]> sigrok.org Git - libsigrokdecode.git/blame_incremental - decoders/uart/pd.py
Rename inter-PD output type to SRD_OUTPUT_PYTHON
[libsigrokdecode.git] / decoders / uart / pd.py
... / ...
CommitLineData
1##
2## This file is part of the libsigrokdecode project.
3##
4## Copyright (C) 2011-2013 Uwe Hermann <uwe@hermann-uwe.de>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, write to the Free Software
18## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19##
20
21# UART protocol decoder
22
23import sigrokdecode as srd
24
25'''
26Protocol output format:
27
28UART packet:
29[<packet-type>, <rxtx>, <packet-data>]
30
31This is the list of <packet-type>s and their respective <packet-data>:
32 - 'STARTBIT': The data is the (integer) value of the start bit (0/1).
33 - 'DATA': The data is the (integer) value of the UART data. Valid values
34 range from 0 to 512 (as the data can be up to 9 bits in size).
35 - 'PARITYBIT': The data is the (integer) value of the parity bit (0/1).
36 - 'STOPBIT': The data is the (integer) value of the stop bit (0 or 1).
37 - 'INVALID STARTBIT': The data is the (integer) value of the start bit (0/1).
38 - 'INVALID STOPBIT': The data is the (integer) value of the stop bit (0/1).
39 - 'PARITY ERROR': The data is a tuple with two entries. The first one is
40 the expected parity value, the second is the actual parity value.
41 - TODO: Frame error?
42
43The <rxtx> field is 0 for RX packets, 1 for TX packets.
44'''
45
46# Used for differentiating between the two data directions.
47RX = 0
48TX = 1
49
50# Given a parity type to check (odd, even, zero, one), the value of the
51# parity bit, the value of the data, and the length of the data (5-9 bits,
52# usually 8 bits) return True if the parity is correct, False otherwise.
53# 'none' is _not_ allowed as value for 'parity_type'.
54def parity_ok(parity_type, parity_bit, data, num_data_bits):
55
56 # Handle easy cases first (parity bit is always 1 or 0).
57 if parity_type == 'zero':
58 return parity_bit == 0
59 elif parity_type == 'one':
60 return parity_bit == 1
61
62 # Count number of 1 (high) bits in the data (and the parity bit itself!).
63 ones = bin(data).count('1') + parity_bit
64
65 # Check for odd/even parity.
66 if parity_type == 'odd':
67 return (ones % 2) == 1
68 elif parity_type == 'even':
69 return (ones % 2) == 0
70 else:
71 raise Exception('Invalid parity type: %d' % parity_type)
72
73class Decoder(srd.Decoder):
74 api_version = 1
75 id = 'uart'
76 name = 'UART'
77 longname = 'Universal Asynchronous Receiver/Transmitter'
78 desc = 'Asynchronous, serial bus.'
79 license = 'gplv2+'
80 inputs = ['logic']
81 outputs = ['uart']
82 probes = [
83 # Allow specifying only one of the signals, e.g. if only one data
84 # direction exists (or is relevant).
85 {'id': 'rx', 'name': 'RX', 'desc': 'UART receive line'},
86 {'id': 'tx', 'name': 'TX', 'desc': 'UART transmit line'},
87 ]
88 optional_probes = []
89 options = {
90 'baudrate': ['Baud rate', 115200],
91 'num_data_bits': ['Data bits', 8], # Valid: 5-9.
92 'parity_type': ['Parity type', 'none'],
93 'parity_check': ['Check parity?', 'yes'], # TODO: Bool supported?
94 'num_stop_bits': ['Stop bit(s)', '1'], # String! 0, 0.5, 1, 1.5.
95 'bit_order': ['Bit order', 'lsb-first'],
96 'format': ['Data format', 'ascii'], # ascii/dec/hex/oct/bin
97 # TODO: Options to invert the signal(s).
98 }
99 annotations = [
100 ['RX data', 'UART RX data'],
101 ['TX data', 'UART TX data'],
102 ['Start bits', 'UART start bits'],
103 ['Parity bits', 'UART parity bits'],
104 ['Stop bits', 'UART stop bits'],
105 ['Warnings', 'Warnings'],
106 ]
107
108 def putx(self, rxtx, data):
109 s, halfbit = self.startsample[rxtx], int(self.bit_width / 2)
110 self.put(s - halfbit, self.samplenum + halfbit, self.out_ann, data)
111
112 def putg(self, data):
113 s, halfbit = self.samplenum, int(self.bit_width / 2)
114 self.put(s - halfbit, s + halfbit, self.out_ann, data)
115
116 def putp(self, data):
117 s, halfbit = self.samplenum, int(self.bit_width / 2)
118 self.put(s - halfbit, s + halfbit, self.out_proto, data)
119
120 def __init__(self, **kwargs):
121 self.samplerate = None
122 self.samplenum = 0
123 self.frame_start = [-1, -1]
124 self.startbit = [-1, -1]
125 self.cur_data_bit = [0, 0]
126 self.databyte = [0, 0]
127 self.paritybit = [-1, -1]
128 self.stopbit1 = [-1, -1]
129 self.startsample = [-1, -1]
130 self.state = ['WAIT FOR START BIT', 'WAIT FOR START BIT']
131 self.oldbit = [1, 1]
132 self.oldpins = [1, 1]
133
134 def start(self):
135 self.out_proto = self.add(srd.OUTPUT_PYTHON, 'uart')
136 self.out_ann = self.add(srd.OUTPUT_ANN, 'uart')
137
138 def metadata(self, key, value):
139 if key == srd.SRD_CONF_SAMPLERATE:
140 self.samplerate = value;
141 # The width of one UART bit in number of samples.
142 self.bit_width = float(self.samplerate) / float(self.options['baudrate'])
143
144 def report(self):
145 pass
146
147 # Return true if we reached the middle of the desired bit, false otherwise.
148 def reached_bit(self, rxtx, bitnum):
149 # bitpos is the samplenumber which is in the middle of the
150 # specified UART bit (0 = start bit, 1..x = data, x+1 = parity bit
151 # (if used) or the first stop bit, and so on).
152 bitpos = self.frame_start[rxtx] + (self.bit_width / 2.0)
153 bitpos += bitnum * self.bit_width
154 if self.samplenum >= bitpos:
155 return True
156 return False
157
158 def reached_bit_last(self, rxtx, bitnum):
159 bitpos = self.frame_start[rxtx] + ((bitnum + 1) * self.bit_width)
160 if self.samplenum >= bitpos:
161 return True
162 return False
163
164 def wait_for_start_bit(self, rxtx, old_signal, signal):
165 # The start bit is always 0 (low). As the idle UART (and the stop bit)
166 # level is 1 (high), the beginning of a start bit is a falling edge.
167 if not (old_signal == 1 and signal == 0):
168 return
169
170 # Save the sample number where the start bit begins.
171 self.frame_start[rxtx] = self.samplenum
172
173 self.state[rxtx] = 'GET START BIT'
174
175 def get_start_bit(self, rxtx, signal):
176 # Skip samples until we're in the middle of the start bit.
177 if not self.reached_bit(rxtx, 0):
178 return
179
180 self.startbit[rxtx] = signal
181
182 # The startbit must be 0. If not, we report an error.
183 if self.startbit[rxtx] != 0:
184 self.putp(['INVALID STARTBIT', rxtx, self.startbit[rxtx]])
185 # TODO: Abort? Ignore rest of the frame?
186
187 self.cur_data_bit[rxtx] = 0
188 self.databyte[rxtx] = 0
189 self.startsample[rxtx] = -1
190
191 self.state[rxtx] = 'GET DATA BITS'
192
193 self.putp(['STARTBIT', rxtx, self.startbit[rxtx]])
194 self.putg([2, ['Start bit', 'Start', 'S']])
195
196 def get_data_bits(self, rxtx, signal):
197 # Skip samples until we're in the middle of the desired data bit.
198 if not self.reached_bit(rxtx, self.cur_data_bit[rxtx] + 1):
199 return
200
201 # Save the sample number of the middle of the first data bit.
202 if self.startsample[rxtx] == -1:
203 self.startsample[rxtx] = self.samplenum
204
205 # Get the next data bit in LSB-first or MSB-first fashion.
206 if self.options['bit_order'] == 'lsb-first':
207 self.databyte[rxtx] >>= 1
208 self.databyte[rxtx] |= \
209 (signal << (self.options['num_data_bits'] - 1))
210 elif self.options['bit_order'] == 'msb-first':
211 self.databyte[rxtx] <<= 1
212 self.databyte[rxtx] |= (signal << 0)
213 else:
214 raise Exception('Invalid bit order value: %s',
215 self.options['bit_order'])
216
217 # Return here, unless we already received all data bits.
218 if self.cur_data_bit[rxtx] < self.options['num_data_bits'] - 1:
219 self.cur_data_bit[rxtx] += 1
220 return
221
222 self.state[rxtx] = 'GET PARITY BIT'
223
224 self.putp(['DATA', rxtx, self.databyte[rxtx]])
225
226 b, f = self.databyte[rxtx], self.options['format']
227 if f == 'ascii':
228 self.putx(rxtx, [rxtx, [chr(b)]])
229 elif f == 'dec':
230 self.putx(rxtx, [rxtx, [str(b)]])
231 elif f == 'hex':
232 self.putx(rxtx, [rxtx, [hex(b)[2:].zfill(2).upper()]])
233 elif f == 'oct':
234 self.putx(rxtx, [rxtx, [oct(b)[2:].zfill(3)]])
235 elif f == 'bin':
236 self.putx(rxtx, [rxtx, [bin(b)[2:].zfill(8)]])
237 else:
238 raise Exception('Invalid data format option: %s' % f)
239
240 def get_parity_bit(self, rxtx, signal):
241 # If no parity is used/configured, skip to the next state immediately.
242 if self.options['parity_type'] == 'none':
243 self.state[rxtx] = 'GET STOP BITS'
244 return
245
246 # Skip samples until we're in the middle of the parity bit.
247 if not self.reached_bit(rxtx, self.options['num_data_bits'] + 1):
248 return
249
250 self.paritybit[rxtx] = signal
251
252 self.state[rxtx] = 'GET STOP BITS'
253
254 if parity_ok(self.options['parity_type'], self.paritybit[rxtx],
255 self.databyte[rxtx], self.options['num_data_bits']):
256 self.putp(['PARITYBIT', rxtx, self.paritybit[rxtx]])
257 self.putg([3, ['Parity bit', 'Parity', 'P']])
258 else:
259 # TODO: Return expected/actual parity values.
260 self.putp(['PARITY ERROR', rxtx, (0, 1)]) # FIXME: Dummy tuple...
261 self.putg([5, ['Parity error', 'Parity err', 'PE']])
262
263 # TODO: Currently only supports 1 stop bit.
264 def get_stop_bits(self, rxtx, signal):
265 # Skip samples until we're in the middle of the stop bit(s).
266 skip_parity = 0 if self.options['parity_type'] == 'none' else 1
267 b = self.options['num_data_bits'] + 1 + skip_parity
268 if not self.reached_bit(rxtx, b):
269 return
270
271 self.stopbit1[rxtx] = signal
272
273 # Stop bits must be 1. If not, we report an error.
274 if self.stopbit1[rxtx] != 1:
275 self.putp(['INVALID STOPBIT', rxtx, self.stopbit1[rxtx]])
276 self.putg([5, ['Frame error', 'Frame err', 'FE']])
277 # TODO: Abort? Ignore the frame? Other?
278
279 self.state[rxtx] = 'WAIT FOR START BIT'
280
281 self.putp(['STOPBIT', rxtx, self.stopbit1[rxtx]])
282 self.putg([4, ['Stop bit', 'Stop', 'T']])
283
284 def decode(self, ss, es, data):
285 if self.samplerate is None:
286 raise Exception("Cannot decode without samplerate.")
287 # TODO: Either RX or TX could be omitted (optional probe).
288 for (self.samplenum, pins) in data:
289
290 # Note: Ignoring identical samples here for performance reasons
291 # is not possible for this PD, at least not in the current state.
292 # if self.oldpins == pins:
293 # continue
294 self.oldpins, (rx, tx) = pins, pins
295
296 # State machine.
297 for rxtx in (RX, TX):
298 signal = rx if (rxtx == RX) else tx
299
300 if self.state[rxtx] == 'WAIT FOR START BIT':
301 self.wait_for_start_bit(rxtx, self.oldbit[rxtx], signal)
302 elif self.state[rxtx] == 'GET START BIT':
303 self.get_start_bit(rxtx, signal)
304 elif self.state[rxtx] == 'GET DATA BITS':
305 self.get_data_bits(rxtx, signal)
306 elif self.state[rxtx] == 'GET PARITY BIT':
307 self.get_parity_bit(rxtx, signal)
308 elif self.state[rxtx] == 'GET STOP BITS':
309 self.get_stop_bits(rxtx, signal)
310 else:
311 raise Exception('Invalid state: %s' % self.state[rxtx])
312
313 # Save current RX/TX values for the next round.
314 self.oldbit[rxtx] = signal
315