Difference between revisions of "Link Instruments MSO-19"

From sigrok
Jump to navigation Jump to search
Line 27: Line 27:
**Variable size payload, 16bit aligned
**Variable size payload, 16bit aligned
***Looks like each 16bits of payload are a register write operation
***Looks like each 16bits of payload are a register write operation
***register writes are 4bits for addr and 12bits for value
***register writes are 4bits for addr, 8 bits for value, 2 unused bits and 2 bits im not sure what they are for :)
***value is signed big endian
***.?12 AAAA .?34 5678
***Conversion is: ((v & 0x3f) | ((v & 0xc0) << 6) | ((a & 0xf) << 8) | (((v ^ 0x20) & 0x20) << 1) | (((v ^ 0x80) & 0x80) << 7))
***Byte order is big endian
**Fixed footer: 0x7e
**Fixed footer: 0x7e

Revision as of 01:13, 8 January 2011

File:MSO-19.JPG
Link Instruments MSO-19

The Link Instruments MSO-19 is a 2GSa/s oscilloscope, 200MSa/s logic analyzer, 100MSa/s pattern generator and a TDR. It is also extremely portable and is only $249 (including probe, clips, wires and software).

See Link Instruments MSO-19/Info for more details (such as lsusb -vvv output) about the device.

Hardware

Original software

Link Instruments ships the product with its FrontPanelTM Oscilloscope software. Software is for Windows only. Written in .NET (C#), without any kind of obfuscation, which makes it a real breeze to reverse engineer.

USB protocol

It's just serial-over-USB, supported by the Linux kernel through the cp210x driver, though as of Kernel 2.6.37 it needs to be patched to recognize the Link Instruments Vendor/Product ID (3195:f190).

iSerial was exploited by Link Instruments to store device probe methods, hardware type, hardware revision, calibration quirks and the actual serial number.

Serial protocol

  • Control message
    • Fixed header: 0x40, 0x4c, 0x44, 0x53, 0x7e
    • Variable size payload, 16bit aligned
      • Looks like each 16bits of payload are a register write operation
      • register writes are 4bits for addr, 8 bits for value, 2 unused bits and 2 bits im not sure what they are for :)
      • .?12 AAAA .?34 5678
      • Conversion is: ((v & 0x3f) | ((v & 0xc0) << 6) | ((a & 0xf) << 8) | (((v ^ 0x20) & 0x20) << 1) | (((v ^ 0x80) & 0x80) << 7))
      • Byte order is big endian
    • Fixed footer: 0x7e