227}
1228
c53d793f
HE
1229/*
1230 * In 100 and 200 MHz mode, only a single pin rising/falling can be
1231 * set as trigger. In other modes, two rising/falling triggers can be set,
ba7dd8bb 1232 * in addition to value/mask trigger for any number of channels.
c53d793f
HE
1233 *
1234 * The Sigma supports complex triggers using boolean expressions, but this
1235 * has not been implemented yet.
1236 */
3ba56876 1237SR_PRIV int sigma_convert_trigger(const struct sr_dev_inst *sdi)
57bbf56b 1238{
39c64c6a
BV
1239 struct dev_context *devc;
1240 struct sr_trigger *trigger;
1241 struct sr_trigger_stage *stage;
1242 struct sr_trigger_match *match;
1243 const GSList *l, *m;
1244 int channelbit, trigger_set;
57bbf56b 1245
39c64c6a 1246 devc = sdi->priv;
5c231fc4
GS
1247 memset(&devc->trigger, 0, sizeof(devc->trigger));
1248 trigger = sr_session_trigger_get(sdi->session);
1249 if (!trigger)
39c64c6a
BV
1250 return SR_OK;
1251
1252 trigger_set = 0;
1253 for (l = trigger->stages; l; l = l->next) {
1254 stage = l->data;
1255 for (m = stage->matches; m; m = m->next) {
1256 match = m->data;
9b4d261f 1257 /* Ignore disabled channels with a trigger. */
39c64c6a 1258 if (!match->channel->enabled)
39c64c6a 1259 continue;
a53b8e4d 1260 channelbit = 1 << match->channel->index;
5e78a564 1261 if (devc->samplerate >= SR_MHZ(100)) {
39c64c6a
BV
1262 /* Fast trigger support. */
1263 if (trigger_set) {
88a5f9ea 1264 sr_err("100/200MHz modes limited to single trigger pin.");
39c64c6a
BV
1265 return SR_ERR;
1266 }
a53b8e4d 1267 if (match->match == SR_TRIGGER_FALLING) {
39c64c6a 1268 devc->trigger.fallingmask |= channelbit;
a53b8e4d 1269 } else if (match->match == SR_TRIGGER_RISING) {
39c64c6a 1270 devc->trigger.risingmask |= channelbit;
a53b8e4d 1271 } else {
88a5f9ea 1272 sr_err("100/200MHz modes limited to edge trigger.");
39c64c6a
BV
1273 return SR_ERR;
1274 }
eec5275e 1275
0a1f7b09 1276 trigger_set++;
39c64c6a
BV
1277 } else {
1278 /* Simple trigger support (event). */
1279 if (match->match == SR_TRIGGER_ONE) {
1280 devc->trigger.simplevalue |= channelbit;
1281 devc->trigger.simplemask |= channelbit;
8ebad343 1282 } else if (match->match == SR_TRIGGER_ZERO) {
39c64c6a
BV
1283 devc->trigger.simplevalue &= ~channelbit;
1284 devc->trigger.simplemask |= channelbit;
8ebad343 1285 } else if (match->match == SR_TRIGGER_FALLING) {
39c64c6a 1286 devc->trigger.fallingmask |= channelbit;
0a1f7b09 1287 trigger_set++;
8ebad343 1288 } else if (match->match == SR_TRIGGER_RISING) {
39c64c6a 1289 devc->trigger.risingmask |= channelbit;
0a1f7b09 1290 trigger_set++;
39c64c6a
BV
1291 }
1292
1293 /*
1294 * Actually, Sigma supports 2 rising/falling triggers,
1295 * but they are ORed and the current trigger syntax
1296 * does not permit ORed triggers.
1297 */
1298 if (trigger_set > 1) {
88a5f9ea 1299 sr_err("Limited to 1 edge trigger.");
39c64c6a
BV
1300 return SR_ERR;
1301 }
ee492173 1302 }
ee492173 1303 }
57bbf56b
HE
1304 }
1305
e46b8fb1 1306 return SR_OK;
57bbf56b
HE
1307}
1308
36b1c8e6 1309/* Software trigger to determine exact trigger position. */
5fc01191 1310static int get_trigger_offset(uint8_t *samples, uint16_t last_sample,
9b4d261f 1311 struct sigma_trigger *t)
36b1c8e6 1312{
a53b8e4d 1313 const uint8_t *rdptr;
36b1c8e6 1314 int i;
a53b8e4d 1315 uint16_t sample;
36b1c8e6 1316
a53b8e4d
GS
1317 rdptr = samples;
1318 sample = 0;
0a1f7b09 1319 for (i = 0; i < 8; i++) {
36b1c8e6 1320 if (i > 0)
5fc01191 1321 last_sample = sample;
a53b8e4d 1322 sample = read_u16le_inc(&rdptr);
36b1c8e6
HE
1323
1324 /* Simple triggers. */
5fc01191 1325 if ((sample & t->simplemask) != t->simplevalue)
36b1c8e6
HE
1326 continue;
1327
1328 /* Rising edge. */
5fc01191
MV
1329 if (((last_sample & t->risingmask) != 0) ||
1330 ((sample & t->risingmask) != t->risingmask))
36b1c8e6
HE
1331 continue;
1332
1333 /* Falling edge. */
bdfc7a89 1334 if ((last_sample & t->fallingmask) != t->fallingmask ||
5fc01191 1335 (sample & t->fallingmask) != 0)
36b1c8e6
HE
1336 continue;
1337
1338 break;
1339 }
1340
1341 /* If we did not match, return original trigger pos. */
1342 return i & 0x7;
1343}
1344
98b43eb3
GS
1345static gboolean sample_matches_trigger(struct dev_context *devc, uint16_t sample)
1346{
1347 /* TODO
1348 * Check whether the combination of this very sample and the
1349 * previous state match the configured trigger condition. This
1350 * improves the resolution of the trigger marker's position.
1351 * The hardware provided position is coarse, and may point to
1352 * a position before the actual match.
1353 *
1354 * See the previous get_trigger_offset() implementation. This
1355 * code needs to get re-used here.
1356 */
1357 (void)devc;
1358 (void)sample;
1359 (void)get_trigger_offset;
1360
1361 return FALSE;
1362}
1363
1364static int check_and_submit_sample(struct dev_context *devc,
1365 uint16_t sample, size_t count, gboolean check_trigger)
1366{
1367 gboolean triggered;
1368 int ret;
1369
1370 triggered = check_trigger && sample_matches_trigger(devc, sample);
1371 if (triggered) {
1372 ret = flush_submit_buffer(devc);
1373 if (ret != SR_OK)
1374 return ret;
1375 ret = std_session_send_df_trigger(devc->buffer->sdi);
1376 if (ret != SR_OK)
1377 return ret;
1378 }
1379
1380 ret = addto_submit_buffer(devc, sample, count);
1381 if (ret != SR_OK)
1382 return ret;
1383
1384 return SR_OK;
1385}
1386
3513d965
MV
1387/*
1388 * Return the timestamp of "DRAM cluster".
1389 */
1390static uint16_t sigma_dram_cluster_ts(struct sigma_dram_cluster *cluster)
1391{
2a62a9c4 1392 return read_u16le((const uint8_t *)&cluster->timestamp);
3513d965
MV
1393}
1394
0498f743
GS
1395/*
1396 * Return one 16bit data entity of a DRAM cluster at the specified index.
1397 */
1398static uint16_t sigma_dram_cluster_data(struct sigma_dram_cluster *cl, int idx)
1399{
2a62a9c4 1400 return read_u16le((const uint8_t *)&cl->samples[idx]);
0498f743
GS
1401}
1402
85c032e4
GS
1403/*
1404 * Deinterlace sample data that was retrieved at 100MHz samplerate.
1405 * One 16bit item contains two samples of 8bits each. The bits of
1406 * multiple samples are interleaved.
1407 */
1408static uint16_t sigma_deinterlace_100mhz_data(uint16_t indata, int idx)
1409{
1410 uint16_t outdata;
1411
1412 indata >>= idx;
1413 outdata = 0;
1414 outdata |= (indata >> (0 * 2 - 0)) & (1 << 0);
1415 outdata |= (indata >> (1 * 2 - 1)) & (1 << 1);
1416 outdata |= (indata >> (2 * 2 - 2)) & (1 << 2);
1417 outdata |= (indata >> (3 * 2 - 3)) & (1 << 3);
1418 outdata |= (indata >> (4 * 2 - 4)) & (1 << 4);
1419 outdata |= (indata >> (5 * 2 - 5)) & (1 << 5);
1420 outdata |= (indata >> (6 * 2 - 6)) & (1 << 6);
1421 outdata |= (indata >> (7 * 2 - 7)) & (1 << 7);
1422 return outdata;
1423}
1424
1425/*
1426 * Deinterlace sample data that was retrieved at 200MHz samplerate.
1427 * One 16bit item contains four samples of 4bits each. The bits of
1428 * multiple samples are interleaved.
1429 */
1430static uint16_t sigma_deinterlace_200mhz_data(uint16_t indata, int idx)
1431{
1432 uint16_t outdata;
1433
1434 indata >>= idx;
1435 outdata = 0;
1436 outdata |= (indata >> (0 * 4 - 0)) & (1 << 0);
1437 outdata |= (indata >> (1 * 4 - 1)) & (1 << 1);
1438 outdata |= (indata >> (2 * 4 - 2)) & (1 << 2);
1439 outdata |= (indata >> (3 * 4 - 3)) & (1 << 3);
1440 return outdata;
1441}
1442
98b43eb3
GS
1443static void sigma_decode_dram_cluster(struct dev_context *devc,
1444 struct sigma_dram_cluster *dram_cluster,
1445 size_t events_in_cluster, gboolean triggered)
23239b5c 1446{
98b43eb3 1447 struct sigma_state *ss;
85c032e4 1448 uint16_t tsdiff, ts, sample, item16;
23239b5c 1449 unsigned int i;
23239b5c 1450
98b43eb3
GS
1451 if (!devc->use_triggers || !ASIX_SIGMA_WITH_TRIGGER)
1452 triggered = FALSE;
23239b5c
MV
1453
1454 /*
468f17f2
GS
1455 * If this cluster is not adjacent to the previously received
1456 * cluster, then send the appropriate number of samples with the
1457 * previous values to the sigrok session. This "decodes RLE".
2c33b092 1458 *
98b43eb3
GS
1459 * These samples cannot match the trigger since they just repeat
1460 * the previously submitted data pattern. (This assumption holds
1461 * for simple level and edge triggers. It would not for timed or
1462 * counted conditions, which currently are not supported.)
23239b5c 1463 */
98b43eb3
GS
1464 ss = &devc->state;
1465 ts = sigma_dram_cluster_ts(dram_cluster);
1466 tsdiff = ts - ss->lastts;
1467 if (tsdiff > 0) {
1468 size_t count;
9b4d261f 1469 sample = ss->lastsample;
98b43eb3 1470 count = tsdiff * devc->samples_per_event;
9b4d261f 1471 (void)check_and_submit_sample(devc, sample, count, FALSE);
23239b5c 1472 }
98b43eb3 1473 ss->lastts = ts + EVENTS_PER_CLUSTER;
23239b5c
MV
1474
1475 /*
98b43eb3
GS
1476 * Grab sample data from the current cluster and prepare their
1477 * submission to the session feed. Handle samplerate dependent
1478 * memory layout of sample data. Accumulation of data chunks
1479 * before submission is transparent to this code path, specific
1480 * buffer depth is neither assumed nor required here.
23239b5c 1481 */
0498f743 1482 sample = 0;
23239b5c 1483 for (i = 0; i < events_in_cluster; i++) {
85c032e4 1484 item16 = sigma_dram_cluster_data(dram_cluster, i);
5e78a564 1485 if (devc->samplerate == SR_MHZ(200)) {
85c032e4 1486 sample = sigma_deinterlace_200mhz_data(item16, 0);
98b43eb3 1487 check_and_submit_sample(devc, sample, 1, triggered);
85c032e4 1488 sample = sigma_deinterlace_200mhz_data(item16, 1);
98b43eb3 1489 check_and_submit_sample(devc, sample, 1, triggered);
85c032e4 1490 sample = sigma_deinterlace_200mhz_data(item16, 2);
98b43eb3 1491 check_and_submit_sample(devc, sample, 1, triggered);
85c032e4 1492 sample = sigma_deinterlace_200mhz_data(item16, 3);
98b43eb3 1493 check_and_submit_sample(devc, sample, 1, triggered);
5e78a564 1494 } else if (devc->samplerate == SR_MHZ(100)) {
85c032e4 1495 sample = sigma_deinterlace_100mhz_data(item16, 0);
98b43eb3 1496 check_and_submit_sample(devc, sample, 1, triggered);
85c032e4 1497 sample = sigma_deinterlace_100mhz_data(item16, 1);
98b43eb3 1498 check_and_submit_sample(devc, sample, 1, triggered);
85c032e4
GS
1499 } else {
1500 sample = item16;
98b43eb3 1501 check_and_submit_sample(devc, sample, 1, triggered);
23239b5c 1502 }
23239b5c 1503 }
0498f743 1504 ss->lastsample = sample;
23239b5c
MV
1505}
1506
28a35d8a 1507/*
fefa1800
UH
1508 * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
1509 * Each event is 20ns apart, and can contain multiple samples.
f78898e9
HE
1510 *
1511 * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
1512 * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
1513 * For 50 MHz and below, events contain one sample for each channel,
1514 * spread 20 ns apart.
28a35d8a 1515 */
98b43eb3
GS
1516static int decode_chunk_ts(struct dev_context *devc,
1517 struct sigma_dram_line *dram_line,
1518 size_t events_in_line, size_t trigger_event)
28a35d8a 1519{
3628074d 1520 struct sigma_dram_cluster *dram_cluster;
f06fb3e9 1521 unsigned int clusters_in_line;
5fc01191 1522 unsigned int events_in_cluster;
23239b5c 1523 unsigned int i;
98b43eb3 1524 uint32_t trigger_cluster;
f06fb3e9 1525
f06fb3e9
GS
1526 clusters_in_line = events_in_line;
1527 clusters_in_line += EVENTS_PER_CLUSTER - 1;
1528 clusters_in_line /= EVENTS_PER_CLUSTER;
1529 trigger_cluster = ~0;
ee492173 1530
4ae1f451 1531 /* Check if trigger is in this chunk. */
2c33b092 1532 if (trigger_event < EVENTS_PER_ROW) {
5e78a564 1533 if (devc->samplerate <= SR_MHZ(50)) {
1e23158b
MV
1534 trigger_event -= MIN(EVENTS_PER_CLUSTER - 1,
1535 trigger_event);
1536 }
57bbf56b 1537
f3f19d11 1538 /* Find in which cluster the trigger occurred. */
1e23158b 1539 trigger_cluster = trigger_event / EVENTS_PER_CLUSTER;
ee492173 1540 }
28a35d8a 1541
5fc01191
MV
1542 /* For each full DRAM cluster. */
1543 for (i = 0; i < clusters_in_line; i++) {
3628074d 1544 dram_cluster = &dram_line->cluster[i];
5fc01191 1545
5fc01191 1546 /* The last cluster might not be full. */
23239b5c
MV
1547 if ((i == clusters_in_line - 1) &&
1548 (events_in_line % EVENTS_PER_CLUSTER)) {
5fc01191 1549 events_in_cluster = events_in_line % EVENTS_PER_CLUSTER;
23239b5c 1550 } else {
5fc01191 1551 events_in_cluster = EVENTS_PER_CLUSTER;
abda62ce 1552 }
ee492173 1553
98b43eb3
GS
1554 sigma_decode_dram_cluster(devc, dram_cluster,
1555 events_in_cluster, i == trigger_cluster);
28a35d8a
HE
1556 }
1557
e46b8fb1 1558 return SR_OK;
28a35d8a
HE
1559}
1560
6057d9fa 1561static int download_capture(struct sr_dev_inst *sdi)
28a35d8a 1562{
e15e5873 1563 const uint32_t chunks_per_read = 32;
f06fb3e9
GS
1564
1565 struct dev_context *devc;
fd830beb 1566 struct sigma_dram_line *dram_line;
462fe786 1567 uint32_t stoppos, triggerpos;
6057d9fa 1568 uint8_t modestatus;
c6648b66
MV
1569 uint32_t i;
1570 uint32_t dl_lines_total, dl_lines_curr, dl_lines_done;
74d453ab 1571 uint32_t dl_first_line, dl_line;
5c231fc4 1572 uint32_t dl_events_in_line, trigger_event;
f06fb3e9 1573 uint32_t trg_line, trg_event;
98b43eb3 1574 int ret;
f06fb3e9
GS
1575
1576 devc = sdi->priv;
c6648b66 1577
6868626b 1578 sr_info("Downloading sample data.");
dde0175d 1579 devc->state.state = SIGMA_DOWNLOAD;
6868626b 1580
22f64ed8
GS
1581 /*
1582 * Ask the hardware to stop data acquisition. Reception of the
1583 * FORCESTOP request makes the hardware "disable RLE" (store
1584 * clusters to DRAM regardless of whether pin state changes) and
1585 * raise the POSTTRIGGERED flag.
1586 */
88a5f9ea
GS
1587 modestatus = WMR_FORCESTOP | WMR_SDRAMWRITEEN;
1588 ret = sigma_set_register(devc, WRITE_MODE, modestatus);
1589 if (ret != SR_OK)
1590 return ret;
22f64ed8 1591 do {
0f017b7d 1592 ret = sigma_get_register(devc, READ_MODE, &modestatus);
88a5f9ea
GS
1593 if (ret != SR_OK) {
1594 sr_err("Could not poll for post-trigger state.");
f73b00b6
DT
1595 return FALSE;
1596 }
22f64ed8 1597 } while (!(modestatus & RMR_POSTTRIGGERED));
6057d9fa
MV
1598
1599 /* Set SDRAM Read Enable. */
88a5f9ea
GS
1600 ret = sigma_set_register(devc, WRITE_MODE, WMR_SDRAMREADEN);
1601 if (ret != SR_OK)
1602 return ret;
6057d9fa 1603
88a5f9ea
GS
1604 /* Get the current position. Check if trigger has fired. */
1605 ret = sigma_read_pos(devc, &stoppos, &triggerpos, &modestatus);
1606 if (ret != SR_OK) {
1607 sr_err("Could not query capture positions/state.");
f73b00b6
DT
1608 return FALSE;
1609 }
dc400817
GS
1610 trg_line = ~0;
1611 trg_event = ~0;
22f64ed8 1612 if (modestatus & RMR_TRIGGERED) {
a53b8e4d
GS
1613 trg_line = triggerpos >> ROW_SHIFT;
1614 trg_event = triggerpos & ROW_MASK;
1e23158b 1615 }
6057d9fa 1616
c6648b66 1617 /*
74d453ab
GS
1618 * Determine how many "DRAM lines" of 1024 bytes each we need to
1619 * retrieve from the Sigma hardware, so that we have a complete
1620 * set of samples. Note that the last line need not contain 64
1621 * clusters, it might be partially filled only.
1622 *
1623 * When RMR_ROUND is set, the circular buffer in DRAM has wrapped
1624 * around. Since the status of the very next line is uncertain in
2c33b092 1625 * that case, we skip it and start reading from the next line.
c6648b66 1626 */
2c33b092
GS
1627 dl_first_line = 0;
1628 dl_lines_total = (stoppos >> ROW_SHIFT) + 1;
74d453ab
GS
1629 if (modestatus & RMR_ROUND) {
1630 dl_first_line = dl_lines_total + 1;
2c33b092 1631 dl_lines_total = ROW_COUNT - 2;
74d453ab 1632 }
44081095
DT
1633 dram_line = g_try_malloc0(chunks_per_read * sizeof(*dram_line));
1634 if (!dram_line)
1635 return FALSE;
98b43eb3
GS
1636 ret = alloc_submit_buffer(sdi);
1637 if (ret != SR_OK)
1638 return FALSE;
5e78a564 1639 ret = setup_submit_limit(devc);
98b43eb3
GS
1640 if (ret != SR_OK)
1641 return FALSE;
c6648b66 1642 dl_lines_done = 0;
c6648b66
MV
1643 while (dl_lines_total > dl_lines_done) {
1644 /* We can download only up-to 32 DRAM lines in one go! */
547c4cdc 1645 dl_lines_curr = MIN(chunks_per_read, dl_lines_total - dl_lines_done);
6868626b 1646
74d453ab 1647 dl_line = dl_first_line + dl_lines_done;
2c33b092 1648 dl_line %= ROW_COUNT;
88a5f9ea
GS
1649 ret = sigma_read_dram(devc, dl_line, dl_lines_curr,
1650 (uint8_t *)dram_line);
1651 if (ret != SR_OK)
1652 return FALSE;
6868626b 1653
c6648b66
MV
1654 /* This is the first DRAM line, so find the initial timestamp. */
1655 if (dl_lines_done == 0) {
3513d965
MV
1656 devc->state.lastts =
1657 sigma_dram_cluster_ts(&dram_line[0].cluster[0]);
c6648b66 1658 devc->state.lastsample = 0;
6868626b
BV
1659 }
1660
c6648b66 1661 for (i = 0; i < dl_lines_curr; i++) {
a53b8e4d 1662 /* The last "DRAM line" need not span its full length. */
5c231fc4 1663 dl_events_in_line = EVENTS_PER_ROW;
c6648b66 1664 if (dl_lines_done + i == dl_lines_total - 1)
a53b8e4d 1665 dl_events_in_line = stoppos & ROW_MASK;
c6648b66 1666
e69ad48e 1667 /* Test if the trigger happened on this line. */
5c231fc4 1668 trigger_event = ~0;
c6648b66 1669 if (dl_lines_done + i == trg_line)
1e23158b 1670 trigger_event = trg_event;
e69ad48e 1671
98b43eb3
GS
1672 decode_chunk_ts(devc, dram_line + i,
1673 dl_events_in_line, trigger_event);
c6648b66 1674 }
6868626b 1675
c6648b66 1676 dl_lines_done += dl_lines_curr;
6868626b 1677 }
98b43eb3
GS
1678 flush_submit_buffer(devc);
1679 free_submit_buffer(devc);
dde0175d 1680 g_free(dram_line);
6868626b 1681
bee2b016 1682 std_session_send_df_end(sdi);
6057d9fa 1683
dde0175d 1684 devc->state.state = SIGMA_IDLE;
d2f7c417 1685 sr_dev_acquisition_stop(sdi);
6057d9fa
MV
1686
1687 return TRUE;
6868626b
BV
1688}
1689
d4051930 1690/*
74d453ab
GS
1691 * Periodically check the Sigma status when in CAPTURE mode. This routine
1692 * checks whether the configured sample count or sample time have passed,
1693 * and will stop acquisition and download the acquired samples.
d4051930
MV
1694 */
1695static int sigma_capture_mode(struct sr_dev_inst *sdi)
6868626b 1696{
f06fb3e9 1697 struct dev_context *devc;
28a35d8a 1698
f06fb3e9 1699 devc = sdi->priv;
5e78a564 1700 if (sr_sw_limits_check(&devc->acq_limits))
6057d9fa 1701 return download_capture(sdi);
00c86508 1702
d4051930
MV
1703 return TRUE;
1704}
28a35d8a 1705
3ba56876 1706SR_PRIV int sigma_receive_data(int fd, int revents, void *cb_data)
d4051930
MV
1707{
1708 struct sr_dev_inst *sdi;
1709 struct dev_context *devc;
88c51afe 1710
d4051930
MV
1711 (void)fd;
1712 (void)revents;
88c51afe 1713
d4051930
MV
1714 sdi = cb_data;
1715 devc = sdi->priv;
1716
1717 if (devc->state.state == SIGMA_IDLE)
1718 return TRUE;
1719
dde0175d
GS
1720 /*
1721 * When the application has requested to stop the acquisition,
1722 * then immediately start downloading sample data. Otherwise
1723 * keep checking configured limits which will terminate the
1724 * acquisition and initiate download.
1725 */
1726 if (devc->state.state == SIGMA_STOPPING)
1727 return download_capture(sdi);
d4051930
MV
1728 if (devc->state.state == SIGMA_CAPTURE)
1729 return sigma_capture_mode(sdi);
28a35d8a 1730
28a35d8a
HE
1731 return TRUE;
1732}
1733
c53d793f
HE
1734/* Build a LUT entry used by the trigger functions. */
1735static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
ee492173
HE
1736{
1737 int i, j, k, bit;
1738
ba7dd8bb 1739 /* For each quad channel. */
0a1f7b09 1740 for (i = 0; i < 4; i++) {
c53d793f 1741 entry[i] = 0xffff;
ee492173 1742
f758d074 1743 /* For each bit in LUT. */
a53b8e4d 1744 for (j = 0; j < 16; j++) {
ee492173 1745
ba7dd8bb 1746 /* For each channel in quad. */
0a1f7b09 1747 for (k = 0; k < 4; k++) {
ee492173
HE
1748 bit = 1 << (i * 4 + k);
1749
c53d793f 1750 /* Set bit in entry */
0a1f7b09
UH
1751 if ((mask & bit) && ((!(value & bit)) !=
1752 (!(j & (1 << k)))))
c53d793f 1753 entry[i] &= ~(1 << j);
ee492173 1754 }
a53b8e4d 1755 }
ee492173 1756 }
c53d793f 1757}
ee492173 1758
c53d793f
HE
1759/* Add a logical function to LUT mask. */
1760static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
9b4d261f 1761 int index, int neg, uint16_t *mask)
c53d793f
HE
1762{
1763 int i, j;
1764 int x[2][2], tmp, a, b, aset, bset, rset;
1765
5c231fc4 1766 memset(x, 0, sizeof(x));
c53d793f
HE
1767
1768 /* Trigger detect condition. */
1769 switch (oper) {
1770 case OP_LEVEL:
1771 x[0][1] = 1;
1772 x[1][1] = 1;
1773 break;
1774 case OP_NOT:
1775 x[0][0] = 1;
1776 x[1][0] = 1;
1777 break;
1778 case OP_RISE:
1779 x[0][1] = 1;
1780 break;
1781 case OP_FALL:
1782 x[1][0] = 1;
1783 break;
1784 case OP_RISEFALL:
1785 x[0][1] = 1;
1786 x[1][0] = 1;
1787 break;
1788 case OP_NOTRISE:
1789 x[1][1] = 1;
1790 x[0][0] = 1;
1791 x[1][0] = 1;
1792 break;
1793 case OP_NOTFALL:
1794 x[1][1] = 1;
1795 x[0][0] = 1;
1796 x[0][1] = 1;
1797 break;
1798 case OP_NOTRISEFALL:
1799 x[1][1] = 1;
1800 x[0][0] = 1;
1801 break;
1802 }
1803
1804 /* Transpose if neg is set. */
1805 if (neg) {
0a1f7b09
UH
1806 for (i = 0; i < 2; i++) {
1807 for (j = 0; j < 2; j++) {
c53d793f 1808 tmp = x[i][j];
0a1f7b09
UH
1809 x[i][j] = x[1 - i][1 - j];
1810 x[1 - i][1 - j] = tmp;
c53d793f 1811 }
ea9cfed7 1812 }
c53d793f
HE
1813 }
1814
1815 /* Update mask with function. */
0a1f7b09 1816 for (i = 0; i < 16; i++) {
c53d793f
HE
1817 a = (i >> (2 * index + 0)) & 1;
1818 b = (i >> (2 * index + 1)) & 1;
1819
1820 aset = (*mask >> i) & 1;
1821 bset = x[b][a];
1822
382cb19f 1823 rset = 0;
c53d793f
HE
1824 if (func == FUNC_AND || func == FUNC_NAND)
1825 rset = aset & bset;
1826 else if (func == FUNC_OR || func == FUNC_NOR)
1827 rset = aset | bset;
1828 else if (func == FUNC_XOR || func == FUNC_NXOR)
1829 rset = aset ^ bset;
1830
1831 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1832 rset = !rset;
1833
1834 *mask &= ~(1 << i);
1835
1836 if (rset)
1837 *mask |= 1 << i;
1838 }
1839}
1840
1841/*
1842 * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1843 * simple pin change and state triggers. Only two transitions (rise/fall) can be
1844 * set at any time, but a full mask and value can be set (0/1).
1845 */
9b4d261f
GS
1846SR_PRIV int sigma_build_basic_trigger(struct dev_context *devc,
1847 struct triggerlut *lut)
c53d793f 1848{
419f1095 1849 int i, j;
5c231fc4 1850 uint16_t masks[2];
c53d793f 1851
5c231fc4
GS
1852 memset(lut, 0, sizeof(*lut));
1853 memset(&masks, 0, sizeof(masks));
c53d793f 1854
f3f19d11 1855 /* Constant for simple triggers. */
c53d793f
HE
1856 lut->m4 = 0xa000;
1857
1858 /* Value/mask trigger support. */
0e1357e8 1859 build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
99965709 1860 lut->m2d);
c53d793f
HE
1861
1862 /* Rise/fall trigger support. */
0a1f7b09 1863 for (i = 0, j = 0; i < 16; i++) {
0e1357e8
BV
1864 if (devc->trigger.risingmask & (1 << i) ||
1865 devc->trigger.fallingmask & (1 << i))
c53d793f
HE
1866 masks[j++] = 1 << i;
1867 }
1868
1869 build_lut_entry(masks[0], masks[0], lut->m0d);
1870 build_lut_entry(masks[1], masks[1], lut->m1d);
1871
1872 /* Add glue logic */
1873 if (masks[0] || masks[1]) {
1874 /* Transition trigger. */
0e1357e8 1875 if (masks[0] & devc->trigger.risingmask)
c53d793f 1876 add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
0e1357e8 1877 if (masks[0] & devc->trigger.fallingmask)
c53d793f 1878 add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
0e1357e8 1879 if (masks[1] & devc->trigger.risingmask)
c53d793f 1880 add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
0e1357e8 1881 if (masks[1] & devc->trigger.fallingmask)
c53d793f
HE
1882 add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1883 } else {
1884 /* Only value/mask trigger. */
1885 lut->m3 = 0xffff;
1886 }
ee492173 1887
c53d793f 1888 /* Triggertype: event. */
ee492173
HE
1889 lut->params.selres = 3;
1890
e46b8fb1 1891 return SR_OK;
ee492173 1892}