]> sigrok.org Git - libsigrokdecode.git/blame_incremental - decoders/uart/pd.py
all decoders: introduce a reset() method
[libsigrokdecode.git] / decoders / uart / pd.py
... / ...
CommitLineData
1##
2## This file is part of the libsigrokdecode project.
3##
4## Copyright (C) 2011-2014 Uwe Hermann <uwe@hermann-uwe.de>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, see <http://www.gnu.org/licenses/>.
18##
19
20import sigrokdecode as srd
21from math import floor, ceil
22
23'''
24OUTPUT_PYTHON format:
25
26Packet:
27[<ptype>, <rxtx>, <pdata>]
28
29This is the list of <ptype>s and their respective <pdata> values:
30 - 'STARTBIT': The data is the (integer) value of the start bit (0/1).
31 - 'DATA': This is always a tuple containing two items:
32 - 1st item: the (integer) value of the UART data. Valid values
33 range from 0 to 511 (as the data can be up to 9 bits in size).
34 - 2nd item: the list of individual data bits and their ss/es numbers.
35 - 'PARITYBIT': The data is the (integer) value of the parity bit (0/1).
36 - 'STOPBIT': The data is the (integer) value of the stop bit (0 or 1).
37 - 'INVALID STARTBIT': The data is the (integer) value of the start bit (0/1).
38 - 'INVALID STOPBIT': The data is the (integer) value of the stop bit (0/1).
39 - 'PARITY ERROR': The data is a tuple with two entries. The first one is
40 the expected parity value, the second is the actual parity value.
41 - TODO: Frame error?
42
43The <rxtx> field is 0 for RX packets, 1 for TX packets.
44'''
45
46# Used for differentiating between the two data directions.
47RX = 0
48TX = 1
49
50# Given a parity type to check (odd, even, zero, one), the value of the
51# parity bit, the value of the data, and the length of the data (5-9 bits,
52# usually 8 bits) return True if the parity is correct, False otherwise.
53# 'none' is _not_ allowed as value for 'parity_type'.
54def parity_ok(parity_type, parity_bit, data, num_data_bits):
55
56 # Handle easy cases first (parity bit is always 1 or 0).
57 if parity_type == 'zero':
58 return parity_bit == 0
59 elif parity_type == 'one':
60 return parity_bit == 1
61
62 # Count number of 1 (high) bits in the data (and the parity bit itself!).
63 ones = bin(data).count('1') + parity_bit
64
65 # Check for odd/even parity.
66 if parity_type == 'odd':
67 return (ones % 2) == 1
68 elif parity_type == 'even':
69 return (ones % 2) == 0
70
71class SamplerateError(Exception):
72 pass
73
74class ChannelError(Exception):
75 pass
76
77class Decoder(srd.Decoder):
78 api_version = 3
79 id = 'uart'
80 name = 'UART'
81 longname = 'Universal Asynchronous Receiver/Transmitter'
82 desc = 'Asynchronous, serial bus.'
83 license = 'gplv2+'
84 inputs = ['logic']
85 outputs = ['uart']
86 optional_channels = (
87 # Allow specifying only one of the signals, e.g. if only one data
88 # direction exists (or is relevant).
89 {'id': 'rx', 'name': 'RX', 'desc': 'UART receive line'},
90 {'id': 'tx', 'name': 'TX', 'desc': 'UART transmit line'},
91 )
92 options = (
93 {'id': 'baudrate', 'desc': 'Baud rate', 'default': 115200},
94 {'id': 'num_data_bits', 'desc': 'Data bits', 'default': 8,
95 'values': (5, 6, 7, 8, 9)},
96 {'id': 'parity_type', 'desc': 'Parity type', 'default': 'none',
97 'values': ('none', 'odd', 'even', 'zero', 'one')},
98 {'id': 'parity_check', 'desc': 'Check parity?', 'default': 'yes',
99 'values': ('yes', 'no')},
100 {'id': 'num_stop_bits', 'desc': 'Stop bits', 'default': 1.0,
101 'values': (0.0, 0.5, 1.0, 1.5)},
102 {'id': 'bit_order', 'desc': 'Bit order', 'default': 'lsb-first',
103 'values': ('lsb-first', 'msb-first')},
104 {'id': 'format', 'desc': 'Data format', 'default': 'hex',
105 'values': ('ascii', 'dec', 'hex', 'oct', 'bin')},
106 {'id': 'invert_rx', 'desc': 'Invert RX?', 'default': 'no',
107 'values': ('yes', 'no')},
108 {'id': 'invert_tx', 'desc': 'Invert TX?', 'default': 'no',
109 'values': ('yes', 'no')},
110 )
111 annotations = (
112 ('rx-data', 'RX data'),
113 ('tx-data', 'TX data'),
114 ('rx-start', 'RX start bits'),
115 ('tx-start', 'TX start bits'),
116 ('rx-parity-ok', 'RX parity OK bits'),
117 ('tx-parity-ok', 'TX parity OK bits'),
118 ('rx-parity-err', 'RX parity error bits'),
119 ('tx-parity-err', 'TX parity error bits'),
120 ('rx-stop', 'RX stop bits'),
121 ('tx-stop', 'TX stop bits'),
122 ('rx-warnings', 'RX warnings'),
123 ('tx-warnings', 'TX warnings'),
124 ('rx-data-bits', 'RX data bits'),
125 ('tx-data-bits', 'TX data bits'),
126 )
127 annotation_rows = (
128 ('rx-data', 'RX', (0, 2, 4, 6, 8)),
129 ('rx-data-bits', 'RX bits', (12,)),
130 ('rx-warnings', 'RX warnings', (10,)),
131 ('tx-data', 'TX', (1, 3, 5, 7, 9)),
132 ('tx-data-bits', 'TX bits', (13,)),
133 ('tx-warnings', 'TX warnings', (11,)),
134 )
135 binary = (
136 ('rx', 'RX dump'),
137 ('tx', 'TX dump'),
138 ('rxtx', 'RX/TX dump'),
139 )
140 idle_state = ['WAIT FOR START BIT', 'WAIT FOR START BIT']
141
142 def putx(self, rxtx, data):
143 s, halfbit = self.startsample[rxtx], self.bit_width / 2.0
144 self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_ann, data)
145
146 def putpx(self, rxtx, data):
147 s, halfbit = self.startsample[rxtx], self.bit_width / 2.0
148 self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_python, data)
149
150 def putg(self, data):
151 s, halfbit = self.samplenum, self.bit_width / 2.0
152 self.put(s - floor(halfbit), s + ceil(halfbit), self.out_ann, data)
153
154 def putp(self, data):
155 s, halfbit = self.samplenum, self.bit_width / 2.0
156 self.put(s - floor(halfbit), s + ceil(halfbit), self.out_python, data)
157
158 def putbin(self, rxtx, data):
159 s, halfbit = self.startsample[rxtx], self.bit_width / 2.0
160 self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_binary, data)
161
162 def __init__(self):
163 self.reset()
164
165 def reset(self):
166 self.samplerate = None
167 self.samplenum = 0
168 self.frame_start = [-1, -1]
169 self.startbit = [-1, -1]
170 self.cur_data_bit = [0, 0]
171 self.datavalue = [0, 0]
172 self.paritybit = [-1, -1]
173 self.stopbit1 = [-1, -1]
174 self.startsample = [-1, -1]
175 self.state = ['WAIT FOR START BIT', 'WAIT FOR START BIT']
176 self.databits = [[], []]
177
178 def start(self):
179 self.out_python = self.register(srd.OUTPUT_PYTHON)
180 self.out_binary = self.register(srd.OUTPUT_BINARY)
181 self.out_ann = self.register(srd.OUTPUT_ANN)
182 self.bw = (self.options['num_data_bits'] + 7) // 8
183
184 def metadata(self, key, value):
185 if key == srd.SRD_CONF_SAMPLERATE:
186 self.samplerate = value
187 # The width of one UART bit in number of samples.
188 self.bit_width = float(self.samplerate) / float(self.options['baudrate'])
189
190 def get_sample_point(self, rxtx, bitnum):
191 # Determine absolute sample number of a bit slot's sample point.
192 # bitpos is the samplenumber which is in the middle of the
193 # specified UART bit (0 = start bit, 1..x = data, x+1 = parity bit
194 # (if used) or the first stop bit, and so on).
195 # The samples within bit are 0, 1, ..., (bit_width - 1), therefore
196 # index of the middle sample within bit window is (bit_width - 1) / 2.
197 bitpos = self.frame_start[rxtx] + (self.bit_width - 1) / 2.0
198 bitpos += bitnum * self.bit_width
199 return bitpos
200
201 def wait_for_start_bit(self, rxtx, signal):
202 # Save the sample number where the start bit begins.
203 self.frame_start[rxtx] = self.samplenum
204
205 self.state[rxtx] = 'GET START BIT'
206
207 def get_start_bit(self, rxtx, signal):
208 self.startbit[rxtx] = signal
209
210 # The startbit must be 0. If not, we report an error and wait
211 # for the next start bit (assuming this one was spurious).
212 if self.startbit[rxtx] != 0:
213 self.putp(['INVALID STARTBIT', rxtx, self.startbit[rxtx]])
214 self.putg([rxtx + 10, ['Frame error', 'Frame err', 'FE']])
215 self.state[rxtx] = 'WAIT FOR START BIT'
216 return
217
218 self.cur_data_bit[rxtx] = 0
219 self.datavalue[rxtx] = 0
220 self.startsample[rxtx] = -1
221
222 self.putp(['STARTBIT', rxtx, self.startbit[rxtx]])
223 self.putg([rxtx + 2, ['Start bit', 'Start', 'S']])
224
225 self.state[rxtx] = 'GET DATA BITS'
226
227 def get_data_bits(self, rxtx, signal):
228 # Save the sample number of the middle of the first data bit.
229 if self.startsample[rxtx] == -1:
230 self.startsample[rxtx] = self.samplenum
231
232 # Get the next data bit in LSB-first or MSB-first fashion.
233 if self.options['bit_order'] == 'lsb-first':
234 self.datavalue[rxtx] >>= 1
235 self.datavalue[rxtx] |= \
236 (signal << (self.options['num_data_bits'] - 1))
237 else:
238 self.datavalue[rxtx] <<= 1
239 self.datavalue[rxtx] |= (signal << 0)
240
241 self.putg([rxtx + 12, ['%d' % signal]])
242
243 # Store individual data bits and their start/end samplenumbers.
244 s, halfbit = self.samplenum, int(self.bit_width / 2)
245 self.databits[rxtx].append([signal, s - halfbit, s + halfbit])
246
247 # Return here, unless we already received all data bits.
248 self.cur_data_bit[rxtx] += 1
249 if self.cur_data_bit[rxtx] < self.options['num_data_bits']:
250 return
251
252 self.putpx(rxtx, ['DATA', rxtx,
253 (self.datavalue[rxtx], self.databits[rxtx])])
254
255 b = self.datavalue[rxtx]
256 formatted = self.format_value(b)
257 if formatted is not None:
258 self.putx(rxtx, [rxtx, [formatted]])
259
260 bdata = b.to_bytes(self.bw, byteorder='big')
261 self.putbin(rxtx, [rxtx, bdata])
262 self.putbin(rxtx, [2, bdata])
263
264 self.databits[rxtx] = []
265
266 # Advance to either reception of the parity bit, or reception of
267 # the STOP bits if parity is not applicable.
268 self.state[rxtx] = 'GET PARITY BIT'
269 if self.options['parity_type'] == 'none':
270 self.state[rxtx] = 'GET STOP BITS'
271
272 def format_value(self, v):
273 # Format value 'v' according to configured options.
274 # Reflects the user selected kind of representation, as well as
275 # the number of data bits in the UART frames.
276
277 fmt, bits = self.options['format'], self.options['num_data_bits']
278
279 # Assume "is printable" for values from 32 to including 126,
280 # below 32 is "control" and thus not printable, above 127 is
281 # "not ASCII" in its strict sense, 127 (DEL) is not printable,
282 # fall back to hex representation for non-printables.
283 if fmt == 'ascii':
284 if v in range(32, 126 + 1):
285 return chr(v)
286 hexfmt = "[{:02X}]" if bits <= 8 else "[{:03X}]"
287 return hexfmt.format(v)
288
289 # Mere number to text conversion without prefix and padding
290 # for the "decimal" output format.
291 if fmt == 'dec':
292 return "{:d}".format(v)
293
294 # Padding with leading zeroes for hex/oct/bin formats, but
295 # without a prefix for density -- since the format is user
296 # specified, there is no ambiguity.
297 if fmt == 'hex':
298 digits = (bits + 4 - 1) // 4
299 fmtchar = "X"
300 elif fmt == 'oct':
301 digits = (bits + 3 - 1) // 3
302 fmtchar = "o"
303 elif fmt == 'bin':
304 digits = bits
305 fmtchar = "b"
306 else:
307 fmtchar = None
308 if fmtchar is not None:
309 fmt = "{{:0{:d}{:s}}}".format(digits, fmtchar)
310 return fmt.format(v)
311
312 return None
313
314 def get_parity_bit(self, rxtx, signal):
315 self.paritybit[rxtx] = signal
316
317 if parity_ok(self.options['parity_type'], self.paritybit[rxtx],
318 self.datavalue[rxtx], self.options['num_data_bits']):
319 self.putp(['PARITYBIT', rxtx, self.paritybit[rxtx]])
320 self.putg([rxtx + 4, ['Parity bit', 'Parity', 'P']])
321 else:
322 # TODO: Return expected/actual parity values.
323 self.putp(['PARITY ERROR', rxtx, (0, 1)]) # FIXME: Dummy tuple...
324 self.putg([rxtx + 6, ['Parity error', 'Parity err', 'PE']])
325
326 self.state[rxtx] = 'GET STOP BITS'
327
328 # TODO: Currently only supports 1 stop bit.
329 def get_stop_bits(self, rxtx, signal):
330 self.stopbit1[rxtx] = signal
331
332 # Stop bits must be 1. If not, we report an error.
333 if self.stopbit1[rxtx] != 1:
334 self.putp(['INVALID STOPBIT', rxtx, self.stopbit1[rxtx]])
335 self.putg([rxtx + 10, ['Frame error', 'Frame err', 'FE']])
336 # TODO: Abort? Ignore the frame? Other?
337
338 self.putp(['STOPBIT', rxtx, self.stopbit1[rxtx]])
339 self.putg([rxtx + 4, ['Stop bit', 'Stop', 'T']])
340
341 self.state[rxtx] = 'WAIT FOR START BIT'
342
343 def get_wait_cond(self, rxtx, inv):
344 # Return condititions that are suitable for Decoder.wait(). Those
345 # conditions either match the falling edge of the START bit, or
346 # the sample point of the next bit time.
347 state = self.state[rxtx]
348 if state == 'WAIT FOR START BIT':
349 return {rxtx: 'r' if inv else 'f'}
350 if state == 'GET START BIT':
351 bitnum = 0
352 elif state == 'GET DATA BITS':
353 bitnum = 1 + self.cur_data_bit[rxtx]
354 elif state == 'GET PARITY BIT':
355 bitnum = 1 + self.options['num_data_bits']
356 elif state == 'GET STOP BITS':
357 bitnum = 1 + self.options['num_data_bits']
358 bitnum += 0 if self.options['parity_type'] == 'none' else 1
359 want_num = ceil(self.get_sample_point(rxtx, bitnum))
360 return {'skip': want_num - self.samplenum}
361
362 def inspect_sample(self, rxtx, signal, inv):
363 # Inspect a sample returned by .wait() for the specified UART line.
364 if inv:
365 signal = not signal
366
367 state = self.state[rxtx]
368 if state == 'WAIT FOR START BIT':
369 self.wait_for_start_bit(rxtx, signal)
370 elif state == 'GET START BIT':
371 self.get_start_bit(rxtx, signal)
372 elif state == 'GET DATA BITS':
373 self.get_data_bits(rxtx, signal)
374 elif state == 'GET PARITY BIT':
375 self.get_parity_bit(rxtx, signal)
376 elif state == 'GET STOP BITS':
377 self.get_stop_bits(rxtx, signal)
378
379 def decode(self):
380 if not self.samplerate:
381 raise SamplerateError('Cannot decode without samplerate.')
382
383 has_pin = [self.has_channel(ch) for ch in (RX, TX)]
384 if has_pin == [False, False]:
385 raise ChannelError('Either TX or RX (or both) pins required.')
386
387 opt = self.options
388 inv = [opt['invert_rx'] == 'yes', opt['invert_tx'] == 'yes']
389 cond_idx = [None] * len(has_pin)
390
391 while True:
392 conds = []
393 if has_pin[RX]:
394 cond_idx[RX] = len(conds)
395 conds.append(self.get_wait_cond(RX, inv[RX]))
396 if has_pin[TX]:
397 cond_idx[TX] = len(conds)
398 conds.append(self.get_wait_cond(TX, inv[TX]))
399 (rx, tx) = self.wait(conds)
400 if cond_idx[RX] is not None and self.matched[cond_idx[RX]]:
401 self.inspect_sample(RX, rx, inv[RX])
402 if cond_idx[TX] is not None and self.matched[cond_idx[TX]]:
403 self.inspect_sample(TX, tx, inv[TX])