]> sigrok.org Git - libsigrokdecode.git/blame_incremental - decoders/uart/pd.py
uart: Add [rx|tx]_packet_delimiter options.
[libsigrokdecode.git] / decoders / uart / pd.py
... / ...
CommitLineData
1##
2## This file is part of the libsigrokdecode project.
3##
4## Copyright (C) 2011-2014 Uwe Hermann <uwe@hermann-uwe.de>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, see <http://www.gnu.org/licenses/>.
18##
19
20import sigrokdecode as srd
21from common.srdhelper import bitpack
22from math import floor, ceil
23
24'''
25OUTPUT_PYTHON format:
26
27Packet:
28[<ptype>, <rxtx>, <pdata>]
29
30This is the list of <ptype>s and their respective <pdata> values:
31 - 'STARTBIT': The data is the (integer) value of the start bit (0/1).
32 - 'DATA': This is always a tuple containing two items:
33 - 1st item: the (integer) value of the UART data. Valid values
34 range from 0 to 511 (as the data can be up to 9 bits in size).
35 - 2nd item: the list of individual data bits and their ss/es numbers.
36 - 'PARITYBIT': The data is the (integer) value of the parity bit (0/1).
37 - 'STOPBIT': The data is the (integer) value of the stop bit (0 or 1).
38 - 'INVALID STARTBIT': The data is the (integer) value of the start bit (0/1).
39 - 'INVALID STOPBIT': The data is the (integer) value of the stop bit (0/1).
40 - 'PARITY ERROR': The data is a tuple with two entries. The first one is
41 the expected parity value, the second is the actual parity value.
42 - 'BREAK': The data is always 0.
43 - 'FRAME': The data is always a tuple containing two items: The (integer)
44 value of the UART data, and a boolean which reflects the validity of the
45 UART frame.
46
47The <rxtx> field is 0 for RX packets, 1 for TX packets.
48'''
49
50# Used for differentiating between the two data directions.
51RX = 0
52TX = 1
53
54# Given a parity type to check (odd, even, zero, one), the value of the
55# parity bit, the value of the data, and the length of the data (5-9 bits,
56# usually 8 bits) return True if the parity is correct, False otherwise.
57# 'none' is _not_ allowed as value for 'parity_type'.
58def parity_ok(parity_type, parity_bit, data, num_data_bits):
59
60 # Handle easy cases first (parity bit is always 1 or 0).
61 if parity_type == 'zero':
62 return parity_bit == 0
63 elif parity_type == 'one':
64 return parity_bit == 1
65
66 # Count number of 1 (high) bits in the data (and the parity bit itself!).
67 ones = bin(data).count('1') + parity_bit
68
69 # Check for odd/even parity.
70 if parity_type == 'odd':
71 return (ones % 2) == 1
72 elif parity_type == 'even':
73 return (ones % 2) == 0
74
75class SamplerateError(Exception):
76 pass
77
78class ChannelError(Exception):
79 pass
80
81class Decoder(srd.Decoder):
82 api_version = 3
83 id = 'uart'
84 name = 'UART'
85 longname = 'Universal Asynchronous Receiver/Transmitter'
86 desc = 'Asynchronous, serial bus.'
87 license = 'gplv2+'
88 inputs = ['logic']
89 outputs = ['uart']
90 tags = ['Embedded/industrial']
91 optional_channels = (
92 # Allow specifying only one of the signals, e.g. if only one data
93 # direction exists (or is relevant).
94 {'id': 'rx', 'name': 'RX', 'desc': 'UART receive line'},
95 {'id': 'tx', 'name': 'TX', 'desc': 'UART transmit line'},
96 )
97 options = (
98 {'id': 'baudrate', 'desc': 'Baud rate', 'default': 115200},
99 {'id': 'num_data_bits', 'desc': 'Data bits', 'default': 8,
100 'values': (5, 6, 7, 8, 9)},
101 {'id': 'parity_type', 'desc': 'Parity type', 'default': 'none',
102 'values': ('none', 'odd', 'even', 'zero', 'one')},
103 {'id': 'parity_check', 'desc': 'Check parity?', 'default': 'yes',
104 'values': ('yes', 'no')},
105 {'id': 'num_stop_bits', 'desc': 'Stop bits', 'default': 1.0,
106 'values': (0.0, 0.5, 1.0, 1.5)},
107 {'id': 'bit_order', 'desc': 'Bit order', 'default': 'lsb-first',
108 'values': ('lsb-first', 'msb-first')},
109 {'id': 'format', 'desc': 'Data format', 'default': 'hex',
110 'values': ('ascii', 'dec', 'hex', 'oct', 'bin')},
111 {'id': 'invert_rx', 'desc': 'Invert RX?', 'default': 'no',
112 'values': ('yes', 'no')},
113 {'id': 'invert_tx', 'desc': 'Invert TX?', 'default': 'no',
114 'values': ('yes', 'no')},
115 {'id': 'rx_packet_delimiter', 'desc': 'RX packet delimiter (decimal)',
116 'default': -1},
117 {'id': 'tx_packet_delimiter', 'desc': 'TX packet delimiter (decimal)',
118 'default': -1},
119 )
120 annotations = (
121 ('rx-data', 'RX data'),
122 ('tx-data', 'TX data'),
123 ('rx-start', 'RX start bits'),
124 ('tx-start', 'TX start bits'),
125 ('rx-parity-ok', 'RX parity OK bits'),
126 ('tx-parity-ok', 'TX parity OK bits'),
127 ('rx-parity-err', 'RX parity error bits'),
128 ('tx-parity-err', 'TX parity error bits'),
129 ('rx-stop', 'RX stop bits'),
130 ('tx-stop', 'TX stop bits'),
131 ('rx-warnings', 'RX warnings'),
132 ('tx-warnings', 'TX warnings'),
133 ('rx-data-bits', 'RX data bits'),
134 ('tx-data-bits', 'TX data bits'),
135 ('rx-break', 'RX break'),
136 ('tx-break', 'TX break'),
137 ('rx-packet', 'RX packet'),
138 ('tx-packet', 'TX packet'),
139 )
140 annotation_rows = (
141 ('rx-data', 'RX', (0, 2, 4, 6, 8)),
142 ('rx-data-bits', 'RX bits', (12,)),
143 ('rx-warnings', 'RX warnings', (10,)),
144 ('rx-break', 'RX break', (14,)),
145 ('rx-packets', 'RX packets', (16,)),
146 ('tx-data', 'TX', (1, 3, 5, 7, 9)),
147 ('tx-data-bits', 'TX bits', (13,)),
148 ('tx-warnings', 'TX warnings', (11,)),
149 ('tx-break', 'TX break', (15,)),
150 ('tx-packets', 'TX packets', (17,)),
151 )
152 binary = (
153 ('rx', 'RX dump'),
154 ('tx', 'TX dump'),
155 ('rxtx', 'RX/TX dump'),
156 )
157 idle_state = ['WAIT FOR START BIT', 'WAIT FOR START BIT']
158
159 def putx(self, rxtx, data):
160 s, halfbit = self.startsample[rxtx], self.bit_width / 2.0
161 self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_ann, data)
162
163 def putx_packet(self, rxtx, data):
164 s, halfbit = self.ss_packet[rxtx], self.bit_width / 2.0
165 self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_ann, data)
166
167 def putpx(self, rxtx, data):
168 s, halfbit = self.startsample[rxtx], self.bit_width / 2.0
169 self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_python, data)
170
171 def putg(self, data):
172 s, halfbit = self.samplenum, self.bit_width / 2.0
173 self.put(s - floor(halfbit), s + ceil(halfbit), self.out_ann, data)
174
175 def putp(self, data):
176 s, halfbit = self.samplenum, self.bit_width / 2.0
177 self.put(s - floor(halfbit), s + ceil(halfbit), self.out_python, data)
178
179 def putgse(self, ss, es, data):
180 self.put(ss, es, self.out_ann, data)
181
182 def putpse(self, ss, es, data):
183 self.put(ss, es, self.out_python, data)
184
185 def putbin(self, rxtx, data):
186 s, halfbit = self.startsample[rxtx], self.bit_width / 2.0
187 self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_binary, data)
188
189 def __init__(self):
190 self.reset()
191
192 def reset(self):
193 self.samplerate = None
194 self.samplenum = 0
195 self.frame_start = [-1, -1]
196 self.frame_valid = [None, None]
197 self.startbit = [-1, -1]
198 self.cur_data_bit = [0, 0]
199 self.datavalue = [0, 0]
200 self.paritybit = [-1, -1]
201 self.stopbit1 = [-1, -1]
202 self.startsample = [-1, -1]
203 self.state = ['WAIT FOR START BIT', 'WAIT FOR START BIT']
204 self.databits = [[], []]
205 self.break_start = [None, None]
206 self.packet_cache = [[], []]
207 self.ss_packet, self.es_packet = [None, None], [None, None]
208
209 def start(self):
210 self.out_python = self.register(srd.OUTPUT_PYTHON)
211 self.out_binary = self.register(srd.OUTPUT_BINARY)
212 self.out_ann = self.register(srd.OUTPUT_ANN)
213 self.bw = (self.options['num_data_bits'] + 7) // 8
214
215 def metadata(self, key, value):
216 if key == srd.SRD_CONF_SAMPLERATE:
217 self.samplerate = value
218 # The width of one UART bit in number of samples.
219 self.bit_width = float(self.samplerate) / float(self.options['baudrate'])
220
221 def get_sample_point(self, rxtx, bitnum):
222 # Determine absolute sample number of a bit slot's sample point.
223 # bitpos is the samplenumber which is in the middle of the
224 # specified UART bit (0 = start bit, 1..x = data, x+1 = parity bit
225 # (if used) or the first stop bit, and so on).
226 # The samples within bit are 0, 1, ..., (bit_width - 1), therefore
227 # index of the middle sample within bit window is (bit_width - 1) / 2.
228 bitpos = self.frame_start[rxtx] + (self.bit_width - 1) / 2.0
229 bitpos += bitnum * self.bit_width
230 return bitpos
231
232 def wait_for_start_bit(self, rxtx, signal):
233 # Save the sample number where the start bit begins.
234 self.frame_start[rxtx] = self.samplenum
235 self.frame_valid[rxtx] = True
236
237 self.state[rxtx] = 'GET START BIT'
238
239 def get_start_bit(self, rxtx, signal):
240 self.startbit[rxtx] = signal
241
242 # The startbit must be 0. If not, we report an error and wait
243 # for the next start bit (assuming this one was spurious).
244 if self.startbit[rxtx] != 0:
245 self.putp(['INVALID STARTBIT', rxtx, self.startbit[rxtx]])
246 self.putg([rxtx + 10, ['Frame error', 'Frame err', 'FE']])
247 self.frame_valid[rxtx] = False
248 es = self.samplenum + ceil(self.bit_width / 2.0)
249 self.putpse(self.frame_start[rxtx], es, ['FRAME', rxtx,
250 (self.datavalue[rxtx], self.frame_valid[rxtx])])
251 self.state[rxtx] = 'WAIT FOR START BIT'
252 return
253
254 self.cur_data_bit[rxtx] = 0
255 self.datavalue[rxtx] = 0
256 self.startsample[rxtx] = -1
257
258 self.putp(['STARTBIT', rxtx, self.startbit[rxtx]])
259 self.putg([rxtx + 2, ['Start bit', 'Start', 'S']])
260
261 self.state[rxtx] = 'GET DATA BITS'
262
263 def handle_packet(self, rxtx):
264 opt = ('rx' if (rxtx == RX) else 'tx') + '_packet_delimiter'
265 delim = self.options[opt]
266 if delim == -1:
267 return
268
269 # Cache data values until we see the delimiter.
270 if len(self.packet_cache[rxtx]) == 0:
271 self.ss_packet[rxtx] = self.startsample[rxtx]
272 self.packet_cache[rxtx].append(self.datavalue[rxtx])
273 if self.datavalue[rxtx] == delim:
274 self.es_packet[rxtx] = self.samplenum
275 s = ''
276 for b in self.packet_cache[rxtx]:
277 s += self.format_value(b)
278 if self.options['format'] != 'ascii':
279 s += ' '
280 if self.options['format'] != 'ascii' and s[-1] == ' ':
281 s = s[:-1] # Drop trailing space.
282 self.putx_packet(rxtx, [16 + rxtx, [s]])
283 self.packet_cache[rxtx] = []
284
285 def get_data_bits(self, rxtx, signal):
286 # Save the sample number of the middle of the first data bit.
287 if self.startsample[rxtx] == -1:
288 self.startsample[rxtx] = self.samplenum
289
290 self.putg([rxtx + 12, ['%d' % signal]])
291
292 # Store individual data bits and their start/end samplenumbers.
293 s, halfbit = self.samplenum, int(self.bit_width / 2)
294 self.databits[rxtx].append([signal, s - halfbit, s + halfbit])
295
296 # Return here, unless we already received all data bits.
297 self.cur_data_bit[rxtx] += 1
298 if self.cur_data_bit[rxtx] < self.options['num_data_bits']:
299 return
300
301 # Convert accumulated data bits to a data value.
302 bits = [b[0] for b in self.databits[rxtx]]
303 if self.options['bit_order'] == 'msb-first':
304 bits.reverse()
305 self.datavalue[rxtx] = bitpack(bits)
306 self.putpx(rxtx, ['DATA', rxtx,
307 (self.datavalue[rxtx], self.databits[rxtx])])
308
309 b = self.datavalue[rxtx]
310 formatted = self.format_value(b)
311 if formatted is not None:
312 self.putx(rxtx, [rxtx, [formatted]])
313
314 bdata = b.to_bytes(self.bw, byteorder='big')
315 self.putbin(rxtx, [rxtx, bdata])
316 self.putbin(rxtx, [2, bdata])
317
318 self.handle_packet(rxtx)
319
320 self.databits[rxtx] = []
321
322 # Advance to either reception of the parity bit, or reception of
323 # the STOP bits if parity is not applicable.
324 self.state[rxtx] = 'GET PARITY BIT'
325 if self.options['parity_type'] == 'none':
326 self.state[rxtx] = 'GET STOP BITS'
327
328 def format_value(self, v):
329 # Format value 'v' according to configured options.
330 # Reflects the user selected kind of representation, as well as
331 # the number of data bits in the UART frames.
332
333 fmt, bits = self.options['format'], self.options['num_data_bits']
334
335 # Assume "is printable" for values from 32 to including 126,
336 # below 32 is "control" and thus not printable, above 127 is
337 # "not ASCII" in its strict sense, 127 (DEL) is not printable,
338 # fall back to hex representation for non-printables.
339 if fmt == 'ascii':
340 if v in range(32, 126 + 1):
341 return chr(v)
342 hexfmt = "[{:02X}]" if bits <= 8 else "[{:03X}]"
343 return hexfmt.format(v)
344
345 # Mere number to text conversion without prefix and padding
346 # for the "decimal" output format.
347 if fmt == 'dec':
348 return "{:d}".format(v)
349
350 # Padding with leading zeroes for hex/oct/bin formats, but
351 # without a prefix for density -- since the format is user
352 # specified, there is no ambiguity.
353 if fmt == 'hex':
354 digits = (bits + 4 - 1) // 4
355 fmtchar = "X"
356 elif fmt == 'oct':
357 digits = (bits + 3 - 1) // 3
358 fmtchar = "o"
359 elif fmt == 'bin':
360 digits = bits
361 fmtchar = "b"
362 else:
363 fmtchar = None
364 if fmtchar is not None:
365 fmt = "{{:0{:d}{:s}}}".format(digits, fmtchar)
366 return fmt.format(v)
367
368 return None
369
370 def get_parity_bit(self, rxtx, signal):
371 self.paritybit[rxtx] = signal
372
373 if parity_ok(self.options['parity_type'], self.paritybit[rxtx],
374 self.datavalue[rxtx], self.options['num_data_bits']):
375 self.putp(['PARITYBIT', rxtx, self.paritybit[rxtx]])
376 self.putg([rxtx + 4, ['Parity bit', 'Parity', 'P']])
377 else:
378 # TODO: Return expected/actual parity values.
379 self.putp(['PARITY ERROR', rxtx, (0, 1)]) # FIXME: Dummy tuple...
380 self.putg([rxtx + 6, ['Parity error', 'Parity err', 'PE']])
381 self.frame_valid[rxtx] = False
382
383 self.state[rxtx] = 'GET STOP BITS'
384
385 # TODO: Currently only supports 1 stop bit.
386 def get_stop_bits(self, rxtx, signal):
387 self.stopbit1[rxtx] = signal
388
389 # Stop bits must be 1. If not, we report an error.
390 if self.stopbit1[rxtx] != 1:
391 self.putp(['INVALID STOPBIT', rxtx, self.stopbit1[rxtx]])
392 self.putg([rxtx + 10, ['Frame error', 'Frame err', 'FE']])
393 self.frame_valid[rxtx] = False
394
395 self.putp(['STOPBIT', rxtx, self.stopbit1[rxtx]])
396 self.putg([rxtx + 4, ['Stop bit', 'Stop', 'T']])
397
398 # Pass the complete UART frame to upper layers.
399 es = self.samplenum + ceil(self.bit_width / 2.0)
400 self.putpse(self.frame_start[rxtx], es, ['FRAME', rxtx,
401 (self.datavalue[rxtx], self.frame_valid[rxtx])])
402
403 self.state[rxtx] = 'WAIT FOR START BIT'
404
405 def handle_break(self, rxtx):
406 self.putpse(self.frame_start[rxtx], self.samplenum,
407 ['BREAK', rxtx, 0])
408 self.putgse(self.frame_start[rxtx], self.samplenum,
409 [rxtx + 14, ['Break condition', 'Break', 'Brk', 'B']])
410 self.state[rxtx] = 'WAIT FOR START BIT'
411
412 def get_wait_cond(self, rxtx, inv):
413 # Return condititions that are suitable for Decoder.wait(). Those
414 # conditions either match the falling edge of the START bit, or
415 # the sample point of the next bit time.
416 state = self.state[rxtx]
417 if state == 'WAIT FOR START BIT':
418 return {rxtx: 'r' if inv else 'f'}
419 if state == 'GET START BIT':
420 bitnum = 0
421 elif state == 'GET DATA BITS':
422 bitnum = 1 + self.cur_data_bit[rxtx]
423 elif state == 'GET PARITY BIT':
424 bitnum = 1 + self.options['num_data_bits']
425 elif state == 'GET STOP BITS':
426 bitnum = 1 + self.options['num_data_bits']
427 bitnum += 0 if self.options['parity_type'] == 'none' else 1
428 want_num = ceil(self.get_sample_point(rxtx, bitnum))
429 return {'skip': want_num - self.samplenum}
430
431 def inspect_sample(self, rxtx, signal, inv):
432 # Inspect a sample returned by .wait() for the specified UART line.
433 if inv:
434 signal = not signal
435
436 state = self.state[rxtx]
437 if state == 'WAIT FOR START BIT':
438 self.wait_for_start_bit(rxtx, signal)
439 elif state == 'GET START BIT':
440 self.get_start_bit(rxtx, signal)
441 elif state == 'GET DATA BITS':
442 self.get_data_bits(rxtx, signal)
443 elif state == 'GET PARITY BIT':
444 self.get_parity_bit(rxtx, signal)
445 elif state == 'GET STOP BITS':
446 self.get_stop_bits(rxtx, signal)
447
448 def inspect_edge(self, rxtx, signal, inv):
449 # Inspect edges, independently from traffic, to detect break conditions.
450 if inv:
451 signal = not signal
452 if not signal:
453 # Signal went low. Start another interval.
454 self.break_start[rxtx] = self.samplenum
455 return
456 # Signal went high. Was there an extended period with low signal?
457 if self.break_start[rxtx] is None:
458 return
459 diff = self.samplenum - self.break_start[rxtx]
460 if diff >= self.break_min_sample_count:
461 self.handle_break(rxtx)
462 self.break_start[rxtx] = None
463
464 def decode(self):
465 if not self.samplerate:
466 raise SamplerateError('Cannot decode without samplerate.')
467
468 has_pin = [self.has_channel(ch) for ch in (RX, TX)]
469 if has_pin == [False, False]:
470 raise ChannelError('Either TX or RX (or both) pins required.')
471
472 opt = self.options
473 inv = [opt['invert_rx'] == 'yes', opt['invert_tx'] == 'yes']
474 cond_data_idx = [None] * len(has_pin)
475
476 # Determine the number of samples for a complete frame's time span.
477 # A period of low signal (at least) that long is a break condition.
478 frame_samples = 1 # START
479 frame_samples += self.options['num_data_bits']
480 frame_samples += 0 if self.options['parity_type'] == 'none' else 1
481 frame_samples += self.options['num_stop_bits']
482 frame_samples *= self.bit_width
483 self.break_min_sample_count = ceil(frame_samples)
484 cond_edge_idx = [None] * len(has_pin)
485
486 while True:
487 conds = []
488 if has_pin[RX]:
489 cond_data_idx[RX] = len(conds)
490 conds.append(self.get_wait_cond(RX, inv[RX]))
491 cond_edge_idx[RX] = len(conds)
492 conds.append({RX: 'e'})
493 if has_pin[TX]:
494 cond_data_idx[TX] = len(conds)
495 conds.append(self.get_wait_cond(TX, inv[TX]))
496 cond_edge_idx[TX] = len(conds)
497 conds.append({TX: 'e'})
498 (rx, tx) = self.wait(conds)
499 if cond_data_idx[RX] is not None and self.matched[cond_data_idx[RX]]:
500 self.inspect_sample(RX, rx, inv[RX])
501 if cond_edge_idx[RX] is not None and self.matched[cond_edge_idx[RX]]:
502 self.inspect_edge(RX, rx, inv[RX])
503 if cond_data_idx[TX] is not None and self.matched[cond_data_idx[TX]]:
504 self.inspect_sample(TX, tx, inv[TX])
505 if cond_edge_idx[TX] is not None and self.matched[cond_edge_idx[TX]]:
506 self.inspect_edge(TX, tx, inv[TX])