]> sigrok.org Git - libsigrokdecode.git/blame_incremental - decoders/uart/pd.py
Drop obsolete report() method.
[libsigrokdecode.git] / decoders / uart / pd.py
... / ...
CommitLineData
1##
2## This file is part of the libsigrokdecode project.
3##
4## Copyright (C) 2011-2013 Uwe Hermann <uwe@hermann-uwe.de>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, write to the Free Software
18## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19##
20
21# UART protocol decoder
22
23import sigrokdecode as srd
24
25'''
26Protocol output format:
27
28UART packet:
29[<packet-type>, <rxtx>, <packet-data>]
30
31This is the list of <packet-type>s and their respective <packet-data>:
32 - 'STARTBIT': The data is the (integer) value of the start bit (0/1).
33 - 'DATA': The data is the (integer) value of the UART data. Valid values
34 range from 0 to 512 (as the data can be up to 9 bits in size).
35 - 'PARITYBIT': The data is the (integer) value of the parity bit (0/1).
36 - 'STOPBIT': The data is the (integer) value of the stop bit (0 or 1).
37 - 'INVALID STARTBIT': The data is the (integer) value of the start bit (0/1).
38 - 'INVALID STOPBIT': The data is the (integer) value of the stop bit (0/1).
39 - 'PARITY ERROR': The data is a tuple with two entries. The first one is
40 the expected parity value, the second is the actual parity value.
41 - TODO: Frame error?
42
43The <rxtx> field is 0 for RX packets, 1 for TX packets.
44'''
45
46# Used for differentiating between the two data directions.
47RX = 0
48TX = 1
49
50# Given a parity type to check (odd, even, zero, one), the value of the
51# parity bit, the value of the data, and the length of the data (5-9 bits,
52# usually 8 bits) return True if the parity is correct, False otherwise.
53# 'none' is _not_ allowed as value for 'parity_type'.
54def parity_ok(parity_type, parity_bit, data, num_data_bits):
55
56 # Handle easy cases first (parity bit is always 1 or 0).
57 if parity_type == 'zero':
58 return parity_bit == 0
59 elif parity_type == 'one':
60 return parity_bit == 1
61
62 # Count number of 1 (high) bits in the data (and the parity bit itself!).
63 ones = bin(data).count('1') + parity_bit
64
65 # Check for odd/even parity.
66 if parity_type == 'odd':
67 return (ones % 2) == 1
68 elif parity_type == 'even':
69 return (ones % 2) == 0
70 else:
71 raise Exception('Invalid parity type: %d' % parity_type)
72
73class Decoder(srd.Decoder):
74 api_version = 1
75 id = 'uart'
76 name = 'UART'
77 longname = 'Universal Asynchronous Receiver/Transmitter'
78 desc = 'Asynchronous, serial bus.'
79 license = 'gplv2+'
80 inputs = ['logic']
81 outputs = ['uart']
82 probes = [
83 # Allow specifying only one of the signals, e.g. if only one data
84 # direction exists (or is relevant).
85 {'id': 'rx', 'name': 'RX', 'desc': 'UART receive line'},
86 {'id': 'tx', 'name': 'TX', 'desc': 'UART transmit line'},
87 ]
88 optional_probes = []
89 options = {
90 'baudrate': ['Baud rate', 115200],
91 'num_data_bits': ['Data bits', 8], # Valid: 5-9.
92 'parity_type': ['Parity type', 'none'],
93 'parity_check': ['Check parity?', 'yes'], # TODO: Bool supported?
94 'num_stop_bits': ['Stop bit(s)', '1'], # String! 0, 0.5, 1, 1.5.
95 'bit_order': ['Bit order', 'lsb-first'],
96 'format': ['Data format', 'ascii'], # ascii/dec/hex/oct/bin
97 # TODO: Options to invert the signal(s).
98 }
99 annotations = [
100 ['RX data', 'UART RX data'],
101 ['TX data', 'UART TX data'],
102 ['Start bits', 'UART start bits'],
103 ['Parity bits', 'UART parity bits'],
104 ['Stop bits', 'UART stop bits'],
105 ['Warnings', 'Warnings'],
106 ]
107
108 def putx(self, rxtx, data):
109 s, halfbit = self.startsample[rxtx], int(self.bit_width / 2)
110 self.put(s - halfbit, self.samplenum + halfbit, self.out_ann, data)
111
112 def putg(self, data):
113 s, halfbit = self.samplenum, int(self.bit_width / 2)
114 self.put(s - halfbit, s + halfbit, self.out_ann, data)
115
116 def putp(self, data):
117 s, halfbit = self.samplenum, int(self.bit_width / 2)
118 self.put(s - halfbit, s + halfbit, self.out_proto, data)
119
120 def __init__(self, **kwargs):
121 self.samplerate = None
122 self.samplenum = 0
123 self.frame_start = [-1, -1]
124 self.startbit = [-1, -1]
125 self.cur_data_bit = [0, 0]
126 self.databyte = [0, 0]
127 self.paritybit = [-1, -1]
128 self.stopbit1 = [-1, -1]
129 self.startsample = [-1, -1]
130 self.state = ['WAIT FOR START BIT', 'WAIT FOR START BIT']
131 self.oldbit = [1, 1]
132 self.oldpins = [1, 1]
133
134 def start(self):
135 self.out_proto = self.register(srd.OUTPUT_PYTHON)
136 self.out_ann = self.register(srd.OUTPUT_ANN)
137
138 def metadata(self, key, value):
139 if key == srd.SRD_CONF_SAMPLERATE:
140 self.samplerate = value;
141 # The width of one UART bit in number of samples.
142 self.bit_width = float(self.samplerate) / float(self.options['baudrate'])
143
144 # Return true if we reached the middle of the desired bit, false otherwise.
145 def reached_bit(self, rxtx, bitnum):
146 # bitpos is the samplenumber which is in the middle of the
147 # specified UART bit (0 = start bit, 1..x = data, x+1 = parity bit
148 # (if used) or the first stop bit, and so on).
149 bitpos = self.frame_start[rxtx] + (self.bit_width / 2.0)
150 bitpos += bitnum * self.bit_width
151 if self.samplenum >= bitpos:
152 return True
153 return False
154
155 def reached_bit_last(self, rxtx, bitnum):
156 bitpos = self.frame_start[rxtx] + ((bitnum + 1) * self.bit_width)
157 if self.samplenum >= bitpos:
158 return True
159 return False
160
161 def wait_for_start_bit(self, rxtx, old_signal, signal):
162 # The start bit is always 0 (low). As the idle UART (and the stop bit)
163 # level is 1 (high), the beginning of a start bit is a falling edge.
164 if not (old_signal == 1 and signal == 0):
165 return
166
167 # Save the sample number where the start bit begins.
168 self.frame_start[rxtx] = self.samplenum
169
170 self.state[rxtx] = 'GET START BIT'
171
172 def get_start_bit(self, rxtx, signal):
173 # Skip samples until we're in the middle of the start bit.
174 if not self.reached_bit(rxtx, 0):
175 return
176
177 self.startbit[rxtx] = signal
178
179 # The startbit must be 0. If not, we report an error.
180 if self.startbit[rxtx] != 0:
181 self.putp(['INVALID STARTBIT', rxtx, self.startbit[rxtx]])
182 # TODO: Abort? Ignore rest of the frame?
183
184 self.cur_data_bit[rxtx] = 0
185 self.databyte[rxtx] = 0
186 self.startsample[rxtx] = -1
187
188 self.state[rxtx] = 'GET DATA BITS'
189
190 self.putp(['STARTBIT', rxtx, self.startbit[rxtx]])
191 self.putg([2, ['Start bit', 'Start', 'S']])
192
193 def get_data_bits(self, rxtx, signal):
194 # Skip samples until we're in the middle of the desired data bit.
195 if not self.reached_bit(rxtx, self.cur_data_bit[rxtx] + 1):
196 return
197
198 # Save the sample number of the middle of the first data bit.
199 if self.startsample[rxtx] == -1:
200 self.startsample[rxtx] = self.samplenum
201
202 # Get the next data bit in LSB-first or MSB-first fashion.
203 if self.options['bit_order'] == 'lsb-first':
204 self.databyte[rxtx] >>= 1
205 self.databyte[rxtx] |= \
206 (signal << (self.options['num_data_bits'] - 1))
207 elif self.options['bit_order'] == 'msb-first':
208 self.databyte[rxtx] <<= 1
209 self.databyte[rxtx] |= (signal << 0)
210 else:
211 raise Exception('Invalid bit order value: %s',
212 self.options['bit_order'])
213
214 # Return here, unless we already received all data bits.
215 if self.cur_data_bit[rxtx] < self.options['num_data_bits'] - 1:
216 self.cur_data_bit[rxtx] += 1
217 return
218
219 self.state[rxtx] = 'GET PARITY BIT'
220
221 self.putp(['DATA', rxtx, self.databyte[rxtx]])
222
223 b, f = self.databyte[rxtx], self.options['format']
224 if f == 'ascii':
225 self.putx(rxtx, [rxtx, [chr(b)]])
226 elif f == 'dec':
227 self.putx(rxtx, [rxtx, [str(b)]])
228 elif f == 'hex':
229 self.putx(rxtx, [rxtx, [hex(b)[2:].zfill(2).upper()]])
230 elif f == 'oct':
231 self.putx(rxtx, [rxtx, [oct(b)[2:].zfill(3)]])
232 elif f == 'bin':
233 self.putx(rxtx, [rxtx, [bin(b)[2:].zfill(8)]])
234 else:
235 raise Exception('Invalid data format option: %s' % f)
236
237 def get_parity_bit(self, rxtx, signal):
238 # If no parity is used/configured, skip to the next state immediately.
239 if self.options['parity_type'] == 'none':
240 self.state[rxtx] = 'GET STOP BITS'
241 return
242
243 # Skip samples until we're in the middle of the parity bit.
244 if not self.reached_bit(rxtx, self.options['num_data_bits'] + 1):
245 return
246
247 self.paritybit[rxtx] = signal
248
249 self.state[rxtx] = 'GET STOP BITS'
250
251 if parity_ok(self.options['parity_type'], self.paritybit[rxtx],
252 self.databyte[rxtx], self.options['num_data_bits']):
253 self.putp(['PARITYBIT', rxtx, self.paritybit[rxtx]])
254 self.putg([3, ['Parity bit', 'Parity', 'P']])
255 else:
256 # TODO: Return expected/actual parity values.
257 self.putp(['PARITY ERROR', rxtx, (0, 1)]) # FIXME: Dummy tuple...
258 self.putg([5, ['Parity error', 'Parity err', 'PE']])
259
260 # TODO: Currently only supports 1 stop bit.
261 def get_stop_bits(self, rxtx, signal):
262 # Skip samples until we're in the middle of the stop bit(s).
263 skip_parity = 0 if self.options['parity_type'] == 'none' else 1
264 b = self.options['num_data_bits'] + 1 + skip_parity
265 if not self.reached_bit(rxtx, b):
266 return
267
268 self.stopbit1[rxtx] = signal
269
270 # Stop bits must be 1. If not, we report an error.
271 if self.stopbit1[rxtx] != 1:
272 self.putp(['INVALID STOPBIT', rxtx, self.stopbit1[rxtx]])
273 self.putg([5, ['Frame error', 'Frame err', 'FE']])
274 # TODO: Abort? Ignore the frame? Other?
275
276 self.state[rxtx] = 'WAIT FOR START BIT'
277
278 self.putp(['STOPBIT', rxtx, self.stopbit1[rxtx]])
279 self.putg([4, ['Stop bit', 'Stop', 'T']])
280
281 def decode(self, ss, es, data):
282 if self.samplerate is None:
283 raise Exception("Cannot decode without samplerate.")
284 # TODO: Either RX or TX could be omitted (optional probe).
285 for (self.samplenum, pins) in data:
286
287 # Note: Ignoring identical samples here for performance reasons
288 # is not possible for this PD, at least not in the current state.
289 # if self.oldpins == pins:
290 # continue
291 self.oldpins, (rx, tx) = pins, pins
292
293 # State machine.
294 for rxtx in (RX, TX):
295 signal = rx if (rxtx == RX) else tx
296
297 if self.state[rxtx] == 'WAIT FOR START BIT':
298 self.wait_for_start_bit(rxtx, self.oldbit[rxtx], signal)
299 elif self.state[rxtx] == 'GET START BIT':
300 self.get_start_bit(rxtx, signal)
301 elif self.state[rxtx] == 'GET DATA BITS':
302 self.get_data_bits(rxtx, signal)
303 elif self.state[rxtx] == 'GET PARITY BIT':
304 self.get_parity_bit(rxtx, signal)
305 elif self.state[rxtx] == 'GET STOP BITS':
306 self.get_stop_bits(rxtx, signal)
307 else:
308 raise Exception('Invalid state: %s' % self.state[rxtx])
309
310 # Save current RX/TX values for the next round.
311 self.oldbit[rxtx] = signal
312