]> sigrok.org Git - libsigrokdecode.git/blame_incremental - decoders/uart/pd.py
uart: Make data format selection a PD option.
[libsigrokdecode.git] / decoders / uart / pd.py
... / ...
CommitLineData
1##
2## This file is part of the libsigrokdecode project.
3##
4## Copyright (C) 2011-2013 Uwe Hermann <uwe@hermann-uwe.de>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, write to the Free Software
18## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19##
20
21# UART protocol decoder
22
23import sigrokdecode as srd
24
25# Used for differentiating between the two data directions.
26RX = 0
27TX = 1
28
29# Given a parity type to check (odd, even, zero, one), the value of the
30# parity bit, the value of the data, and the length of the data (5-9 bits,
31# usually 8 bits) return True if the parity is correct, False otherwise.
32# 'none' is _not_ allowed as value for 'parity_type'.
33def parity_ok(parity_type, parity_bit, data, num_data_bits):
34
35 # Handle easy cases first (parity bit is always 1 or 0).
36 if parity_type == 'zero':
37 return parity_bit == 0
38 elif parity_type == 'one':
39 return parity_bit == 1
40
41 # Count number of 1 (high) bits in the data (and the parity bit itself!).
42 ones = bin(data).count('1') + parity_bit
43
44 # Check for odd/even parity.
45 if parity_type == 'odd':
46 return (ones % 2) == 1
47 elif parity_type == 'even':
48 return (ones % 2) == 0
49 else:
50 raise Exception('Invalid parity type: %d' % parity_type)
51
52class Decoder(srd.Decoder):
53 api_version = 1
54 id = 'uart'
55 name = 'UART'
56 longname = 'Universal Asynchronous Receiver/Transmitter'
57 desc = 'Asynchronous, serial bus.'
58 license = 'gplv2+'
59 inputs = ['logic']
60 outputs = ['uart']
61 probes = [
62 # Allow specifying only one of the signals, e.g. if only one data
63 # direction exists (or is relevant).
64 {'id': 'rx', 'name': 'RX', 'desc': 'UART receive line'},
65 {'id': 'tx', 'name': 'TX', 'desc': 'UART transmit line'},
66 ]
67 optional_probes = []
68 options = {
69 'baudrate': ['Baud rate', 115200],
70 'num_data_bits': ['Data bits', 8], # Valid: 5-9.
71 'parity_type': ['Parity type', 'none'],
72 'parity_check': ['Check parity?', 'yes'], # TODO: Bool supported?
73 'num_stop_bits': ['Stop bit(s)', '1'], # String! 0, 0.5, 1, 1.5.
74 'bit_order': ['Bit order', 'lsb-first'],
75 'format': ['Data format', 'ascii'], # ascii/dec/hex/oct/bin
76 # TODO: Options to invert the signal(s).
77 }
78 annotations = [
79 ['Data', 'UART data'],
80 ]
81
82 def putx(self, rxtx, data):
83 s, halfbit = self.startsample[rxtx], int(self.bit_width / 2)
84 self.put(s - halfbit, self.samplenum + halfbit, self.out_ann, data)
85
86 def putg(self, data):
87 s, halfbit = self.samplenum, int(self.bit_width / 2)
88 self.put(s - halfbit, s + halfbit, self.out_ann, data)
89
90 def putp(self, data):
91 s, halfbit = self.samplenum, int(self.bit_width / 2)
92 self.put(s - halfbit, s + halfbit, self.out_proto, data)
93
94 def __init__(self, **kwargs):
95 self.samplenum = 0
96 self.frame_start = [-1, -1]
97 self.startbit = [-1, -1]
98 self.cur_data_bit = [0, 0]
99 self.databyte = [0, 0]
100 self.paritybit = [-1, -1]
101 self.stopbit1 = [-1, -1]
102 self.startsample = [-1, -1]
103 self.state = ['WAIT FOR START BIT', 'WAIT FOR START BIT']
104 self.oldbit = [1, 1]
105 self.oldpins = [1, 1]
106
107 def start(self, metadata):
108 self.samplerate = metadata['samplerate']
109 self.out_proto = self.add(srd.OUTPUT_PROTO, 'uart')
110 self.out_ann = self.add(srd.OUTPUT_ANN, 'uart')
111
112 # The width of one UART bit in number of samples.
113 self.bit_width = \
114 float(self.samplerate) / float(self.options['baudrate'])
115
116 def report(self):
117 pass
118
119 # Return true if we reached the middle of the desired bit, false otherwise.
120 def reached_bit(self, rxtx, bitnum):
121 # bitpos is the samplenumber which is in the middle of the
122 # specified UART bit (0 = start bit, 1..x = data, x+1 = parity bit
123 # (if used) or the first stop bit, and so on).
124 bitpos = self.frame_start[rxtx] + (self.bit_width / 2.0)
125 bitpos += bitnum * self.bit_width
126 if self.samplenum >= bitpos:
127 return True
128 return False
129
130 def reached_bit_last(self, rxtx, bitnum):
131 bitpos = self.frame_start[rxtx] + ((bitnum + 1) * self.bit_width)
132 if self.samplenum >= bitpos:
133 return True
134 return False
135
136 def wait_for_start_bit(self, rxtx, old_signal, signal):
137 # The start bit is always 0 (low). As the idle UART (and the stop bit)
138 # level is 1 (high), the beginning of a start bit is a falling edge.
139 if not (old_signal == 1 and signal == 0):
140 return
141
142 # Save the sample number where the start bit begins.
143 self.frame_start[rxtx] = self.samplenum
144
145 self.state[rxtx] = 'GET START BIT'
146
147 def get_start_bit(self, rxtx, signal):
148 # Skip samples until we're in the middle of the start bit.
149 if not self.reached_bit(rxtx, 0):
150 return
151
152 self.startbit[rxtx] = signal
153
154 # The startbit must be 0. If not, we report an error.
155 if self.startbit[rxtx] != 0:
156 self.putp(['INVALID STARTBIT', rxtx, self.startbit[rxtx]])
157 # TODO: Abort? Ignore rest of the frame?
158
159 self.cur_data_bit[rxtx] = 0
160 self.databyte[rxtx] = 0
161 self.startsample[rxtx] = -1
162
163 self.state[rxtx] = 'GET DATA BITS'
164
165 self.putp(['STARTBIT', rxtx, self.startbit[rxtx]])
166 self.putg([0, ['Start bit', 'Start', 'S']])
167
168 def get_data_bits(self, rxtx, signal):
169 # Skip samples until we're in the middle of the desired data bit.
170 if not self.reached_bit(rxtx, self.cur_data_bit[rxtx] + 1):
171 return
172
173 # Save the sample number of the middle of the first data bit.
174 if self.startsample[rxtx] == -1:
175 self.startsample[rxtx] = self.samplenum
176
177 # Get the next data bit in LSB-first or MSB-first fashion.
178 if self.options['bit_order'] == 'lsb-first':
179 self.databyte[rxtx] >>= 1
180 self.databyte[rxtx] |= \
181 (signal << (self.options['num_data_bits'] - 1))
182 elif self.options['bit_order'] == 'msb-first':
183 self.databyte[rxtx] <<= 1
184 self.databyte[rxtx] |= (signal << 0)
185 else:
186 raise Exception('Invalid bit order value: %s',
187 self.options['bit_order'])
188
189 # Return here, unless we already received all data bits.
190 if self.cur_data_bit[rxtx] < self.options['num_data_bits'] - 1:
191 self.cur_data_bit[rxtx] += 1
192 return
193
194 self.state[rxtx] = 'GET PARITY BIT'
195
196 self.putp(['DATA', rxtx, self.databyte[rxtx]])
197
198 s = 'RX: ' if (rxtx == RX) else 'TX: '
199 b, f = self.databyte[rxtx], self.options['format']
200 if f == 'ascii':
201 self.putx(rxtx, [0, [s + chr(b)]])
202 elif f == 'dec':
203 self.putx(rxtx, [0, [s + str(b)]])
204 elif f == 'hex':
205 self.putx(rxtx, [0, [s + hex(b)[2:]]])
206 elif f == 'oct':
207 self.putx(rxtx, [0, [s + oct(b)[2:]]])
208 elif f == 'bin':
209 self.putx(rxtx, [0, [s + bin(b)[2:]]])
210 else:
211 raise Exception('Invalid data format option: %s' % f)
212
213 def get_parity_bit(self, rxtx, signal):
214 # If no parity is used/configured, skip to the next state immediately.
215 if self.options['parity_type'] == 'none':
216 self.state[rxtx] = 'GET STOP BITS'
217 return
218
219 # Skip samples until we're in the middle of the parity bit.
220 if not self.reached_bit(rxtx, self.options['num_data_bits'] + 1):
221 return
222
223 self.paritybit[rxtx] = signal
224
225 self.state[rxtx] = 'GET STOP BITS'
226
227 if parity_ok(self.options['parity_type'], self.paritybit[rxtx],
228 self.databyte[rxtx], self.options['num_data_bits']):
229 self.putp(['PARITYBIT', rxtx, self.paritybit[rxtx]])
230 self.putg([0, ['Parity bit', 'Parity', 'P']])
231 else:
232 # TODO: Return expected/actual parity values.
233 self.putp(['PARITY ERROR', rxtx, (0, 1)]) # FIXME: Dummy tuple...
234 self.putg([0, ['Parity error', 'Parity err', 'PE']])
235
236 # TODO: Currently only supports 1 stop bit.
237 def get_stop_bits(self, rxtx, signal):
238 # Skip samples until we're in the middle of the stop bit(s).
239 skip_parity = 0 if self.options['parity_type'] == 'none' else 1
240 b = self.options['num_data_bits'] + 1 + skip_parity
241 if not self.reached_bit(rxtx, b):
242 return
243
244 self.stopbit1[rxtx] = signal
245
246 # Stop bits must be 1. If not, we report an error.
247 if self.stopbit1[rxtx] != 1:
248 self.putp(['INVALID STOPBIT', rxtx, self.stopbit1[rxtx]])
249 # TODO: Abort? Ignore the frame? Other?
250
251 self.state[rxtx] = 'WAIT FOR START BIT'
252
253 self.putp(['STOPBIT', rxtx, self.stopbit1[rxtx]])
254 self.putg([0, ['Stop bit', 'Stop', 'T']])
255
256 def decode(self, ss, es, data):
257 # TODO: Either RX or TX could be omitted (optional probe).
258 for (self.samplenum, pins) in data:
259
260 # Note: Ignoring identical samples here for performance reasons
261 # is not possible for this PD, at least not in the current state.
262 # if self.oldpins == pins:
263 # continue
264 self.oldpins, (rx, tx) = pins, pins
265
266 # State machine.
267 for rxtx in (RX, TX):
268 signal = rx if (rxtx == RX) else tx
269
270 if self.state[rxtx] == 'WAIT FOR START BIT':
271 self.wait_for_start_bit(rxtx, self.oldbit[rxtx], signal)
272 elif self.state[rxtx] == 'GET START BIT':
273 self.get_start_bit(rxtx, signal)
274 elif self.state[rxtx] == 'GET DATA BITS':
275 self.get_data_bits(rxtx, signal)
276 elif self.state[rxtx] == 'GET PARITY BIT':
277 self.get_parity_bit(rxtx, signal)
278 elif self.state[rxtx] == 'GET STOP BITS':
279 self.get_stop_bits(rxtx, signal)
280 else:
281 raise Exception('Invalid state: %s' % self.state[rxtx])
282
283 # Save current RX/TX values for the next round.
284 self.oldbit[rxtx] = signal
285