]> sigrok.org Git - libsigrokdecode.git/blame_incremental - decoders/uart/uart.py
srd: uart: Use strings for packet types.
[libsigrokdecode.git] / decoders / uart / uart.py
... / ...
CommitLineData
1##
2## This file is part of the sigrok project.
3##
4## Copyright (C) 2011-2012 Uwe Hermann <uwe@hermann-uwe.de>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, write to the Free Software
18## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19##
20
21#
22# UART protocol decoder
23#
24
25#
26# Universal Asynchronous Receiver Transmitter (UART) is a simple serial
27# communication protocol which allows two devices to talk to each other.
28#
29# It uses just two data signals and a ground (GND) signal:
30# - RX/RXD: Receive signal
31# - TX/TXD: Transmit signal
32#
33# The protocol is asynchronous, i.e., there is no dedicated clock signal.
34# Rather, both devices have to agree on a baudrate (number of bits to be
35# transmitted per second) beforehand. Baudrates can be arbitrary in theory,
36# but usually the choice is limited by the hardware UARTs that are used.
37# Common values are 9600 or 115200.
38#
39# The protocol allows full-duplex transmission, i.e. both devices can send
40# data at the same time. However, unlike SPI (which is always full-duplex,
41# i.e., each send operation is automatically also a receive operation), UART
42# allows one-way communication, too. In such a case only one signal (and GND)
43# is required.
44#
45# The data is sent over the TX line in so-called 'frames', which consist of:
46# - Exactly one start bit (always 0/low).
47# - Between 5 and 9 data bits.
48# - An (optional) parity bit.
49# - One or more stop bit(s).
50#
51# The idle state of the RX/TX line is 1/high. As the start bit is 0/low, the
52# receiver can continually monitor its RX line for a falling edge, in order
53# to detect the start bit.
54#
55# Once detected, it can (due to the agreed-upon baudrate and thus the known
56# width/duration of one UART bit) sample the state of the RX line "in the
57# middle" of each (start/data/parity/stop) bit it wants to analyze.
58#
59# It is configurable whether there is a parity bit in a frame, and if yes,
60# which type of parity is used:
61# - None: No parity bit is included.
62# - Odd: The number of 1 bits in the data (and parity bit itself) is odd.
63# - Even: The number of 1 bits in the data (and parity bit itself) is even.
64# - Mark/one: The parity bit is always 1/high (also called 'mark state').
65# - Space/zero: The parity bit is always 0/low (also called 'space state').
66#
67# It is also configurable how many stop bits are to be used:
68# - 1 stop bit (most common case)
69# - 2 stop bits
70# - 1.5 stop bits (i.e., one stop bit, but 1.5 times the UART bit width)
71# - 0.5 stop bits (i.e., one stop bit, but 0.5 times the UART bit width)
72#
73# The bit order of the 5-9 data bits is LSB-first.
74#
75# Possible special cases:
76# - One or both data lines could be inverted, which also means that the idle
77# state of the signal line(s) is low instead of high.
78# - Only the data bits on one or both data lines (and the parity bit) could
79# be inverted (but the start/stop bits remain non-inverted).
80# - The bit order could be MSB-first instead of LSB-first.
81# - The baudrate could change in the middle of the communication. This only
82# happens in very special cases, and can only work if both devices know
83# to which baudrate they are to switch, and when.
84# - Theoretically, the baudrate on RX and the one on TX could also be
85# different, but that's a very obscure case and probably doesn't happen
86# very often in practice.
87#
88# Error conditions:
89# - If there is a parity bit, but it doesn't match the expected parity,
90# this is called a 'parity error'.
91# - If there are no stop bit(s), that's called a 'frame error'.
92#
93# More information:
94# TODO: URLs
95#
96
97#
98# Protocol output format:
99#
100# UART packet:
101# [<packet-type>, <rxtx>, <packet-data>]
102#
103# This is the list of <packet-types>s and their respective <packet-data>:
104# - 'STARTBIT': The data is the (integer) value of the start bit (0 or 1).
105# - 'DATA': The data is the (integer) value of the UART data. Valid values
106# range from 0 to 512 (as the data can be up to 9 bits in size).
107# - 'PARITYBIT': The data is the (integer) value of the parity bit (0 or 1).
108# - 'STOPBIT': The data is the (integer) value of the stop bit (0 or 1).
109# - 'INVALID STARTBIT': The data is the (integer) value of the start bit
110# (0 or 1).
111# - 'INVALID STOPBIT': The data is the (integer) value of the stop bit
112# (0 or 1).
113# - 'PARITY ERROR': The data is a tuple with two entries. The first one is
114# the expected parity value, the second is the actual parity value.
115# - TODO: Frame error?
116#
117# The <rxtx> field is 0 for RX packets, 1 for TX packets.
118#
119
120import sigrokdecode as srd
121
122# States
123WAIT_FOR_START_BIT = 0
124GET_START_BIT = 1
125GET_DATA_BITS = 2
126GET_PARITY_BIT = 3
127GET_STOP_BITS = 4
128
129# Used for differentiating between the two data directions.
130RX = 0
131TX = 1
132
133# Parity options
134PARITY_NONE = 0
135PARITY_ODD = 1
136PARITY_EVEN = 2
137PARITY_ZERO = 3
138PARITY_ONE = 4
139
140# Stop bit options
141STOP_BITS_0_5 = 0
142STOP_BITS_1 = 1
143STOP_BITS_1_5 = 2
144STOP_BITS_2 = 3
145
146# Bit order options
147LSB_FIRST = 0
148MSB_FIRST = 1
149
150# Annotation feed formats
151ANN_ASCII = 0
152ANN_DEC = 1
153ANN_HEX = 2
154ANN_OCT = 3
155ANN_BITS = 4
156
157# Given a parity type to check (odd, even, zero, one), the value of the
158# parity bit, the value of the data, and the length of the data (5-9 bits,
159# usually 8 bits) return True if the parity is correct, False otherwise.
160# PARITY_NONE is _not_ allowed as value for 'parity_type'.
161def parity_ok(parity_type, parity_bit, data, num_data_bits):
162
163 # Handle easy cases first (parity bit is always 1 or 0).
164 if parity_type == PARITY_ZERO:
165 return parity_bit == 0
166 elif parity_type == PARITY_ONE:
167 return parity_bit == 1
168
169 # Count number of 1 (high) bits in the data (and the parity bit itself!).
170 ones = bin(data).count('1') + parity_bit
171
172 # Check for odd/even parity.
173 if parity_type == PARITY_ODD:
174 return (ones % 2) == 1
175 elif parity_type == PARITY_EVEN:
176 return (ones % 2) == 0
177 else:
178 raise Exception('Invalid parity type: %d' % parity_type)
179
180class Decoder(srd.Decoder):
181 api_version = 1
182 id = 'uart'
183 name = 'UART'
184 longname = 'Universal Asynchronous Receiver/Transmitter'
185 desc = 'Universal Asynchronous Receiver/Transmitter (UART)'
186 longdesc = 'TODO.'
187 license = 'gplv2+'
188 inputs = ['logic']
189 outputs = ['uart']
190 probes = [
191 # Allow specifying only one of the signals, e.g. if only one data
192 # direction exists (or is relevant).
193 {'id': 'rx', 'name': 'RX', 'desc': 'UART receive line'},
194 {'id': 'tx', 'name': 'TX', 'desc': 'UART transmit line'},
195 ]
196 optional_probes = []
197 options = {
198 'baudrate': ['Baud rate', 115200],
199 'num_data_bits': ['Data bits', 8], # Valid: 5-9.
200 'parity_type': ['Parity type', PARITY_NONE],
201 'parity_check': ['Check parity?', True], # TODO: Bool supported?
202 'num_stop_bits': ['Stop bit(s)', STOP_BITS_1],
203 'bit_order': ['Bit order', LSB_FIRST],
204 # TODO: Options to invert the signal(s).
205 }
206 annotations = [
207 ['ASCII', 'Data bytes as ASCII characters'],
208 ['Decimal', 'Databytes as decimal, integer values'],
209 ['Hex', 'Data bytes in hex format'],
210 ['Octal', 'Data bytes as octal numbers'],
211 ['Bits', 'Data bytes in bit notation (sequence of 0/1 digits)'],
212 ]
213
214 def putx(self, rxtx, data):
215 self.put(self.startsample[rxtx], self.samplenum - 1, self.out_ann, data)
216
217 def __init__(self, **kwargs):
218 self.samplenum = 0
219 self.frame_start = [-1, -1]
220 self.startbit = [-1, -1]
221 self.cur_data_bit = [0, 0]
222 self.databyte = [0, 0]
223 self.stopbit1 = [-1, -1]
224 self.startsample = [-1, -1]
225
226 # Initial state.
227 self.state = [WAIT_FOR_START_BIT, WAIT_FOR_START_BIT]
228
229 self.oldbit = [None, None]
230
231 def start(self, metadata):
232 self.samplerate = metadata['samplerate']
233 self.out_proto = self.add(srd.OUTPUT_PROTO, 'uart')
234 self.out_ann = self.add(srd.OUTPUT_ANN, 'uart')
235
236 # The width of one UART bit in number of samples.
237 self.bit_width = \
238 float(self.samplerate) / float(self.options['baudrate'])
239
240 def report(self):
241 pass
242
243 # Return true if we reached the middle of the desired bit, false otherwise.
244 def reached_bit(self, rxtx, bitnum):
245 # bitpos is the samplenumber which is in the middle of the
246 # specified UART bit (0 = start bit, 1..x = data, x+1 = parity bit
247 # (if used) or the first stop bit, and so on).
248 bitpos = self.frame_start[rxtx] + (self.bit_width / 2.0)
249 bitpos += bitnum * self.bit_width
250 if self.samplenum >= bitpos:
251 return True
252 return False
253
254 def reached_bit_last(self, rxtx, bitnum):
255 bitpos = self.frame_start[rxtx] + ((bitnum + 1) * self.bit_width)
256 if self.samplenum >= bitpos:
257 return True
258 return False
259
260 def wait_for_start_bit(self, rxtx, old_signal, signal):
261 # The start bit is always 0 (low). As the idle UART (and the stop bit)
262 # level is 1 (high), the beginning of a start bit is a falling edge.
263 if not (old_signal == 1 and signal == 0):
264 return
265
266 # Save the sample number where the start bit begins.
267 self.frame_start[rxtx] = self.samplenum
268
269 self.state[rxtx] = GET_START_BIT
270
271 def get_start_bit(self, rxtx, signal):
272 # Skip samples until we're in the middle of the start bit.
273 if not self.reached_bit(rxtx, 0):
274 return
275
276 self.startbit[rxtx] = signal
277
278 # The startbit must be 0. If not, we report an error.
279 if self.startbit[rxtx] != 0:
280 self.put(self.frame_start[rxtx], self.samplenum, self.out_proto,
281 ['INVALID STARTBIT', rxtx, self.startbit[rxtx]])
282 # TODO: Abort? Ignore rest of the frame?
283
284 self.cur_data_bit[rxtx] = 0
285 self.databyte[rxtx] = 0
286 self.startsample[rxtx] = -1
287
288 self.state[rxtx] = GET_DATA_BITS
289
290 self.put(self.frame_start[rxtx], self.samplenum, self.out_proto,
291 ['STARTBIT', rxtx, self.startbit[rxtx]])
292 self.put(self.frame_start[rxtx], self.samplenum, self.out_ann,
293 [ANN_ASCII, ['Start bit', 'Start', 'S']])
294
295 def get_data_bits(self, rxtx, signal):
296 # Skip samples until we're in the middle of the desired data bit.
297 if not self.reached_bit(rxtx, self.cur_data_bit[rxtx] + 1):
298 return
299
300 # Save the sample number where the data byte starts.
301 if self.startsample[rxtx] == -1:
302 self.startsample[rxtx] = self.samplenum
303
304 # Get the next data bit in LSB-first or MSB-first fashion.
305 if self.options['bit_order'] == LSB_FIRST:
306 self.databyte[rxtx] >>= 1
307 self.databyte[rxtx] |= \
308 (signal << (self.options['num_data_bits'] - 1))
309 elif self.options['bit_order'] == MSB_FIRST:
310 self.databyte[rxtx] <<= 1
311 self.databyte[rxtx] |= (signal << 0)
312 else:
313 raise Exception('Invalid bit order value: %d',
314 self.options['bit_order'])
315
316 # Return here, unless we already received all data bits.
317 # TODO? Off-by-one?
318 if self.cur_data_bit[rxtx] < self.options['num_data_bits'] - 1:
319 self.cur_data_bit[rxtx] += 1
320 return
321
322 self.state[rxtx] = GET_PARITY_BIT
323
324 self.put(self.startsample[rxtx], self.samplenum - 1, self.out_proto,
325 ['DATA', rxtx, self.databyte[rxtx]])
326
327 s = 'RX: ' if (rxtx == RX) else 'TX: '
328 self.putx(rxtx, [ANN_ASCII, [s + chr(self.databyte[rxtx])]])
329 self.putx(rxtx, [ANN_DEC, [s + str(self.databyte[rxtx])]])
330 self.putx(rxtx, [ANN_HEX, [s + hex(self.databyte[rxtx]),
331 s + hex(self.databyte[rxtx])[2:]]])
332 self.putx(rxtx, [ANN_OCT, [s + oct(self.databyte[rxtx]),
333 s + oct(self.databyte[rxtx])[2:]]])
334 self.putx(rxtx, [ANN_BITS, [s + bin(self.databyte[rxtx]),
335 s + bin(self.databyte[rxtx])[2:]]])
336
337 def get_parity_bit(self, rxtx, signal):
338 # If no parity is used/configured, skip to the next state immediately.
339 if self.options['parity_type'] == PARITY_NONE:
340 self.state[rxtx] = GET_STOP_BITS
341 return
342
343 # Skip samples until we're in the middle of the parity bit.
344 if not self.reached_bit(rxtx, self.options['num_data_bits'] + 1):
345 return
346
347 self.paritybit[rxtx] = signal
348
349 self.state[rxtx] = GET_STOP_BITS
350
351 if parity_ok(self.options['parity_type'], self.paritybit[rxtx],
352 self.databyte[rxtx], self.options['num_data_bits']):
353 # TODO: Fix range.
354 self.put(self.samplenum, self.samplenum, self.out_proto,
355 ['PARITYBIT', rxtx, self.paritybit[rxtx]])
356 self.put(self.samplenum, self.samplenum, self.out_ann,
357 [ANN_ASCII, ['Parity bit', 'Parity', 'P']])
358 else:
359 # TODO: Fix range.
360 # TODO: Return expected/actual parity values.
361 self.put(self.samplenum, self.samplenum, self.out_proto,
362 ['PARITY ERROR', rxtx, (0, 1)]) # FIXME: Dummy tuple...
363 self.put(self.samplenum, self.samplenum, self.out_ann,
364 [ANN_ASCII, ['Parity error', 'Parity err', 'PE']])
365
366 # TODO: Currently only supports 1 stop bit.
367 def get_stop_bits(self, rxtx, signal):
368 # Skip samples until we're in the middle of the stop bit(s).
369 skip_parity = 0 if self.options['parity_type'] == PARITY_NONE else 1
370 b = self.options['num_data_bits'] + 1 + skip_parity
371 if not self.reached_bit(rxtx, b):
372 return
373
374 self.stopbit1[rxtx] = signal
375
376 # Stop bits must be 1. If not, we report an error.
377 if self.stopbit1[rxtx] != 1:
378 self.put(self.frame_start[rxtx], self.samplenum, self.out_proto,
379 ['INVALID STOPBIT', rxtx, self.stopbit1[rxtx]])
380 # TODO: Abort? Ignore the frame? Other?
381
382 self.state[rxtx] = WAIT_FOR_START_BIT
383
384 # TODO: Fix range.
385 self.put(self.samplenum, self.samplenum, self.out_proto,
386 ['STOPBIT', rxtx, self.stopbit1[rxtx]])
387 self.put(self.samplenum, self.samplenum, self.out_ann,
388 [ANN_ASCII, ['Stop bit', 'Stop', 'P']])
389
390 def decode(self, ss, es, data):
391 # TODO: Either RX or TX could be omitted (optional probe).
392 for (samplenum, (rx, tx)) in data:
393
394 # TODO: Start counting at 0 or 1? Increase before or after?
395 self.samplenum += 1
396
397 # First sample: Save RX/TX value.
398 if self.oldbit[RX] == None:
399 self.oldbit[RX] = rx
400 continue
401 if self.oldbit[TX] == None:
402 self.oldbit[TX] = tx
403 continue
404
405 # State machine.
406 for rxtx in (RX, TX):
407 signal = rx if (rxtx == RX) else tx
408
409 if self.state[rxtx] == WAIT_FOR_START_BIT:
410 self.wait_for_start_bit(rxtx, self.oldbit[rxtx], signal)
411 elif self.state[rxtx] == GET_START_BIT:
412 self.get_start_bit(rxtx, signal)
413 elif self.state[rxtx] == GET_DATA_BITS:
414 self.get_data_bits(rxtx, signal)
415 elif self.state[rxtx] == GET_PARITY_BIT:
416 self.get_parity_bit(rxtx, signal)
417 elif self.state[rxtx] == GET_STOP_BITS:
418 self.get_stop_bits(rxtx, signal)
419 else:
420 raise Exception('Invalid state: %d' % self.state[rxtx])
421
422 # Save current RX/TX values for the next round.
423 self.oldbit[rxtx] = signal
424